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SOME CONVERGENCE RESULTS FOR NONLINEAR
SINGULAR INTEGRAL OPERATORS

Abstract. In this paper, we establish some pointwise convergence results for a family
of certain nonlinear singular integral operators T f of the form
b

(T5f) (@) = \ Ka(t =2, f(t) dt, @ € (a,),

a

acting on functions with bounded (Jordan) variation on an interval [a, b], as A — Ao. Here,
the kernels K = {Kx},., satisfy some suitable singularity assumptions. We remark that
the present study is a continuation and extension of the study of pointwise approximation
of the family of nonlinear singular integral operators (1) begun in [18].

1. Introduction

Let I C R be a bounded or unbounded interval. As for the notation,
throughout this paper, Vi(f) stands for the total (Jordan) variation of the
real-valued function defined on I. The class of all functions of bounded (Jor-
dan) variation on I will be denoted by BV (I). Especially, this kind of spaces
and approximation problems via various positive linear operators were exten-
sively studied in [10]-[14] and [23|. Let us observe that Shaw et al. [21] inves-
tigated this problem for the general family of positive linear operators which
include Bernstein, Kantorovich and Durrmeyer operators as special cases.
Later on, in 2003, Hua and Shaw [15] proved the approximation problems
for the linear integral operators whose kernels are not necessarily positive.

The present paper concerns with pointwise convergence of certain families
of nonlinear singular integral operators T) f of the form

b

(1) (T f) (2) = | Kn(t — @, (D) dt, @ € (a,b),

a
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acting on functions with bounded (Jordan) variation on an interval [a,b],
where K, satisfy some suitable assumptions. In particular, we obtain the
rate of pointwise convergence for the nonlinear family of singular integral
operators (1) to the point x, having a discontinuity of the first kind and
at the Lebesgue points of f, as A — Ag. We remark that the present study
is a continuation and extension of the study of pointwise approximation of
a family of nonlinear integral operators (1) begun in [18], where the kernel
functions K satisfy the strong Lipschitz condition, namely

Ka(t,u) — K (£ 0)] < La(8)u— v,

for every t,u,v € R and for any A € A.

We note that the approximation theory with nonlinear integral opera-
tors of convolution type was introduced by J. Musielak in [20] and widely
developed in [4]. To the best of my knowledge, the approximation prob-
lem were limited to linear operators because the notion of singularity of
an integral operator is closely connected with its linearity until the fun-
damental paper of Musielak [20]. In [20], the assumption of linearity of
the singular integral operators was replaced by an assumption of a Lip-
schitz condition for the kernel function K, (¢,u) with respect to the sec-
ond variable. After this approach, several mathematicians have undertaken
the program of extending approximation by nonlinear integral operators in
many ways, including pointwise and uniform convergence, Korovkin type
theorems in abstract function spaces, sampling series and so on. KEspe-
cially, operators of type (1) and its special cases were studied by Swiderski—
Wachnicki [22], Karsli [16], [17] and Karsli-Ibikli [19] in some Lebesgue
spaces.

Such developments delineated a theory which is nowadays referred to as
the theory of approximation by nonlinear integral operators.

For further reading, we also refer the reader to [1]-[2], [5]-[9] as well as the
monographs [12] and [4] where other kinds of convergence results of linear
and nonlinear singular integral operators in the Lebesgue and Musielak—
Orlicz spaces have been considered. Finally, in the very recent paper due to
Angeloni and Vinti [3], some approximation properties with respect to the
multidimensional y-variation for the linear cases of the operators of type (1)
have been studied.

An outline of the paper is as follows: The next section contains basic
definitions and notations. In Section 3, the main approximation result of
this study are given. In Section 4, we give some certain results which are
necessary to prove the main result. The final section, that is Section 5, deals
with the proof of the main result presented in Section 3.
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2. Preliminaries

In this section, we assemble the main definitions and notations which will
be used throughout the paper.

Let A be a nonempty set of positive indices with a topology and A\g be an
accumulation point of A in this topology. Let X be the set of all Lebesgue
measurable functions f : [a,b] — R.

Throughout this paper, we assume that x : A — RT is an increasing and
continuous function such that limy_,, u(A) = oo.

Let ¥ be the class of all functions 9 : R(J{ — R(')F such that the function
1 is continuous and concave with ¥(0) = 0, (u) > 0 for u > 0.

We now introduce a family of kernel functions. Let {K)},., be a family
of Lebesgue measurable functions Ky : RxR— R defined by

K\(t,u) = La(t)Hx(u),

for every t,u € R, where Hy : R — R is such that H»(0) =0 and Ly : R —
R; is a Lebesgue integrable function, for every X € A.
First of all, we assume that the following conditions hold:
a) Hy : R — R is such that
[Hx(u) = Hx(v)| < p(lu—v]), ¢ e,
holds for every u,v € R, for every A € A.
b) Let
S Ly(t)dt =1, for every A € A.
R
We now set
z+(b—z)/1(A)
By(z) := S Ly(t)dt for any fixed z € (a,b).
r—(z—a)/u(A)
We note that the use of the function B)(x) concerns the behavior of the
approximation near to the point x. Similar approach and some particular
examples can be found in [15], [18] and [21].
c) For any fixed § > 0,
lim | Ly(t)dt=0 and lim [sup Ly(t)] = 0.

/\—>)\0 |t‘2(5 )\%)\0 |t|25

d) Denoting by 7rx(u) := Hy(u) —u, v € R and A € A, such that
li =
g Al =0

uniformly with respect to u. In other words, for A sufficiently close to the
accumulation point Ag
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1
sup |ry(u)| = sup |Hy(u) — u| < ——,
holds.
e) There exists a dgp > 0, such that L, (¢) is non-decreasing on (—do, 0]

and non-increasing on [0,dp) as a function of ¢, for each A € A.

As in some previous papers [16], [17], we introduce a function f defined
on R as

) i) = {g o ; E 2

The symbol [a] will denote the greatest integer not greater than a.

3. Convergence results
We will consider the following family of nonlinear integral operators,
b

(Taf) (@) =\ Ka(t — =, f(t))dt, =z € (a,b), A€ A,

a

defined for every f € X for which T) f is well-defined, where

Ky (t,u) = Ly(t)Hx(u),
for every t,u € R. Some approximation properties, such as convergence and
rate of convergence in the variation seminorm, were obtained by L. Angeloni

and G. Vinti 2007 in [2].
We are now ready to establish the main results of this study:

THEOREM 1. Let ) € ¥ and f € Li([a,b]) be such that ¢o|f| € BV ([a,]).
Suppose that K (t,u) satisfies conditions a)—e). Then for every x € (a,b),
and for X sufficiently close to the accumulation point Ay of A, we have

@@ - o f(“);f(x‘)b w0312
[P (N)] a+(b—2) /K18 z+(b—z)/n(N)

Bi(@) [\
< B [\a/wufx Z Vo et +m@ Vo us)

k=1 z—(x—a)/kl/B z—(x—a)/pu(N)
where B(z) = By(x) max{(x —a)~?, (b — z)7P}, (B > 0),
f(t) = flz+), z<t<b,
fx(t) = 07 l= x,
ft) = flz=), ast<z
and \/Z@b(]fm\)is the total variation of ¥(|fz|) on [a,].
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Proof. The proof of Theorem 1 is similar to that of the Theorem presented
in [18]. So we omit it. m

The following result is a corollary of Theorem 1.

COROLLARY 1. If we choose pu(A) := XY (y > 1), Ao := 00 and ¢ (t) = t,
(i.e., strong Lipschitz condition) in Theorem 1, then we have the result given

in |18].

DEFINITION 1. A point g € R is called a Lebesgue point of the function

[ if

h—0t

h
Q tim {10 + 1) (o) dt =0,
0

holds.

THEOREM 2. Let ¢ € ¥ and f € Li([a,b]) be such that Yo|f| € BV ([a,]).
Suppose that K(t,u) satisfies conditions a)—e). Then at each point x € (a, b)
for which (3) holds, we have for each € > 0 and \ sufficiently close to Ao

e st - (i) + -0 (55

[ BA z+(b x)/k/P

Bi(@) [\’ 1
Sy [Yw<|fw Z \/ <|fxr>}+u(),

k=1 z—(x—a)/k1/B

where BY(x) = By(x) max {ﬁv ﬁ} .

Now we are ready to establish a convergence result.

THEOREM 3. Lety € ¥ and f € Li([a,b]) be such that o |f| € BV ([a,b]).
Suppose that the kernel function Ky (t,u) satisfies conditions a)—e). Then at
each point x € (a,b) for which (3) holds, we have

A [(T6S) (@) = f ()| = 0.
Proof. From Theorem 2 and ¢) we reach the result, by the arbitrariness of
e>0.m

COROLLARY 2. Let €W and f € Li([a,b]) be such that ol f|€ BV ([a,b]).
Suppose that the kernel function Ky (t,u) satisfies conditions a)—e). Then

A [(T6f) (@) = f(2)] =0

holds almost everywhere in (a, b).

Since almost all x € (a,b) are Lebesgue points of the function f, then
the assertion follows by Theorem 3.
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4. Auxiliary result

In this section, we give certain results, which are necessary to prove our
theorems.

LEMMA 1. For all x € (a,b) and for each X\ € A, let

Bi(z)
p(A)
holds, where Ly(t) and By(x) are as defined in Section 2. Then

b
(4) {La(u—2)|u— 2| du < (B> 0)

(5) m(z,t) := ELA(U —z)du < @ _1 nE B;;&(;;), a<t<uw,
and

b
(6) 1—my(z,2) :SL)\(u—a:)du< L B(@) r<z<b

e T (z—x)f p(N)’
Proof. We have

r—t

B
— 1
S (u—=z <$ u) du < SL)\(u—x)|u—x\6du.

a

According to (4), we have

m)\(.’E,t) <

Proof of (6) is analogous. =
The following lemma is a slight modification of the Lemma 1 in [8].

LEMMA 2. Lety € W. Then, if xg € R is a Lebesgue point of the function f,
we have

h

S¢(|f($0+t)_f($0)’)dt’:o(|h|) as h—0.

0

(7)

Proof. In order to prove our lemma we will show the following two state-
ments:

h
Vo (1f (@0 +t) — flzo)]) dt‘ =o(h) as h—0",
0

0

S¢(|f($0+t)—f(:vo)!)dt’ZO(—h) as h— 0.
h
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Since 1) is concave, one has for h < 0 and h > 0, respectively,

1 0 1 0
Vst o)< (115t 1) Stoo) )

and
1h

L

0
Hence, by continuity of 1) and v (0) = 0, we reach the desired result. m

1 h
00+ 0) = flaolde < v ( 3§15+ ) = flaw)lar).
0

S

5. Proof of the main Theorem

Proof of Theorem 2. Suppose that

(8) r+d<b z—0>a,
for any 0 < ¢.

Let |I(z, \)] = [(T5f) () — £(x), that is

b

I(xz,\)| = SK,\t—xf( Ndt — f(z)|.

From (2) and d), we can rewrite |I(z, A)| as follows:

[I(z,\)] = SKA(t—x,?(t))dt — f(a)
R
= [ Kt — 2, F(8))dt — | Kt - x,?(w))dt‘
R R
+ [ Kt — 2, f(2))dt — f(2)].
R

From conditions b) and d), it is easy to see that the second term of the
righthandside of the above inequality is less than or equal to 1/u(\). Indeed;

[ Kt — o, f(a))dt — f(x)| =

R

| La(t — 2) Hy(F(2))dt — f(x) | L
R

S

R

L

= |Hy\(f(2)) — f(z)] 1(N)

L,\(t)dt’ <

holds for A sufficiently close to the accumulation point Ag.
As to the first term, by a), we have the following inequality,

~ ~

[L(z, )] < § La(t = 2) (1 f (1) — f(a)])dt.

R
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According to b), we can split the last integral in three terms as follows:

o= (@—a)/u(N) @+ (b—2)/p(N) b
LIS R B R
a s—(@—a)/u(y) (=) /()

X Ly(t = 2)9 (|f(t) = f(=)]) dt
= Il()\, x) + [2()\, .’L‘) + 13(/\, 37)
We shall evaluate 1 (), z), Is(A, z) and I3(\, z). To do this, we first observe

that I1 (A, x), I2(A, z) and I3(\,x) can be written as a Lebesgue-Stieltjes
integral as follows:

o (a—a)/u(N)

LA z)| = | Y ([f(#) = f(2)]) di (ma(w, 1)),
- (b—2)/u(N)
[2(A, z)| = | Y (| f(t) — f()]) La(t — z)dt

z—(z—a)/p(A)

and
b

[I3(A, )| = | @) — f@)]) de (ma(z, 1))
o+(b—2) /()
First, we estimate I3(\, z). We have, for t € [x—(z—a)/u(N), z+(b—x)/u(N)]
w+(b—z)/1(N)
(I (A, )| = Vo v (F() = fl@)]) La(t — z)dt
z—(z—a)/n(N)

< | O (|f(t) = f(x)]) LA(t — x)dt
a—(a—a)/p(N)
a+(b—2)/n(X)

+ | () = f(@)]) LAt — x)dt

T

= 1271()\, x) + IQ}Q(}\, l‘)
Setting

xT

F(t):= ¢ (f(y) - f(2)]) dy,

t
then, according to (7), for each € > 0 there exists 6 > 0 such that

(9) F(t) <e(z—1),

forall0 <z —t¢ <.
We now fix this 6 and estimate I 1 (A, ) and Iz 2(A, ) respectively.
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Now, we recall the Lebesgue—Stieltjes integral representation, so we can
write Iz 1(\, x) as
€T
(10) In1(\) = | Ly(t — 2)dF(t).
z—(z—a)/p(X)

Applying partial Lebesgue—Stieltjes integration (10) and using (9), we obtain

Ia(A) = =F(z = (z — a) /u(A)) La(= (z — a) /(X))
¢ d
- | F(t) =Lx(t —x)dt
a0
< —F(z —(z—a) /u(N)La(= (z — a) /pu(}))
¢ d
- | F(t)=Lx(t —2)dt
a0
<e (z—a)/pA) La(=(z —a) /p(A))

+e | (x—t)aatL,\(t—x)dt.
2—(z—a)/u(N)

Integration by parts again gives

Ia(A) <e (z—a) /p(A) La(= (z —a) /u(N))

re{ @I - | L)
z—(z—a)/p(A)

0
=c | L(t) dt.
—(z—a)/p(X)
Setting
0
1271’1(.1:,)\) = S L)\(t) dt,
—(z—a)/u()

according to e) and (8), we can now obtain the following estimate:

0
Ii(z,\) =celaqi(z,\) = eLy(— (z —a) /u(N)) S dt

—(z—a)/u(X)
r — a Tr — a
=cly | - | .
A < u(\) ) p(\)

We can use a similar method for Iys(x,\). Then, we find the following
inequality
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b—xz\b—=x
Ba << (T ) Sy

Next, we estimate I1(\, x). Using partial Lebesgue—Stieltjes integration, we
obtain

o—(a—a)/u(N)
[\, z)| = | Y (| f2(t)]) de (ma(w, 1))

el )

z—(z—a)/u(X)
T e w0,

a

Let y =z — (z —a) /u(N). By (5), it is clear that

(11) ma(z,y) < Ba(z) (x —a) "7 P71 ().
Here we note that
o (5 (= S = o (o (- 5] o)
SRR VAR

—(a—a) /u(N)

xT

(LA, 2)] < Voo wfel) fma

Using partial integration and applying (11), we obtain
a—(z—a)/u(\)

(oo 5)
z—(z—a)/p(X)

+ | a:tdt< \/¢;u; )

a

< V o e(fe)Ba@) (@ —a) 7 ()

B)\(:L‘) r—(z—a)/u(A ) B
+ ey, CSL (x —1t) dt< \/q/) fx>
=/ W(f)Ba(@) (z—a) PP
z—(z—a)/pu(A)
By (z) _ e
ey [‘ O T OV VAR (A1)
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z z—(z—a)/p(A) «
rle=a Va1 Vs )ﬁﬂdt]
z—(z—a)/u(A

= x—a‘ﬁm § '
- B, VD \/wx -

a
Changing the variable ¢ by z — (z — a) /u'/? in the last integral, we have

z—(z—a)/p(A 1P (N) x

) x
S \t/w(|fx|)(x _€)5+1dt— (x_la)ﬁ S \/ w(‘fx‘) du

a L g—(z—a)/ul/B

1 [NB()‘)] x
TEPE AV (2]
k=1 g—(x—a)/k1/P
Consequently, we obtain
B (ZE) x [Nﬁ()‘)] x
vl < 28 =0 [V () + Vo uds)
H a k=1 g—(x—a)/k1/P

Using a similar method, we can find

(2 (N)] 24 (b—z) /K1

b
Bl < 28007 |\ wllf) + DY (D)

Collecting the above estimates we get the requlred result. m
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