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SECOND ORDER ABSTRACT DIFFERENTIAL EQUATIONS
OF ELLIPTIC TYPE SET IN R+

Abstract. In this paper we give some new results on complete abstract second order
differential equations of elliptic type set in R+. In the framework of UMD spaces, we
use the celebrated Dore–Venni Theorem to prove existence and uniqueness for the strict
solution. We will use also the Da Prato–Grisvard Sum Theory to furnish results when the
space is not supposed to be a UMD space.

1. Introduction and hypotheses
Let us consider, in the complex Banach space X, the abstract differential

equation of the second order

(1) u′′(x) + 2Bu′(x) +Au(x) = f(x), x ∈ (0, R),

together with the boundary conditions

(2)

{
u(0) = u0,

u(R) = uR.

Here, A, B are two closed linear operators in X with domains D(A) and
D(B) respectively, 0 < R 6 +∞, f ∈ Lp(0, R;X), 1 < p < +∞ and u0, uR
are given elements in X, with uR = 0 in the case R = +∞.

Several authors have studied (1)–(2) when R < +∞ and f ∈ Lp(0, R;X),
1 < p < +∞: see for example A. Favini, R. Labbas, S. Maingot, H. Tanabe
and A. Yagi [13] and [14]. The case when R < +∞ and f ∈ Cθ([0, R];X),
0 < θ < 1, has been also treated: see for example A. El Haial and R. Labbas
[8], A. Favini, R. Labbas, H. Tanabe and A. Yagi [12], A. Favini, R. Labbas,
S. Maingot, H. Tanabe and A. Yagi, [10], [11], [15].
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The case when R = +∞ and B = 0 has been considered by J. Prüss [18],
Theorem 3.3, p. 316.

In all this work, we will suppose that R=+∞ and that f ∈Lp(0,+∞;X),
1 < p < +∞. We will search a strict solution u to (1)–(2), i.e. a function u
such that

u ∈W 2,p(0,+∞;X), Bu′, Au ∈ Lp(0,+∞;X),

and which satisfies (1)–(2).
We must also mention that many authors have studied the same equation

(1) with Cauchy data
u(0) = u0, u

′(0) = v0,

see for instance, A. Favini [9], J. Liang and T. Xiao [16] and recently R. Chill
and S. Srivastava [4], C. J. K. Batty, R. Chill and S. Srivastava [1]. Their
assumptions on operators, the techniques used and the results are completely
different from ours. For example in [9], [16] and [4], the authors deal with
the parabolicity of the operator pencil defined by

P (λ) : D(A) ∩D(B) −→ X; x 7−→ P (λ)x = (λ2I + 2λB +A)x,

here we will consider in fact the elliptic case expressed by

(3)

B2 −A is a linear closed operator in X, R− ⊂ ρ(B2 −A) and

sup
λ>0
‖λ(λ+B2 −A)−1‖L(X) < +∞,

see section 6, and then we build an explicit representation formula of the
solution.

If P,Q are two linear operators in X we write P ⊂ Q if{
D(P ) ⊂ D(Q) and
Px = Qx, x ∈ D(P ).

Our assumptions on the operators A and B are the following: there exist
L1, L2 operators in X such that

(4)

{
L1 − L2 ⊂ 2B,

L1L2 ⊂ −A,

(5)

{
D(L1) = D(L2),

L1L2 = L2L1,

(6) 0 ∈ ρ(L1) ∩ ρ(L2),

(7) 0 ∈ ρ(L1 + L2),

(8) L1 and L2 generate a bounded analytic semigroup on X.
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Under these hypotheses, we will study (1)–(2) in the two following cases

1. First case:
In order to find a strict solution u to (1)–(2) with no more regularity on
f than

f ∈ Lp(0,+∞;X), 1 < p < +∞,

we will assume here that

(9) X is a UMD space.

Moreover L1, L2 will satisfy

(10) ∃θ ∈]0, π2 [: −L1,−L2 ∈ BIP(θ,X).

We recall that
• X is a UMD space if and only if for some p > 1 (and thus for all p)
the Hilbert transform is continuous from Lp(R;X) into itself (see J.
Bourgain [2], D. L. Burkholder [3]).
• Let α ∈ [0, π[. A closed linear densely defined operator U belongs to
the class BIP(α,X) if{

]−∞, 0[⊂ ρ(U), N(U) = {0} , R(U) = X

and ∃c > 1 : ∀λ > 0,
∥∥∥(U + λI)−1

∥∥∥ 6 c/λ,

and {
for all s ∈ R, U is ∈ L(X) and
∃c > 1 : ∀s ∈ R,

∥∥U is∥∥ 6 ceα|s|,

where N(U) is the kernel of U and R (U) the range of U (see J. Prüss
and H. Sohr [19], p. 430).

2. Second case:
Here, we avoid assumptions (9) and (10), but we need more regularity on
f that is

f ∈W θ,p(0,+∞;X), 0 < θ < 1
p and 1 < p < +∞.

We recall that f ∈W θ,p(0, R;X) if f ∈ Lp(0, R;X) and satisfies

[f ]W θ,p(0,R;X) =
R�

0

R�

0

‖f(x)− f(y)‖pX
|x− y|1+θp

dxdy < +∞,

see G. Da Prato and P. Grisvard [5], p. 331.
Then (W θ,p(0, R;X), ‖.‖W θ,p(0,R;X)) is a Banach space, where

‖f‖p
W θ,p(0,R;X)

= ‖f‖pLp(0,R;X) + [f ]W θ,p(0,R;X) .
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Remark 1.

1. By our methods, we will solve

u′′(x) + (L1 − L2)u′(x)− L1L2u(x) = f(x), x ∈ (0,+∞),

so a function u such that

u ∈W 2,p(0,+∞;X), (L1 − L2)u′, L1L2u ∈ Lp(0,+∞;X),

and which satisfies (1)–(2) will be called a (L1, L2)-strict solution of Prob-
lem (1)–(2). Of course such a solution will be in particular a strict solution
of Problem (1)–(2) in the sense defined previously.

2. It is well known that assumption (10) implies (8) (see J. Prüss and H.
Sohr [19], Theorem 2, p. 437).

Our main results in this paper are:

Theorem 2. Assume (4)∼(10) and let

f ∈ Lp(0,+∞;X), 1 < p < +∞.
Then the two following assertions are equivalent.

1. u0 ∈ (D(L1L2), X) 1
2p
,p.

2. Problem (1)–(2) as a unique (L1, L2)-strict solution.

Theorem 3. Assume (4)∼(8), let X be a complex Banach space and

f ∈W θ,p(0,+∞;X), 0 < θ < 1
p and 1 < p < +∞.

Then the two following assertions are equivalent.

1. u0 ∈ (D(L1L2), X) 1
2p
,p.

2. Problem (1)–(2) as a unique (L1, L2)-strict solution.

These results will be completed by Theorem 10 and 11, in which L1 and
L2 are precised.

The plan of the paper is as follows.
In Section 2, we prove some technical lemmas.
Section 3 is devoted to the construction of a representation formula for

the solution u of (1)–(2). The uniqueness of the solution is also proved.
Sections 4 and 5 contain the proof of our main results, obtained by the

study of the regularity of the previous representation formula.
In Section 6, we give sufficient conditions on operators A, B which allow

us to build operators

L1 = B − (B2 −A)
1
2 and L2 = −B − (B2 −A)

1
2 ,

satisfying our assumptions.



Second order abstract differential equations of elliptic type set in R+ 713

Finally in Section 7, we give some examples of application to partial
differential equations.

2. Technical Lemmas

Lemma 4. Let L,M be two linear operators in X whose domains D(L),
D(M), satisfy

D(L) = D(M) and D(LM) = D(ML).

Then

1. For l ∈ {0, 1, 2}, n ∈ N and P,Q ∈ {L,M}, we have

Pl,n : D(P lQn) = D(Ql+n).

2. For l, n ∈ {0, 1, 2} and P,Q ∈ {L,M}, we have

D(P lQn) = D(QlPn) = D(Ql+n) = D(P l+n).

Proof. It is enough to show statement 1, from which statement 2 is easily
deduced. We have the following steps.

Step 1: P0,n is true for n ∈ N.
Step 2: P1,n is true for n ∈ N. Indeed, P1,0 is true and if P1,k is true for

some k ∈ N then

x ∈ D(PQk+1)⇐⇒ x ∈ D(Q) and Qx ∈ D(PQk)

⇐⇒ x ∈ D(Q) and Qx ∈ D(Qk+1)

⇐⇒ x ∈ D(Qk+2),

i.e. P1,k+1 is true.
Step 3: P2,n is true for n ∈ N. Indeed P2,0 is true since

x ∈ D(P 2)⇐⇒ x ∈ D(P ) and Px ∈ D(P )

⇐⇒ x ∈ D(P ) and Px ∈ D(Q)

⇐⇒ x ∈ D(QP ) = D(PQ)

⇐⇒ x ∈ D(Q) and Qx ∈ D(P ) = D(Q)

⇐⇒ x ∈ D(Q2).

Moreover, if P2,k is true for some k ∈ N then

x ∈ D(P 2Qk+1)⇐⇒ x ∈ D(Q) and Qx ∈ D(P 2Qk)

⇐⇒ x ∈ D(Q) and Qx ∈ D(Qk+2)

⇐⇒ x ∈ D(Qk+3),

i.e. P2,k+1 is satisfied.
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Remark 5. If L1, L2 are operators inX, satisfying (5), then due to Lemma
4, we have

D(LiLj) = D(L2
i ) = D(L2

j ), i, j ∈ {1, 2}.

Lemma 6. Under assumption (9), consider L, a closed linear operator in
X, satisfying

0 ∈ ρ(L) and − L ∈ BIP(θL, X), θL ∈]0, π2 [.

Then, for R ∈ ]0,+∞[, 1 < p < +∞, Ψ ∈ Lp(0, R;X) and Φ ∈
Lp(0,+∞;X), we get

1. L(ψ) : x 7−→ L
x�

0

e(x−y)LΨ(y)dy ∈ Lp(0, R;X).

Moreover, there exists CR > 0 such that

(11) ‖L(ψ)‖Lp(0,R;X) 6 CR‖ψ‖Lp(0,R;X), ψ ∈ Lp(0, R;X).

2. x 7−→ L
R�

x

e(y−x)LΨ(y)dy ∈ Lp(0, R;X).

3. x 7−→ L
x�

0

e(x−y)LΦ(y)dy ∈ Lp(0,+∞;X).

4. x 7−→ L
+∞�

x

e(y−x)LΦ(y)dy ∈ Lp(0,+∞;X).

5. x 7−→ LexL
+∞�

0

eyLΦ(y)dy ∈ Lp(0,+∞;X).

Proof.

1. See G. Dore and A. Venni [7].
2. It is an easy consequence of statement 1, since for a. e. x ∈ (0, R)

L
R�

x

e(y−x)LΨ(y)dy = L
R−x�

0

e((R−x)−s)LΨ(R− s)ds.

3. It is a result of G. Dore [6] extending 1.
4. We proceed as in G. Dore [6], pp. 28–29.

We have to prove that F1+F2 ∈ Lp(0,+∞;X) where for a.e. x ∈ (0,+∞)
F1(x) = L

x+1�

x

e(y−x)LΦ(y)dy,

F2(x) = L
+∞�

x+1

e(y−x)LΦ(y)dy.
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We first show that F2 ∈ Lp(0,+∞;X). In fact, since L generate a
bounded analytic semigroup and 0 ∈ ρ(L) then there exist M > 1 and
ω > 0 such that for any y > 0

(12) ‖eyL‖ ≤Me−ωy and ‖LeyL‖ ≤My−1e−ωy,

(see A. Pazy [17], Theorem 6.13, p. 74). So
+∞�

0

‖F2(x)‖pdx =
+∞�

0

∥∥∥ +∞�

x+1

Le(y−x)LΦ(y)dy
∥∥∥pdx

6Mp
+∞�

0

(+∞�

x+1

1

y − x
e−(y−x)ω‖Φ(y)‖dy

)p
dx

6Mp
+∞�

0

(+∞�

x+1

e−(y−x)ω‖Φ(y)‖dy
)p
dx

6Mp
+∞�

−∞
|(g ∗ h)(x)|pdx,

where g and h are defined by

g(x) =

{
0 if x > −1,

exω if x < −1,
and h(x) =

{
‖Φ(x)‖ if x > 0,

0 if x < 0.

But Φ ∈ Lp(0,+∞;X) so h ∈ Lp(R), moreover g ∈ L1(R) since

�

R
|g(x)| dx =

−1�

−∞
exωdx < +∞,

and then g ∗ h ∈ Lp(R), which gives
+∞�

0

‖F2(x)‖pdx < +∞.

It remains to prove that F1 ∈ Lp(0,+∞;X). Let j ∈ N, we set

φj : x 7−→ χ[j,j+1[(x)φ(x),

(χ[j,j+1[ denotes the characteristic function of [j, j + 1[) and
Ij =

j+1�

j

∥∥∥L j+1�

x

e(y−x)LΦj(y)dy
∥∥∥pdx,

Jj =
j+1�

j

∥∥∥L x+1�

j+1

e(y−x)LΦj+1(y)dy
∥∥∥pdx.
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Then by the changes of variable τ = 1−x+j and σ = 1−y+j, we obtain

Ij =
1�

0

∥∥∥L j+1�

1−τ+j

e(y−1+τ−j)LΦj(y)dy
∥∥∥pdτ

=
1�

0

∥∥∥L τ�

0

e(τ−σ)LΦj(1− σ + j)dσ
∥∥∥pdτ

= ‖L(Φj(1− ·+ j))‖pLp(0,1;X) ,

so, due to (11), we get

(13) Ij 6 (C1)p ‖Φj(1− ·+ j))‖pLp(0,1;X) 6 (C1)p ‖Φj‖Lp(j,j+1;X) .

Now, taking into account (12), we have

Jj =
1�

0

∥∥∥L 2−τ+j�

j+1

e(y−x)LΦj+1(y)dy
∥∥∥pdτ

=
1�

0

∥∥∥L 1−τ�

0

e(s+τ)LΦj+1(s+ j + 1)ds
∥∥∥pdτ

6
1�

0

(1�

0

∥∥∥Le(s+τ)LΦj+1(s+ j + 1)ds
∥∥∥)pdτ

6Mp
1�

0

(1�

0

1

s+ τ
‖Φj+1(s+ j + 1)‖ ds

)p
dτ,

and since the kernel
1

s+ τ
defines a bounded operator on Lp(0, 1;R), there

exists C > 0 such that

(14) Jj 6 CMp ‖Φj+1(·+ j + 1))‖pLp(0,1;X)

6 CMp ‖Φj+1‖pLp(j+1,j+2;X) .

Finally, we write

+∞�

0

‖F1(x)‖pdx =

∞∑
j=0

j+1�

j

‖F1(x)‖pdx,

then using (13), (14) and
∞∑
j=0

‖Φj‖pLp(j,j+1;X) = ‖Φ‖pLp(0,+∞;X) ,
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we obtain
+∞�

0

‖F1(x)‖pdx 6 2p−1
∞∑
j=0

(Ij + Jj)

6 2p−1 (C1)p
∞∑
j=0

‖Φj‖pLp(j,j+1;X)

+ 2p−1CMp
∞∑
j=0

‖Φj+1‖pLp(j+1,j+2;X)

6 2p−1 max ((C1)p , CMp) ‖Φ‖Lp(0,+∞;X)

< +∞.
5. This last point is deduced from statements 3 and 4, indeed

LexL
+∞�

0

eyLΦ(y)dy = LexL
x�

0

eyLΦ(y)dy + LexL
+∞�

x

eyLΦ(y)dy

= L
x�

0

e(x−y)Le2yLΦ(y)dy + e2xLL
+∞�

x

e(y−x)LΦ(y)dy,

and we take into account the fact that, due to (12)

y 7−→ e2yLΦ(y) ∈ Lp(0,+∞;X).

Lemma 7. Let X be a Banach space and L be the infinitesimal generator
of a bounded analytic semigroup on X, satisfying moreover 0 ∈ ρ(L).

Then, for R ∈]0,+∞], 1 < p < +∞, 0 < θ < 1
p , ψ ∈ W θ,p(0, R;X), we

get

1. x 7−→ L
x�

0

e(x−y)Lψ(y)dy ∈W θ,p(0, R;X) ⊂ Lp(0, R;X).

2. If R < +∞

x 7−→ L
R�

x

e(y−x)Lψ(y)dy ∈W θ,p(0, R;X) ⊂ Lp(0, R;X).

3. If R = +∞

x 7−→ L
+∞�

x

e(y−x)Lψ(y)dy ∈ Lp(0,+∞;X).

Proof.

1. It is a result of G. Da Prato and P. Grisvard (See [5], Theorem 4.7, p. 334).
2. This point is deduced from statement 1 (as in Lemma 6, statement 2).
3. We proceed as in Lemma 6, statement 4.
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Lemma 8. Let L, be the infinitesimal generator of a bounded analytic semi-
group

(
exL
)
x>0

in X and assume that 0 ∈ ρ(L).
Then, for f ∈ Lp(0,+∞;X), we get

1. lim
x→+∞

x�

0

e(x−y)Lf(y)dy = 0.

2. lim
x→+∞

+∞�

x

e(y−x)Lf(y)dy = 0.

Proof.

1. For x ∈ (0,+∞), we set

α(x) =
x�

0

e(x−y)Lf(y)dy =

x
2�

0

e(x−y)Lf(y)dy +
x�
x
2

e(x−y)Lf(y)dy

= α1(x) + α2(x).

As in (12), there exist M > 1 and ω > 0 such that for any y > 0

‖eyL‖ ≤Me−ωy,

so, for x > 0

‖α2(x)‖ 6
x�
x
2

‖e(x−y)L‖‖f(y)‖dy 6M
x�
x
2

e−ω(x−y)‖f(y)‖dy,

and, setting q =
p

p− 1
, we obtain by Hölder inequality

‖α2(x)‖ 6M
(x�
x
2

e−ωq(x−y)dy
) 1
q
(x�
x
2

‖f(y)‖pdy
) 1
p
,

so

‖α2(x)‖ 6 M

(ωq)
1
q

(
1− e−ωq

x
2

) 1
q
(x�
x
2

‖f(y)‖pdy
) 1
p

6
M

(ωq)
1
q

(+∞�
x
2

‖f(y)‖pdy
) 1
p
.

But f ∈ Lp(0,+∞;X) thus

lim
x→+∞

(+∞�
x
2

‖f(y)‖pdy
) 1
p

= 0,

so
lim

x→+∞
‖α2(x)‖ = 0.
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For α1, we write

‖α1(x)‖ 6
x
2�

0

‖e(x−y)L‖‖f(y)‖dy

6M
(x2�

0

e−ωq(x−y)dy
) 1
q
(x2�

0

‖f(y)‖pdy
) 1
p

6
M

(ωq)
1
q

‖f‖Lp(0,+∞;X)

(
e−ωq

x
2 − e−ωqx

)
,

which gives
lim

x→+∞
‖α1(x)‖ = 0.

2. As in statement 1, we write∥∥∥+∞�

x

e(y−x)Lf(y)dy
∥∥∥ 6M

(+∞�

x

e−ωq(y−x)dy
) 1
q
(+∞�

x

‖f(y)‖pdy
) 1
p

6
M

(ωq)
1
q

(+∞�

x

‖f(y)‖pdy
) 1
p
,

which gives

lim
x→+∞

(∥∥∥+∞�

x

e(y−x)Lf(y)dy
∥∥∥) = 0.

3. Construction of a representation formula for the solution u of
(1)–(2)
We build a representation formula of the solution in the abstract case, as

in the scalar case. We obtain

(15)



u(x) = exL2u0 − exL2v0 + ξ1(x) + ξ2(x), where

v0 = (L1 + L2)−1
+∞�

0

eyL1f(y)dy,

ξ1(x) = (L1 + L2)−1
x�

0

e(x−y)L2f(y)dy,

ξ2(x) = (L1 + L2)−1
+∞�

x

e(y−x)L1f(y)dy.

In order to prove Theorem 2, we must first show a uniqueness result,
then we will show that u given by (15) is the solution of problem (1)–(2)
with the desired regularity.



720 A. Eltaief, S. Maingot

Proposition 9. Assume (9)∼(10) and let

f ∈ Lp(0,+∞;X), 1 < p < +∞.
If u is a (L1, L2)-strict solution of (1)–(2), then u is uniquely determined.

Proof. Let u1, u2 be (L1, L2)-strict solutions of (1)–(2) and fix x0 > 0. We
have to show that

u1(x0) = u2(x0).

Consider some R > x0, and set uR = u1(R)− u2(R).
Then u = u1 − u2 is a (L1, L2)-strict solution on (0, R) of problem

(16)


u′′(x) + (L1 − L2)u′(x)− L1L2u(x) = 0, x ∈ (0, R),

u(0) = 0,

u(R) = uR.

Using Krein’s method, we get that problem (16) as a unique (L1, L2)-
strict solution thus u is uniquely determined on (0, R) by

(17) u(x) = exL2ζ0 + e(R−x)L1ζR,

with {
u(0) = ζ0 + eRL1ζR = 0,

u(R) = eRL2ζ0 + ζR = uR.

So {
eRL2ζ0 + eRL2eRL1ζR = 0,

eRL2ζ0 + ζR = uR,

thus {
(I − eRL2eRL1)ζR = uR,

ζ0 + eRL1ζR = 0.

Due to (12) applied to L1 and L2, there exists R0 > x0 such that for any
R > R0

‖eRL2eRL1‖ 6 1

2
.

Now, we consider R > R0 and then I−eRL2eRL1 is boundedly invertible,
moreover setting zR = (I − eRL2eRL1)−1, we have

(18) ‖zR‖ 6 2,

and

(19)

{
ζR = zRuR,

ζ0 = −eRL1zRuR.
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Hence, due to (17) and (19), we get for any R > R0

u(x0) = −ex0L2eRL1zRuR + e(R−x0)L1zRuR = αR.

But
lim
R→∞

uR = lim
R→∞

(u1(R)− u2(R)) = 0,

so due to (12) and (18), we obtain

u(x0) = lim
R→∞

αR = 0,

that is u1(x0) = u2(x0).

4. Proof of Theorem 2

Assume that
u0 ∈ (D(L1L2);X) 1

2p
,p,

and consider u given by (15).
We first study the regularity of u. Due to (15), (5) and Remark 5, we

have, for a.e. x ∈ (0,+∞)
L1L2ξ1(x) = L1(L1 + L2)−1L2

x�

0

e(x−y)L2f(y)dy

L1L2ξ2(x) = L2(L1 + L2)−1L1

+∞�

x

e(y−x)L1f(y)dy,

and since
L1(L1 + L2)−1 and L2(L1 + L2)−1 ∈ L(X),

we deduce from Lemma 6, statements 3 and 4, that

L1L2ξ1, L1L2ξ2 ∈ Lp(0,+∞;X), 1 < p < +∞.
Moreover

L1ξ
′
1 = L1L2ξ1 + L1(L1 + L2)−1f ∈ Lp(0,+∞;X), 1 < p < +∞,

similarly, for i, j ∈ {1, 2}
Liξ
′
j ∈ Lp(0,+∞;X), 1 < p < +∞,

and also, since ξ′1 + ξ′2 = L2ξ1 + L1ξ2, we obtain

(ξ1 + ξ2)′′ ∈ Lp(0,+∞;X), 1 < p < +∞.
Thus, setting ξ = ξ1 + ξ2, we deduce that

(20) ξ ∈W 2,p(0,+∞;X), (L1 − L2)ξ′, L1L2ξ ∈ Lp(0,+∞;X).

Now, from (15), we have u = w − v + ξ where

v(x) = exL2v0 and w(x) = exL2u0, a.e. x ∈ (0,+∞),
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but, from Lemma 6, statement 5, we obtain that

(21) v ∈W 2,p(0,+∞;X), (L1 − L2)v′, L1L2v ∈ Lp(0,+∞;X).

Due to Remark 5, we get that

u0 ∈ (D(L1L2);X) 1
2p
,p = (D(L2

2);X) 1
2p
,p,

so
x 7−→ L2

2e
xL2u0 ∈ Lp(0,+∞;X),

(see H. Triebel [21] p. 96) , which gives, for i = 1, 2

x 7−→ LiL2e
xL2u0 ∈ Lp(0,+∞;X),(

we have used the fact that LiL2 = LiL
−1
2 L2

2 with LiL−1
2 ∈ L(X)

)
.

Finally

(22) w ∈W 2,p(0,+∞;X), (L1 − L2)w′, L1L2w ∈ Lp(0,+∞;X),

and, in virtue of (20), (21) and (22), u = w − v + ξ verifies

u ∈W 2,p(0,+∞;X), (L1 − L2)u′, L1L2u ∈ Lp(0,+∞;X).

To conclude, it is enough to show that u satisfies (1)–(2). In fact, it is
clear that u satisfies (1) and u(0) = u0. Moreover, due to Lemma 8 and
(12), we get u(+∞) = 0. In fact, since we have shown in particular that
u ∈W 1,p(0,+∞;X) then the condition u(+∞) = 0 is necessarily satisfied.

Conversely assume that Problem (1)–(2) has a (L1, L2)-strict solution
then, using Remark 1, statement 6 in [13], we deduce that

u0 ∈ (D(L1L2);X) 1
2p
,p.

5. Proof of Theorem 3

For Theorem 3, we proceed as in proof of Theorem 2; we have just to
replace Lemma 6 by Lemma 7.

6. Construction of L1 and L2

Let us assume that operators A and B satisfy

(23)

B2 −A is closed, R− ⊂ ρ(B2 −A) and
sup
λ>0
‖λ(λ+B2 −A)−1‖L(X) < +∞,

(then it is well known that −(B2 − A)
1
2 is infinitesimal generator of an

analytic semigroup)

(24) D((B2 −A)
1
2 ) ⊆ D(B),

(25) ∀y ∈ D(B), B(B2 −A)−
1
2 y = (B2 −A)−

1
2By,
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(26) ±B − (B2 −A)
1
2 are boundedly invertible.

Moreover, we suppose that

(27) ∃θ ∈]0, π2 [ : ±B + (B2 +A)
1
2 ∈ BIP(θ,X),

or

(28) ±B − (B2 −A)
1
2 generates a bounded analytic semigroup on X,

(recall that (27) implies (28)) .
Then, if we set

(29) L1 = B − (B2 −A)
1
2 and L2 = −B − (B2 −A)

1
2 ,

we have the following lemma (see Lemma 7, p.178 in [14]).

Lemma 10. Assume (23)∼(26). Then L1 and L2 defined by (29)
D(L1) = D(L2) = D((B2 −A)

1
2 ),

D(L1L2) = D(L2L1) = D(B2 −A) ⊂ D(−A),

L1L2 = L2L1 ⊂ −A,

and (L1 + L2)−1 = −1

2
(B2 − A)−

1
2 ∈ L(X). Note that L1L2 = L2L1 = −A

if and only if D(A) ⊂ D(B2).

Finally Theorem 2 and the previous lemma lead us to the following result.

Theorem 11. Assume (9), (23)∼(27) and
f ∈ Lp(0,+∞;X), 1 < p < +∞.

Then the following assertions are equivalent

1. u0 ∈ (D(B2 −A), X) 1
2p
,p.

2. Problem (1)–(2) as a unique strict solution satisfying moreover

u ∈ Lp(0,+∞;D(B2 −A)) and u′ ∈ Lp(0,+∞;D((B2 −A)
1
2 )).

Similarly, Theorem 3 and Lemma 10 give:

Theorem 12. Assume (23)∼(26) and (28), let X be a Banach space and

f ∈W θ,p(0,+∞;X), 0 < θ < 1
p and 1 < p < +∞.

Then the following assertions are equivalent

1. u0 ∈ (D(B2 −A), X) 1
2p
,p.

2. Problem (1)–(2) as a unique strict solution satisfwing moreover

u ∈ Lp(0,+∞;D(B2 −A)) and u′ ∈ Lp(0,+∞;D((B2 −A)
1
2 )).
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7. Examples
Example 1. Here, we describe a general model to which our previous
theory applies. Let X be a UMD space, α ∈] −∞, 0[, β ∈]0,+∞[, m ∈ N∗
and C be a linear operator such that

C ∈ BIP(θC , X) and 0 ∈ ρ(C), with 0 < θC <
π

2m ,

and consider A, B defined by

A = αβC2m, B =
α+ β

2
Cm.

Since C ∈BIP(θC , X) then for any µ > 0, µCm ∈ BIP(mθC , X) (see J.
Prüss and H. Sohr [19], Corollary 3, p. 444 and Corollary 1, p. 435).

Now, by taking L1 = αCm and L2 = −βCm, we verify that all the
assumptions are fulfilled on L1 and L2 and so, we can apply our previous
results as well.

As a simple example, we will consider m = 1, Ω a bounded domain in
Rn with C2-boundary ∂Ω, X = Lq(Ω) with 1 < q < +∞ and C such that{

D(C) = W 2,q(Ω) ∩W 1,q
0 (Ω),

Cu = −∆u,

see Example 3 in [13] p. 210. Then 0 ∈ ρ(C) and C ∈ BIP (θ,X) for
θ ∈]0, π2 [ see Theorem C, p. 166–167, in [20].

Note that here

D(A) = D(B2) = {u ∈W 4,q(Ω) : u|∂Ω
= ∆u|∂Ω

= 0}.
Then by Theorem 2, we have

Proposition 13. Let p ∈]1; +∞[, f ∈ Lp(0,+∞;Lq(Ω)).
Then the two following assertions are equivalent

1. u0 ∈ (D(A), Lq(Ω)) 1
2p
,p.

2. The problem

(30)



∂2u

∂x2
(x, y)− (α+ β)∆y

∂u

∂x
(x, y) + αβ∆2

yu(x, y) = f(x, y),

(x, y) ∈ (0,+∞)×Ω,

u(0, y) = u0(y), y ∈ Ω,

u(+∞, y) = 0, y ∈ Ω,

u(x, ξ) = ∆yu(x, ξ) = 0, (x, ξ) ∈ (0,+∞) ×∂Ω,

has a unique strict solution u, that is

u ∈W 2,p(0,+∞;Lq(Ω)) ∩ Lp(0,+∞;Lq(Ω)) and u′ ∈ Lp(0,+∞;Lq(Ω)),

and satisfies (30).
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Example 2. Let X = Lq(Ω), 1 < q <∞, where Ω is either Rn, or the half
space Rn+, or a bounded domain with C2-boundary, or an exterior domain
with C2-boundary. Take A, the operator in X such that

D(A) = W 2,q(Ω) ∩W 1,q
0 (Ω),

A =
n∑

j,k=1

∂

∂yj

(
ajk

∂

∂yk

)
− δ, δ ≥ 0,

where a = (ajk) satisfies
(A1) a(y) = (ajk(y)) is a real symmetric matrix for all y ∈ Ω̄ and there
exists a0 > 0 such that

a0 ≤ a(y)ξ · ξ ≤ a−1
0 , for all y ∈ Ω̄, ξ ∈ Rn, |ξ| = 1;

(A2) ajk ∈ Cα(Ω̄), for some α ∈ (0, 1); moreover if Ω is unbounded then

a∞jk = lim
|y|→∞

ajk(y)

exists and there is a constant C > 0 such that

|ajk(y)− a∞jk| ≤ C|y|−α, y ∈ Ω, |y| ≥ 1, j, k = 1, . . . , n;

(A3)
∂ajk
∂yj

∈ Lrk(Ω), for some numbers rk verifying

p ≤ rk ≤ ∞, rk > n, j, k = 1, . . . , n.

We assume moreover that δ > 0 or Ω is bounded.
Then, by Theorem C, p. 166–167, in [20], −A has bounded imaginary

powers. Therefore, Theorem 2 applies and we get

Proposition 14. Let p, q ∈]1,∞[, f ∈ Lp(0,+∞;Lq(Ω)) and

u0 ∈
(
W 2,q(Ω) ∩W 1,q

0 (Ω), Lq(Ω)
)

1
2p
,p
.

Then problem

(31)



∂2u

∂x2
(x, y) +

n∑
j,k=1

∂

∂yj

(
ajk

∂u

∂yk

)
(x, y)− δu(x, y)

= f(x, y), (x, y) ∈ (0,+∞)×Ω,

u(0, y) = u0(y), u(+∞, y) = 0, y ∈ Ω,

u(x, σ) = 0, (x, σ) ∈ (0,+∞)×∂Ω,

has a unique strict solution u, that is

u ∈W 2,p(0,+∞;Lq(Ω)) ∩ Lp(0,+∞;W 2,q(Ω) ∩W 1,q
0 (Ω)),

and satisfies (31).
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Note that here the interpolation space(
W 2,q(Ω) ∩W 1,q

0 (Ω), Lq(Ω)
)

1
2p
,p
,

is, for bounded domain, the Besov space{
u ∈ B2−1/p

q,p (Ω);u|∂Ω = 0
}
,

see Triebel [21], p. 321 (for the case Ω = Rn or Rn+ one applies Triebel,
again, Theorem 5.3.3. p. 373).

Example 3. We can generalize (30) in the following manner. Consider

L1 := 2A− cI, L2 := A

where c ≥ 0 and A is defined as in Example 2.
Then L1 and L2 satisfy (5), (6), (7) and (10). Thus, we can apply

Theorem 2 and deal with the problem

∂2u

∂x2
(x, y) +

n∑
j,k=1

∂

∂yj

(
ajk

∂2u

∂yk∂x

)
(x, y)− c∂u

∂x
(x, y)

+ c
n∑

j,k=1

∂

∂yj

(
ajk

∂u

∂yk

)
(x, y)

− 2
n∑

j,j′,k,k′=1

∂

∂yj

(
ajk

∂u

∂yk

)
∂

∂yj′

(
aj′k′

∂u

∂yk′

)
(x, y)

= f(x, y), (x, y) ∈ (0,+∞)×Ω,

u(0, y) = u0(y), u(+∞, y) = 0, y ∈ Ω,

u(x, σ) =
n∑

j,k=1

∂

∂yj

(
ajk

∂u

∂yk

)
(x, σ) = 0, (x, σ) ∈ (0,+∞)×∂Ω,

here for simplicity we have taken δ = 0 and Ω bounded.
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