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SECOND ORDER ABSTRACT DIFFERENTIAL EQUATIONS
OF ELLIPTIC TYPE SET IN R,

Abstract. In this paper we give some new results on complete abstract second order
differential equations of elliptic type set in Ry. In the framework of UMD spaces, we
use the celebrated Dore—Venni Theorem to prove existence and uniqueness for the strict
solution. We will use also the Da Prato—Grisvard Sum Theory to furnish results when the
space is not supposed to be a UMD space.

1. Introduction and hypotheses

Let us consider, in the complex Banach space X, the abstract differential
equation of the second order

(1) u’(z) +2Bu/(z) + Au(z) = f(z),  x€(0,R),
together with the boundary conditions

u(0) = wo,
@) {U(R) = uR.

Here, A, B are two closed linear operators in X with domains D(A) and
D(B) respectively, 0 < R < o0, f € LP(0,R; X), 1 < p < +o0 and ug, ur
are given elements in X, with ug = 0 in the case R = +o0.

Several authors have studied (1)—(2) when R < +oc and f € LP(0, R; X),
1 < p < +o0: see for example A. Favini, R. Labbas, S. Maingot, H. Tanabe
and A. Yagi [13] and [14]. The case when R < +oco and f € C?([0, R]; X),
0 < 6 < 1, has been also treated: see for example A. El Haial and R. Labbas
[8], A. Favini, R. Labbas, H. Tanabe and A. Yagi [12], A. Favini, R. Labbas,
S. Maingot, H. Tanabe and A. Yagi, [10], [11], [15].
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The case when R = +o00 and B = 0 has been considered by J. Priiss [18],
Theorem 3.3, p. 316.
In all this work, we will suppose that R=+o00 and that f € LP(0, +o00; X),
1 < p < +oo. We will search a strict solution u to (1)—(2), i.e. a function u
such that
u € WHP(0,400; X), Bu/, Au e LP(0,+o0; X),

and which satisfies (1)—(2).

We must also mention that many authors have studied the same equation
(1) with Cauchy data

u(0) = ug, u'(0) = vo,

see for instance, A. Favini [9], J. Liang and T. Xiao [16] and recently R. Chill
and S. Srivastava [4], C. J. K. Batty, R. Chill and S. Srivastava [1|. Their
assumptions on operators, the techniques used and the results are completely
different from ours. For example in [9], [16] and [4], the authors deal with
the parabolicity of the operator pencil defined by

P(\): D(A)ND(B) — X; .+ PNz = (\)T + 2\B + A)z,
here we will consider in fact the elliptic case expressed by

B? — A is a linear closed operator in X, R_ C p(B? — A) and

(3)

sup [[A(\ + B? — A)_1”£(X) < +o00,
A=0

see section 6, and then we build an explicit representation formula of the
solution.
If P, are two linear operators in X we write P C Q if

D(P) C D(Q) and
Pr=Qx, x€ D(P).

Our assumptions on the operators A and B are the following: there exist
L1, Ly operators in X such that

@ { ilL_ Ly C 2B,
1Lo C —A,
142 — L2,

(6) 0 € p(L1) N p(La),

(7) 0 € p(L1 + La),

(8) L; and L, generate a bounded analytic semigroup on X.
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Under these hypotheses, we will study (1)—(2) in the two following cases

1. First case:
In order to find a strict solution u to (1)—(2) with no more regularity on
f than

ferP0,400;X), 1<p<—+oo,
we will assume here that
(9) X is a UMD space.
Moreover Ly, Lo will satisfy
(10) 36 €]0, 5[: —L1,—L2 € BIP(0, X).

We recall that

e X is a UMD space if and only if for some p > 1 (and thus for all p)
the Hilbert transform is continuous from LP(R; X) into itself (see J.
Bourgain [2]|, D. L. Burkholder [3]).

e Let a € [0,7m]. A closed linear densely defined operator U belongs to
the class BIP (o, X) if

] = 00,0[C p(U), N(U) ={0},R(U) = X
and 3e>1: VA > 0, (U+AI)—1H<C/A,

and

de>1:Vs eR, HU“H <ce°‘|5|

where N (U) is the kernel of U and R (U) the range of U (see J. Priiss
and H. Sohr [19], p. 430).
2. Second case:
Here, we avoid assumptions (9) and (10), but we need more regularity on
f that is

{forallseR ,U% € L(X) and

fewo?(0,400; X), 0<0< % and 1 < p < +00.
We recall that f € W%P(0, R; X) if f € LP(0, R; X) and satisfies
I HORSO]F

Ix
[f]WGvP(O,R;X) = ‘$ — y’1+9p dxdy < 400,

00

see G. Da Prato and P. Grisvard [5], p. 331.
Then (W9P(0, R; X), [-llwero,r;x)) is a Banach space, where

||f||€ve,p(0,RX HfHLp 0,R;X) + [f]WB,p(o,R;X) :
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REMARK 1.
1. By our methods, we will solve
u(z) + (L1 — Lo) W'(z) — LiLou(z) = f(z), z € (0,+00),
so a function u such that
u € WP(0,400; X), (L1 — Lo)u/, LiLou € LP(0, +00; X),

and which satisfies (1)—(2) will be called a (L1, Lo)-strict solution of Prob-
lem (1)—(2). Of course such a solution will be in particular a strict solution
of Problem (1)—(2) in the sense defined previously.

2. It is well known that assumption (10) implies (8) (see J. Priiss and H.
Sohr [19], Theorem 2, p. 437).

Our main results in this paper are:
THEOREM 2. Assume (4)~(10) and let
feLP0,4+00;X), 1<p<+oo.
Then the two following assertions are equivalent.
1. up € (D(Lng),X)ﬁJJ.
2. Problem (1)—(2) as a unique (L1, Lo)-strict solution.

THEOREM 3. Assume (4)~(8), let X be a complex Banach space and
fe We’p(O,—l—oo;X), 0<O< % and 1 < p < 4o0.
Then the two following assertions are equivalent.
1. ug € (D(LlLQ)’X)ﬁ/p'
2. Problem (1)—(2) as a unique (L1, Lo)-strict solution.

These results will be completed by Theorem 10 and 11, in which L and
Lo are precised.

The plan of the paper is as follows.

In Section 2, we prove some technical lemmas.

Section 3 is devoted to the construction of a representation formula for
the solution u of (1)—(2). The uniqueness of the solution is also proved.

Sections 4 and 5 contain the proof of our main results, obtained by the
study of the regularity of the previous representation formula.

In Section 6, we give sufficient conditions on operators A, B which allow
us to build operators

Li=B—(B%—A)2 and Ly = —B — (B2 — A)2,

satisfying our assumptions.

N



Second order abstract differential equations of elliptic type set in Ry 713

Finally in Section 7, we give some examples of application to partial
differential equations.

2. Technical Lemmas

LEMMA 4. Let L, M be two linear operators in X whose domains D(L),
D(M), satisfy

D(L)=D(M) and D(LM)= D(ML).

Then

1. Forl € {0,1,2}, n € N and P,Q € {L, M}, we have
Pin: D(P'Q")=D(@Q™™).
2. Forl,n€{0,1,2} and P,Q € {L, M}, we have
D(P'Q™) = D(Q'P") = D(Q"™") = D(P™™).

Proof. It is enough to show statement 1, from which statement 2 is easily
deduced. We have the following steps.

Step 1: Pgy, is true for n € N.

Step 2: Py, is true for n € N. Indeed, Py is true and if Py j, is true for
some k € N then

r € D(PQ*!) <= 2z € D(Q) and Qx € D(PQ")
<2 € D(Q) and Qx € D(QF)
— x € D(Q"?),

i.e. Py 41 is true.
Step 3: Pa, is true for n € N. Indeed P is true since

P) and Px € D(P)
P) and Pz € D(Q)
QF) = D(PQ)
<z € D(Q) and Qx € D(P)=D(Q)
— z € D(Q?).
Moreover, if Py}, is true for some k € N then
r € D(P?2Q"1) <= 2 € D(Q) and Qz € D(P?QF)
<=z €D(Q) and Qx € D(Q*+?)
o€ D(Q"),

r€DP?) <= x€D
< x€D
<—xecD

P

i.e. Py is satisfied. m
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REMARK 5. If Ly, Lo are operators in X, satisfying (5), then due to Lemma
4, we have
D(L;L;) = D(L7) = D(L3), i,j € {1,2}.
LEMMA 6. Under assumption (9), consider L, a closed linear operator in
X, satisfying
0€p(L) and — L € BIP(01,X), 6L €0, 5]

Then, for R € ]0,400[, 1 < p < 400, ¥ € LP(0,R;X) and ® €
LP(0,400; X), we get

L L) : x> L™ V0 (y)dy € LP(0, R; X).
0
Moreover, there exists Cr > 0 such that

(11) 1L e (0,7 x) < CrIY|Lr(0,r:x), ¥ € LP(0, R; X).
2. x+— L\ W 910(y)dy € LP(0, R; X).

3. z— L\ e W (y)dy € LP(0, +00; X).

4+ O 88 —

o0

4. x— L S WL (y)dy e LP(0, +00; X).
x

“+oo
5. x> Letl | evl@(y)dy € LP(0, +o0; X).
0

Proof.

1. See G. Dore and A. Venni [7].
2. It is an easy consequence of statement 1, since for a. e. x € (0, R)

R R—x
Ly e 2lu(y)dy =L | F)=)by(R — s)ds.
T 0

3. It is a result of G. Dore [6] extending 1.
4. We proceed as in G. Dore [6], pp. 28-29.
We have to prove that Fy + Fy € LP(0, +00; X ) where for a.e. z € (0, +00)

r+1
Fi(z) =L | v a(y)dy,

+o0
By(z)=L | v Lo(y)dy.
z+1
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We first show that F» € LP(0,4o00;X). In fact, since L generate a
bounded analytic semigroup and 0 € p(L) then there exist M > 1 and
w > 0 such that for any y > 0

(12) [eVE]) < Me¥ and | LeV| < My~ le,
(see A. Pazy [17], Theorem 6.13, p. 74). So
+oo +o0o = 400 p
| IE@)de = § | § Le o (y)dy| de
0 0 a+1
+oo +o0o
1 e p
<a | (§ e gy dy) do
0 w1 ¥t
+oo +o0o
P
<M | (] e a(y)|dy) de
0 z+1
+oo
<M |(g % ) (@)Pds,

where g and h are defined by
0 ifx>-—1, d if © >0,
o@ =1 57 and agey = 1PN
e™if r < —1, 0 if z <O.

But ® € LP(0,+0o0; X) so h € LP(R), moreover g € L(R) since
-1
S lg(x)| dz = S e™dr < 400,

R —o0
and then g x h € LP(R), which gives
“+o0o
X | Fo(x)||Pdx < +oo.
0

It remains to prove that Fy € LP(0,+00; X). Let j € N, we set
bj 1 x> X[ji(T)o(T),
(X[j,j+1] denotes the characteristic function of [f, j + 1[) and
RS IS »
I; = S HL S e(y_x)LCI’j(y)dyH dz,
7 x

j+1 . ozl »
Jj=| HL | e(y*m)L‘Pm(y)dyH dx.
A o
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Then by the changes of variable 7 = 1—x+j and 0 = 1 —y+j, we obtain
J+1 ‘ »

I = HL i e<y*1+T*J>L<I>j(y)dyH dr

1-74j

T (1 -0 +j)dUdeT
L@ =+ Do
so, due to (11), we get
13) L < (C)P N1 =+ ) Tw01x) < (COP Nl 1o j1:x) -

Now, taking into account (12), we have

2—7+j

1
L=r ) ety ar
0 jr1
1 1-7 P
:SHL | e<5+T)Lq>j+1(s+j+1)dsH dr
0 0
11
<Y (V| peCt @ (s 4+ 1)ds| ) ar
00

1 /1 p
1
< MP —||®; i+ 1)|| d dr,
§)<§)S+TH g+1(8+j+ )H 8) T

and since the kernel
s+ T
exists C' > 0 such that

(14) T3 < OMP @550 (+ 5+ D)oo 1)

defines a bounded operator on LP(0, 1; R), there

< COMP ||q’3+1 ”LP (+1,j+2;X) *

Finally, we write

+o0 oo j+1

| IF (@) Pde =) § [[F1(2)|Pda,

0 j=0 J

then using (13), (14) and

oo

p _ p
Z ||(I)j||Lp(j7j+1;X) - H(I)HLP(O,—i-oo;X) »
j=0



Second order abstract differential equations of elliptic type set in Ry 717

we obtain
—+o0

| IF@Irde <2713 05+ )

0

00
1
2p Cl pZH(I) ”Lp ]]+1X)
j:O

+2r-lomP Z 195411170 (41 5+2.x)

§=0
< 27~ max ((Cl)p ) CMP) Hq)HLP(O,—i-oo;X)
< 400.
5. This last point is deduced from statements 3 and 4, indeed
“+oo x “+oo
Let S eVl d(y)dy = Le*t S eVl d(y)dy + Le*t S eVl d(y)dy
0 0 x
x +oo
=L S @ NLLP () dy 4 €2 L S WL (y))dy,

0 T

and we take into account the fact that, due to (12)
y — 2L d(y) € LP(0,400; X). =

LEMMA 7. Let X be a Banach space and L be the infinitesimal generator
of a bounded analytic semigroup on X, satisfying moreover 0 € p(L).

Then, for R €]0,+00], 1 < p < 400, 0 < 0 < ]% LY € WOP(0, R; X)), we
get

T

1. o+ L{ ey (y)dy € W20, R; X) € LP(0, R; X).

0
2. If R< +
R
z— L { eV Ey(y)dy € WOP(0,R; X) € LP(0, R; X).

3. If R=+x
“+oo
z— L | e y(y)dy € LP(0, +00; X).

xT

Proof.

1. It is aresult of G. Da Prato and P. Grisvard (See [5], Theorem 4.7, p. 334).
2. This point is deduced from statement 1 (as in Lemma 6, statement 2).
3. We proceed as in Lemma 6, statement 4. m
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LEMMA 8. Let L, be the infinitesimal generator of a bounded analytic semi-
group (ezL)pO in X and assume that 0 € p(L).

Then, for f € LP(0,+o00; X), we get
=L f(y)dy = 0.

1. lim
T—r+00

_A'_O:,:H

oo

2. lim | ¥ ™Ef(y)dy =

T—-+00

Proof.
1. For z € (0,400), we set

ale) = | L f(y)dy = | DL f(y)dy +

0
= a1 () + as(x).
As in (12), there exist M > 1 and w > 0 such that for any y > 0
JevE]) < Me

eI f(y)dy

O |8
N8 — 8

laza(@)| < §lle P E U1 f@)lldy < M § e f(y) | dy,

and, setting ¢ = Ll’ we obtain by Hoélder inequality
p p—

el < 3 (Fe=n00)" (] o)
S0 ? | Qx |
fos(all € = (1) (i)’

<2 (Tuwirs)

But f € LP(0,400; X) thus
+0o0

i (1 P =o

SO
lim _{lag(z)] = 0.

T—r+00
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For aq, we write

lon (@)1 < §lle® (1117 (y) | dy
0

3 1,3 1
< M([emt==ay)* (£ w)Pdy)”
0 0
M o
< (wq)% 11l 2e (0,400:%) <€_wq§ - qux) ;

which gives
lim |Jai(x)|| = 0.

T—r+00

2. As in statement 1, we write

HToe(y_x)Lf(y)dyH sM Te 2= ””dy);(ﬁ I1£(y !pdy)é
< (WJZ;(T 1) )"

which gives

T—+400

i (| T et s =

3. Construction of a representation formula for the solution u of
(1)-(2)
We build a representation formula of the solution in the abstract case, as
in the scalar case. We obtain

u(z) = e*2ug — e 20y + & () + &a(z), where
vo = (L1 + L2)™! +§:O e f(y)dy,

1) 610 = (L4 L) 0
Eo(z) = (L1 + Ly) 1+§>O W=D g (y)

In order to prove Theorem 2, we must first show a uniqueness result,
then we will show that w given by (15) is the solution of problem (1)-(2)
with the desired regularity.
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PROPOSITION 9. Assume (9)~(10) and let
feLP0,+00;X), 1<p<+oo.
If w is a (L1, Lao)-strict solution of (1)—(2), then u is uniquely determined.
Proof. Let uy, ug be (L1, La)-strict solutions of (1)—(2) and fix zy > 0. We
have to show that
ui(xo) = ua(wo).
Consider some R > xg, and set urp = ui(R) — ua(R).
Then u = uy — ug is a (L1, Le)-strict solution on (0, R) of problem
u(x) + (L1 — Lo)u/(z) — L1 Lou(z) =0, x € (0,R),
16 { u(0)=o,
u(R) = ug.
Using Krein’s method, we get that problem (16) as a unique (L1, Lo)-
strict solution thus w is uniquely determined on (0, R) by
a7 u(z) = eFry + el Ry,
with
u(0) = (o + 1R =0,
{U(R) = efil2(y + (g = up.

eRL2CO 4 €RL2€RL1CR — 07
eRL2C0 + CR = UR,

thus
(I — eftb2eliln)(p = up,
Co + €RL1CR =0.

Due to (12) applied to Ly and Lg, there exists Ry > xo such that for any

R > Ry
1

eRhzeRh| <

\)

Now, we consider R > Ry and then I —eft2efl1 is boundedly invertible,

moreover setting zg = (I — eftl2eR1)~1 we have
(18) Izr[l <2,
and

(19) {CR = ZRUR,

Co = —e"zpup.
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Hence, due to (17) and (19), we get for any R > Ry

u(zg) = —e®0L2eBl zpup + eBm) 1y ik = ap.
But
lim up = lim (u1(R) —u2(R)) =0,
R—o0 R—o0

so due to (12) and (18), we obtain
u(zo) = lim ag =0,
R—o0

that is ui(xo) = ua2(zg). =

4. Proof of Theorem 2
Assume that
ug € (D(Lng);X)ip,
2p?

and consider u given by (15).
We first study the regularity of u. Due to (15), (5) and Remark 5, we
have, for a.e. x € (0, +00)

LiLs&y(z) = L1(Ly + La) 'Ly [ @912 f(y)dy
0
JF

LiLoés(x) = La(Ly + La) 'Ly | €251 f(y)dy,
x
and since
Li(Ly + Ly)  and Ly(Ly + L)t € £(X),

we deduce from Lemma 6, statements 3 and 4, that
LiLo&, L1Lo& € LP(0,+00; X), 1<p<+oo.

Moreover

L&} = LiLo&y + Ly (L1 + Lo) 7' f € LP(0,400; X), 1< p < +o0,
similarly, for i,j € {1,2}

Li§; € LP(0,400; X), 1< p < +o0,
and also, since &] + &, = Lo&1 + L1&2, we obtain
(& + &))" € LP(0,+00;: X), 1< p< +o0.

Thus, setting £ = &1 + &, we deduce that
(20) €€ WH(0, 400, X), (L1 — Lo)€, LyLa€ € LP(0, +00; X).

Now, from (15), we have u = w — v + £ where

xLo

v(z) = e* 2y and w(z) = e 2ug, ae. x € (0, +00),
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but, from Lemma 6, statement 5, we obtain that
(21) v e W?P(0,400; X), (L1 — Lo)v', LiLov € LP(0, +00; X).
Due to Remark 5, we get that

ug € (D(L1L2); X) 1 ) = (D(L3); X) 1

%’p %717’
SO
x — L3e"2ug € LP(0, 400; X),
(see H. Triebel [21] p. 96), which gives, for i = 1,2
x> LiLoe™?ug € LP(0, 400; X),
(we have used the fact that L;Ly = L;Ly ' L3 with L;L," € L£(X)).

Finally
(22) w € W2P(0,400; X), (L1 — Ly)w', LiLow € LP(0,400; X),
and, in virtue of (20), (21) and (22), u = w — v + & verifies

u € WHP(0,400; X), (L1 — Lo)u/, LiLyu € LP(0, 400; X).

To conclude, it is enough to show that u satisfies (1)—(2). In fact, it is
clear that u satisfies (1) and w(0) = ug. Moreover, due to Lemma 8 and
(12), we get u(+o00) = 0. In fact, since we have shown in particular that
u € WHP(0, 4+00; X) then the condition u(+00) = 0 is necessarily satisfied.

Conversely assume that Problem (1)—(2) has a (L1, Lg)-strict solution
then, using Remark 1, statement 6 in [13|, we deduce that

Uy € (D(LlLQ)7 X)

1 . n
%)p

5. Proof of Theorem 3

For Theorem 3, we proceed as in proof of Theorem 2; we have just to
replace Lemma 6 by Lemma 7.

6. Construction of L; and Loy
Let us assume that operators A and B satisfy
B? — A'is closed, R_ C p(B? — A) and

(23) sup A\ + B2 — 4) ! £x) < +0o,
A>0

(then it is well known that —(B? — A)% is infinitesimal generator of an
analytic semigroup)

(24) D((B* - A)2) C D(B),

1

(25) Wy € D(B), B(B® — A) "ty = (B> — A) 2By,
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(26) +B — (B? — A)% are boundedly invertible.
Moreover, we suppose that

(27) 36 €)0, %[ + B+ (B> + A)2 € BIP(6, X),

or

(28) +B— (B - A)% generates a bounded analytic semigroup on X,
(recall that (27) implies (28)).
Then, if we set
(29) Li=B—(B2—A)2 and Ly = —B — (B> — A)?,
we have the following lemma (see Lemma 7, p.178 in [14]).

LEMMA 10. Assume (23)~(26). Then Ly and Lo defined by (29)

1

D(Ly) = D(Lz) = D((B? — A)2),
D(L1Ly) = D(LsL1) = D(B% — A) C D(—A),
L1Ly =Lyl C —A,

and (Ly + Ly)™' = —%(BQ — A)"% € L£(X). Note that LiLy = LyLy = —A
if and only if D(A) C D(B?).
Finally Theorem 2 and the previous lemma lead us to the following result.
THEOREM 11. Assume (9), (23)~(27) and
feLP0,+00;X), 1<p<+oo.
Then the following assertions are equivalent
1. up € (D(B%? - A),X).

%J).
2. Problem (1)—(2) as a unique strict solution satisfying moreover

w € LP(0, +o00; D(B% — A)) and v’ € LP(0, +00; D((B? — A)2)).
Similarly, Theorem 3 and Lemma 10 give:
THEOREM 12. Assume (23)~(26) and (28), let X be a Banach space and
fe We’p(O,—i—oo;X), 0<0< % and 1 < p < +o0.
Then the following assertions are equivalent
1. up € (D(B% - A)’X)%

p7p.
2. Problem (1)—(2) as a unique strict solution satisfwing moreover

u € LP(0,+o00; D(B? — A)) and v € LP(0, +00; D((B? — A)?)).
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7. Examples
EXAMPLE 1. Here, we describe a general model to which our previous
theory applies. Let X be a UMD space, a €] — 00, 0], 8 €]0, +o00[, m € N*
and C' be a linear operator such that

C € BIP(0c, X) and 0 € p(C), with 0 < 0¢ < 5,
and consider A, B defined by
A=afC? B= a;ﬁcm.

Since C' €BIP(0¢, X) then for any p > 0, uC™ € BIP(mfc, X) (see J.
Priiss and H. Sohr [19], Corollary 3, p. 444 and Corollary 1, p. 435).

Now, by taking L; = aC™ and Ly = —fpC™, we verify that all the
assumptions are fulfilled on L and Lo and so, we can apply our previous
results as well.

As a simple example, we will consider m = 1, € a bounded domain in
R™ with C2-boundary 9Q, X = L4(f2) with 1 < ¢ < +occ and C such that

D(C) = W29(2) n Wy (Q),
Cu=—Au,
see Example 3 in [13] p. 210. Then 0 € p(C) and C € BIP(0,X) for

6 €]0, 5[ see Theorem C, p. 166-167, in [20].
Note that here

D(A) = D(B?) = {u € W*(Q)
Then by Theorem 2, we have
PROPOSITION 13. Let p €]1;+o0|, f € LP(0,+o00; LI(2)).
Then the two following assertions are equivalent
1. ug € (D(A),LQ(Q))im.
2. The problem

2
O ) — (ot ) 22 ) + AR, y) = f(2,),

(z,y) € (0,400)x£2,

= Aukm = 0}.

Uaq

B0 u0.y) =uw(), yeo

u(+o0,y) =0, ye€Q,

u(z,§) = Ayu(z,§) =0, (z,8) € (0,400) x09,

has a unique strict solution u, that is

w € W2P(0,400; LY(Q)) N LP(0, +o00; LY(Q)) and u' € LP(0, +00; LI(Q)),
and satisfies (30).
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ExXAMPLE 2. Let X = L9(Q2), 1 < g < oo, where € is either R™, or the half
space R", or a bounded domain with C?-boundary, or an exterior domain
with C?-boundary. Take A, the operator in X such that

D(A) = W29(Q) N W, (),
noH o
A= > — (ajp=—]—-46, §>0,
j,%;layj < ]kayk>

where a = (a;j,) satisfies )
(A1)  a(y) = (ak(y)) is a real symmetric matrix for all y € {2 and there
exists ag > 0 such that

ap < a(y)é € <apl, forally € Q, €€R", [¢]=1;

(A2) aj, € C*(Q), for some a € (0,1); moreover if 2 is unbounded then

a?z: lim aji(y)
y|—o0

|yl
exists and there is a constant C' > 0 such that

laji(y) —apl < Clyl™, y€Q, Jy[>1, jk=1,...,n
8ajk

(A3) dy;j

€ L™= (Q), for some numbers rj verifying

p<rp<oo, rpg>n, j,k=1,...,n.

We assume moreover that § > 0 or 2 is bounded.
Then, by Theorem C, p. 166-167, in [20|, —A has bounded imaginary
powers. Therefore, Theorem 2 applies and we get

PROPOSITION 14. Let p,q €]1,00], f € LP(0,+00; L1(2)) and
up € (WQ"I(Q) N Wol’q(Q),Lq(Q))

1
E?p

Then problem

( 9%u noH ou
) 7 (@ 9) +],,€Z:187y] <%kayk> (z,y) — du(z,y)
(31) = f(z,y), (z,y) € (0,+00)xQ,

u(0,y) = uo(y), u(+o0,y) =0, yeQ,
u(z,0) =0, (x,0) € (0,400) %09,

has a unique strict solution u, that is
u € W2P(0, +00; L1()) N LP(0, +o00; W>4(Q) N W, 4(R)),
and satisfies (31).
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Note that here the interpolation space

(W@ nwyt@, 11@) ,

is, for bounded domain, the Besov space
{ue B P(@)u0 = 0},
see Triebel [21], p. 321 (for the case Q = R™ or R’} one applies Triebel,
again, Theorem 5.3.3. p. 373).
ExXAMPLE 3. We can generalize (30) in the following manner. Consider
Li:=2A—cl,Ly:=A

where ¢ > 0 and A is defined as in Example 2.
Then L; and Lo satisfy (5), (6), (7) and (10). Thus, we can apply
Theorem 2 and deal with the problem

0%u no 9 0%u ou
W(ﬂﬁy) +];1@ <ajk8yk8:v) (z,y) — C%(Q?ay)
no 9 ou
+c — | ajr7— ) (o,
j,%;layj ( ]kayk)( 2

n 0 ou 0 ou
-2 —\V\Qi— | — | ;' — x,
j,j’,l%;c/zlayj ( Jk@f%) 0y ( ik ayk'> (z.9)

:f(a?,y), (90731) S (O,+OO)><Q,

U(O, y) = uO(?J)? u(+oo,y) =0, y € Q,
@)= £ 7 (ange ) (00) =0, (.0) € (0. 400)x00
u(z, o) = — | ajx=— ) (z,0) =0, x,o , +00 ,
. jk=10Y; 7" oys,
here for simplicity we have taken 6 = 0 and 2 bounded.
Acknowledgment. Authors are thankful to the referee for useful re-
marks and supplying references [1] and [4].
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