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ON THE GENERALIZED ORDER
AND GENERALIZED TYPE
OF ENTIRE MONOGENIC FUNCTIONS

Abstract. In the present paper we study the generalized growth of entire monogenic
functions. The generalized order, generalized lower order and generalized type of entire
monogenic functions have been obtained in terms of its Taylor’s series coefficients.

1. Introduction

Firstly, following Constales, Almeida and Krausshar (see [2| and [3]), we
give some definitions and associated properties. Let m= (my,...,m,) €
Ng be the n-dimensional multi-index and x € R", then we define

m __ mi m o i
xM =" oapm, ml=myl.oomy,!, ml=mp 4+ 4+ m,.

By {e1,e2,...,e,} we denote the canonical basis of the Euclidean vector
space R™. The associated real Clifford algebra Cl, is the free algebra gen-
erated by R” modulo x? = —||x||?ep, where eq is the neutral element with
respect to multiplication of the Clifford algebra C1,,. In the Clifford algebra
Cl,, following multiplication rule holds:

eie; +eje; = _25ij €o, ,7=1,2...... , N,

where ¢;; is Kronecker symbol. A basis for Clifford algebra Cl,, is given
by the set {e4: AC{1,2,...,n}} with e4 = ey e, ...€,, where 1 <[} <
lp <--- <l <n, ey = ey = 1. Each a € Cl,, can be written in the form
a = ZAQ(LZ...,n) aseq with ay € R. The conjugation in Clifford algebra
Cly, is defined by @ = Y c(1o, ) @a€a, Where €4 = €,&, ,...... e,
and €; = —ej, for j = 1,2,...n, €& = eg = 1. The linear subspace
spang{l,e1,...,e,} = R@®R"™ C Cl, is the so called space of paravectors
2 = xg+ x1€1 + xoes + - - - + xpe, which we simply identify with R*T!. Here
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xo = Sc(z) is the scalar part and x=x1e1 + x2e2 + -+ + e, =Vec(z)
is the vector part of a paravector z. The Clifford norm of an arbitrary
a= ZAQ(LZ---JI) ap ez is given by

lall = (> laal?)

AC(1,2,...,n)

The generalized Cauchy-Riemann operator in R"*! is given by

n
i=1

If U C R is an open set, then a function g : U — Cl, is called
left (right) monogenic at a point z € U if Dg(z) = 0 (¢ D(z) = 0). The
functions which are left (right) monogenic in the whole space are called left
(right) entire monogenic functions.

Let A,,+1 be the n-dimensional surface area of the n+ 1-dimensional unit
ball and go(z) = IIZ’HL"H be the Cauchy kernel function, then every function g
which is left monogenic in a neighborhood of closure G of domain G satisfies
the following equation (see [2], p. 766)

g(z) = Al [ d0(z - ) dr(¢) g(¢), for all z € G,
n+1 FYel
where
dr(¢) = Y (~1Ye;d¢;
7=0
with

CiC\jZdCo Ao ANdGi—1 A dGigr A A dGp,

is the oriented outer normal surface measure. If g is a left monogenic function
in a ball ||z]| < R, then for all ||z|| < r with 0 <r < R,

[e.9]

(1.1) 9(2) = > Vi(z) am.

|m|=0
In (1.1) Vin(z) are called Fueter polynomials and are given as
m!
Vm(z) = w Z Zr(my) «+ « Fr(mn))
mEperm(m)

where perm(m) is the set of all permutations of the sequence
(my,ma...,my) and z; = x; — xge;, for i = 1,...,n and Vp(z) = 1. Also in
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(1.1) ay, are Clifford numbers which are defined by
1
am=———— | am(¢) d7(¢) 9(¢)

m!A
" e)<r

and satisfy the inequality

M(r,g)
e < e, m) 9]
Here M(r,g) = ‘ax{||g(z)||} denotes the maximum modulus of the func-
z||=r

tion ¢ in the closed ball of radius r and

gmotmitetmn nn+1)...(n+ |m|—1)
Qg0 ... dxin do(2), c(n,m) =

We now introduce two classes of functions as defined by Seremeta [4].
Hence, we denote by L° the class of functions h satisfying the following
conditions:

dm(2)

m!

(i) h(z) is defined on [a,0), a € R, and is positive, strictly increasing,
differentiable and tends to co as x — o0,
(ii) lim W = 1, for every function ¢ (x) such that 1(z) — oo as

T—00 )
T —r OQ.

Let x denote the class of functions h satisfying conditions (i) and

(iii) lim ];L((Cf)) =1, for every ¢ > 0, that is h(x) is slowly increasing.
T—00

Using the growth functions of the above classes L? and y, following Seremeta
[4] and Shah [5], we define generalized order and generalized type of entire
monogenic functions. For an entire monogenic function g(z) and functions
a(z) € x, B(z) € LY, we define the generalized order p and generalized lower
order A of g(z) as

(1.2) pla.B.g) _ | supa [log M(r,g)]

Ma, B,g)  r—=ooinf B (logr)
Further, for a(x), 3(x) and v(z) € LY, we define the generalized type o of
an entire monogenic function g(z) as

— lim sup 2o M(r,9)]
(1.3) o(a, B, p,g) = lim sup ACGIZE

where 0 < p < 00 is a fixed number.

Now following Almeida and Krausshar [1], we define the maximum term
and central index of entire monogenic functions. Hence, let g : R**! — C1,,
be an entire monogenic function whose Taylor’s series representation is given
by g(z) = > =0 Vm(2) am. Then for 7 > 0, the maximum term of this
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entire monogenic function is given by u(r,g) = m‘ax{HamHHm'}. Also the
m|>0

index m with maximal length |m|, for which maximum term is achieved, is
called the central index and is denoted by v(r, g) = m.

For an entire monogenic function g(z) and functions a(x) € x, B(x) €
L°, we define the generalized order and generalized lower order of g(z) in
terms of maximum term and central index as

pila.B,9) _ . sup aflogu(r,g)}

) Ao, B,g9) oo inf  B(logr)
and
(1.5) p2(e, B, g) — lim supM.

Xo(a, B,g) T inf B(logr)

On the pattern of classical definitions of growth parameters Constales,
Almeida and Krausshar ([2] and [3]) defined the order and type of an entire
monogenic function and obtained their coefficient characterizations (see [2],
Th. 1 and [3], Th. 1). They also obtained a lower estimate for the lower order
of the entire function (see [2], Th. 2). Almeida and Krausshar obtained a
lower estimate for the order and lower order of entire monogenic function
in terms of maximum term and central indices (see [1], Prop. 5.3). In this
paper, we extend these results for generalized order, generalized lower order
and generalized type. We have also obtained a coefficient characterization
for the generalized lower order. The results obtained here are valid for both
left monogenic or right monogenic entire functions.

2. Main results

We now prove
THEOREM 2.1. Let g : R*™ — Cl, be an entire monogenic function
whose Taylor’s series representation is given by g(z) = erq:o Vi(2) am. If
a(z) € x and B(z) € L° then the generalized order p of g(z) as defined in
(1.2) is given as

) o o(|ml)
@) p= e Big) = I S G g Tam/cln, m) I}

Proof. Write

o= lm sup o) |
jm| =00 3 {log [lam/c(n, m)||-1/Iml}

Now first we prove that p > 6. The coefficients of a monogenic Taylor’s
series satisfy Cauchy’s inequality, that is

(2.2) laml| < M(r,g) c(n,m) r~™,
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Also from (1.2), for arbitrary € > 0 and all r > ry(e), we have

M(r,g) < exp[a™' {pB(logr)}], p=p+e
or

lam|| < e(n,m)r "™ exp [a™" {pB(logr)}] -
Putting r = exp [37! {a(Jm|)/p}] in the above inequality, we get for all
large values of |m)|,

lam |l < e(n,m) exp [[m] — jm|5~" {a(jm])/ p}]

or
1

5 {alml)/p} < 1~ oo (og /et m) )
> o(|m]) _
5 {1+ log [am /c(n, m)] /1) =7

Since B(z) € L°, B(1+x) ~ B(x). Hence proceeding to limits as [m| — oo,
we get

0= lim sup a(jm}) <p.
|m|—o0 B {log ||lam/c(n, m)||-1/Im!}

Since € > 0 is arbitrarily small, we finally get
(2.3) 0 <p.

Now we will prove that 6 > p. If § = co, then there is nothing to prove.
So let us assume that 0 < 0 < oco. Therefore, for a given € >0, there exists
no € N such that for all multi-indices m with |m| > ng, we have

o(jm]) o
0= 508 Jam/c(nmy -y <0Te=?

or
lam/e(n, m)|| < exp [~| m|5~" {a(|m])/ 6}].
Now from the property of maximum modulus, we have
M(r,g) < llam|r™
|m|=0
or
no 00 B
M(r,g)< D Namlr™+ D" e(n,m)r™ exp [~|m|8~" {a(|m])/ 0}] .
|m|=0 |m|=no+1

Now for r > 1, we have

(24) M(rg) <A™+ S e(n,m)r™ exp [~Jm|8~" {a(ml)/8}].

\m|:n0+1
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where A; is a positive real constant. We take

N(r) = [a™" {8B[log{(n+ 1)r}]}] ,
where [z] denotes the integer part of z > 0. Since a(z) € x and §(z) € LY,
the integer N(r) is well defined. Now we choose

oo 1, L e (57 (200 D))

Then from (2.4), we have
M(r,g) < Ay 40N %" o(n,m)exp [~[m|87" {a(|jm])/0}]

no+1<|m|<N(r)

+ Z pim| exp [—!mfﬂfl {a(\m\)/@}]

lm|>N(r)

(25)  M(r,g) < Ayr" + 7V N " c(n,m)exp [—|m|3~" {a(jm]|)/0}]
|m|=1
+ Y e(n,m)r™ exp [—m[3~! {a(|m])/0}].
|m|>N(r)

Now the first series in (2.5) can be rewritten as

(2.6) SS ctnm) exp [-p57 {a(p)/F}].

p=1|m|=p
Now from ([2], Lemma 1), we have
. 1/p
plggo sup( Z c(n, m)) =n.
|m|=p
Hence, we have

lim sup[( Z c(n, m)) exp [—p,@fl {a(p)/@}]} p

p—r00
lm[=p
= npli_)rglo supexp [-B 1 {a(p)/0}] = 0.

Hence the series (2.6) converges to a positive real constant As. So from (2.5),
we get
M(r,g) < Ayr™ + AgrN ()
+ Y e(n,m)r™ exp [~m|3~! {a(|m]|)/0}]

lm|>N(r)
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or
M(r,g) < Ayr™ + AgrV() 4 Z ¢(n,m) 7™ exp [—|m]|log{(n + 1)r}]
lm[>N(r)
or -
1 m
M(r,g) < Ayr™ + AgrV0) 4 Z c(n, m) (n n 1>
|m|>N(r)
or
) 1 |m|
2.7 M(r,g) < Ayr™ + AgrNr) :
07)  M(g) < A 4 Ay +|;1c<n,m>(n+1)
The series in (2.7) can be rewritten as
o0 1 P
(2.8) Z( Z c(n, m)) (n—l— 1) .
p=1 |m|=p
So we have
) 1 p11/p n
phﬁrglosup[(lz C(n’m)>{n+1}] :n+1<1'
m|=p

Hence the series (2.8) converges to a positive real constant As. Therefore
from (2.7), we get

M(r,g) < Ay + AgrV (™) 4 Ay,
Since N(r) — oo as r — 00, we can write the above inequality as
log M(r,g) < [1+0(1)] N(r)logr
or
log M(r,g) < [1+0(1)] [a™! {08[log{(n+1)r}]}] logr

or

log M(r,g) < [a~" {(6 4 61) Bllog{(n + 1)r}]}] [1 + o(1)],

where §; > 0 is suitably small. Using the properties of a(x) and S(z), we
get

aflog M(r, g)]

Bllogr]

Since §; and € are arbitrary, proceeding to limits as r — oo, we get p < 6.
Combining this with the inequality (2.3), we get (2.1). Hence Theorem 2.1
is proved. =

< (6+61)[1 4 o(1)].

Next we prove
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THEOREM 2.2. Let g : Rt — Cl,, be an entire monogenic function whose
Taylor’s series representation is given by g(z) = Effn|:0 Vin(2) am. Also let
a(z), B(z),y(z) € LY and 0 < p < oo, then the generalized type o of g(z) as
defined in (1.3) is given as

— ol ~ lm sy a(|m|/p)
29) o =olabpg) = S T (e am/e(n, m)| ) 7]
Proof. Write
a(|lml/p)
= lim su .
T imiSoe " P B {7 (/]| agn /c(n, m) |-/} }7]

First we prove that ¢ > 7. From (1.3), for arbitrary ¢ > 0 and all
r > 19(€), we have

M (r,g) < exp [a~" {7 B[{7(r)}*1}],

where @ = 0 + €. Now using (2.2), we get

laxal| < e(n,m)r~M™ exp [a™! {7 B[{7(r)}]}].

Putting r = [{ﬂ ( (jm|/p))} /p} , we get

ol < ctnm) (1 [{7* (Latmiz)} ) expiimire

et/ 2 (57 {571 (Latmisn )} ] ) o170

a(|ml/p) _
BT (llam/c(n, xa) [ 1/11) }7] =

Now proceeding to limits as |m| — oo, we get

or

or

n< o
Since € > 0 is arbitrarily small, so finally we get
n < o.

Now we will prove that n > o. If n = 0o, then there is nothing to prove.
So let us assume that 0 < 1 < co. Therefore, for a given € >0, there exists
no € N such that for all multi-indices m with |m| > ng, we have

a(jm|/p)
B[{v (erllam/c(n, m)[|=1/) }¥]

<n+e=7
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fomfctnm] < (2[5 (Faual/o) }UPD_'m' emile,

Now from the property of maximum modulus, we have

or

no 00
M(r,g) < Y lamlr™ + > e(n,m)
|m|=0 |m|=no+1

< (7o Gtmim) 1) e

Now for r > 1, we have

(2.10)  M(r,g) < Byr™ + Z ¢(n, m)

|m|=no+1

(e ) ) o

where Bj is a positive real constant. We take

Ny = [pa {78 ([ +Drey] ) ).

where [z] denotes the integer part of 2 > 0. Since a(x), B(x) and ~(x) € LY,
the integer N(r) is well defined. Now we choose

o (2 (52)) )

Then from (2.10), we have

M) < B0 T
no+1<|m|<N(r)

< (1[5 (Satmirn) }l/p] ) i
+ Z c(n, m) (7_1 [{5—1 (:}a(|m|/p)>}1/p])lm s

lm|>N(r)
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or
(2.11)  M(r,g) < By + N Z ¢(n, m)
|m|=1

(7 Gomn) } 1) e

o3 cnm (st [{5 (Batmim) ) ) e

[m[>N(r)
Now the first series in (2.11) can be rewritten as
s . el 1/pqN\ —P
212 33 o) (v {57 (Ratin )} ) e
p=1|m|=p

As in the proof of Theorem 2.1, we have

Jim sup| (D e(nm) (7_1 Hﬁ_l <717a(p/,0)) }1/,)} ) ’ er/s] v

|m|=p

o gpon(r [ (o)} ]) -

Hence, the series (2.12) converges to a positive real constant Bs. So from
(2.11), we get

M(r, g) < Byr" + Bor™V() 4 Z c(n, m)
lm|>N(r)

x <71 [{51 (717@(|m|/p)> }1//)] > T el i/

M(r,g) < Bir™ + Byr¥() 4 Z c(n, m) [(n+ 1)re'/P)=Iml pml glmi/p
Im|[>N(r)
or

o0 1 |m|
M(r,g) < Byr™ + Bor¥() 4 Z ¢(n,m) ( n 1> .
n

lm|=1
Now from Theorem 2.1, we can say that the series

i c(n, m) <n—1|— 1)|m

m|=1
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converges to a positive real number Bs. Hence
M(r, g) < Byr™ + Boyr¥") 4 B,
Proceeding as in proof of Theorem 2.1, we get
log M(r,g) < [14o(1)]N(r)logr
or
log M(r,g) < [1+0()] [pa~ {78 ([4{(n+1)re/}]") }] 10g~

log M(r,g) < [1+o(D]a~" [7+62) 8 ([4{(n+ Dret/}]")],

where d2 > 0 is suitably small. Hence, using the properties of a(z), we get

aflog M(r, )] < (77+2) B ([{(n + Dre'/7}]")

aflog M(r,g)] < (7 + 02) B{~(r)}* + O(1)]
aflog M(r,g9)] < (774 02) BH{v ()} {1 + o(1)}].

Using properties of 5(x), we get
o [log M (r, g)]

B [{v(r)}e]

Since do and e are arbitrary, proceeding to limits as r — oo, we get o < 7.
Combining this with the reverse inequality obtained earlier, we get (2.9).
Hence Theorem 2.2 is proved. =

< (M+02) [L+o(1)].

Next we prove

THEOREM 2.3. Let g : Rt — Cl,, be an entire monogenic function whose
Taylor’s series representation is given by g(z) = ZT;|:0 Vin(2) am. Also
suppose that a(x) € x, B(x) € L° and Ay, p2 is defined as in (1.5) with
0 < pa2 < o0. If for arbitrary e > 0 and py = p2 +¢

@ {nlog [ofl {p2B(log 2r)}] }
(2.13) rlggo B(logr)

then the generalized order p(a, 3, g) and generalized lower order X« 5, g) of
this entire monogenic function g(z) satisfy

p(a7ﬁvg) < pl(a7ﬁvg) - ,02(04>ﬁag)

=0,

and
Ma, B,9) < Mo, B,9) = Aa(a, B, 9).
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Proof. For simplicity we write p(a, 8,9) = p, Mo, B,9) =X and
P1 = pl(a757g)7 P2 = P2(a76,9)7
)\1 = Al(avﬁvg)v >‘2 = )\Q(Q,B,g)~
Now following ([1], page 805), for sufficiently large value of r, we have
(2.14) M(r,g)) < p(r, g)|v(2r, g)|"[L + o(1)].
Also from (1.5), for arbitrary ¢ > 0 and all r > r(¢), we have
lo(r,9)] < @™ {p2B(logr)}.
Therefore from (2.14), we get
M(r,g) < p(r,g) (o~ {p2B(log 2r)})" [1 + o(1)]
or
log M(r. g) < log u(r. ) + nlog [a~" (758(10g2r)}] + loglL + o(1)
or
aflog M(r.g)) < a {log u(r,g) + nlog [a~! {7580 2r)}] [1 +o(V)]}
Since « is a slowly increasing function, therefore we have
allog M(r, g)] < allog u(r, g)] + o {nlog [a~" {p2p(log 2r)}] }
or
allog M(r,g)] _ allog u(r, g)] Lo {nlog [a~! {P2B(log2r)}] }
B(logr) B(logr) B(logr) '
Now proceeding to limits and using (2.13), we get

p<p1 and <)\

<

Now following ([1], page 805), we can say that p; = p2 and A\; = A2. Hence

Theorem 2.3 is proved. =

Lastly, we prove

THEOREM 2.4. Let g : Rt — Cl,, be an entire monogenic function whose
Taylor’s series representation is given by g(z) = ZT,,OMZO am Vim(2). Also
if a(x) € x, B(z) € LY, then the generalized lower order \ of this entire

monogenic function g(z) satisfies

) - a(|m)
(2.15) A= Bg) 2 S og llam/c(n, m)] T}

Further, if

() = o {10 | = 11

)
al
m

is a non-decreasing function of k then equality holds in (2.15).
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Proof. Write

o a(|m])
® = lim inf .
mi—oo B {log [|am /c(n, m)||~/ImI}
First we prove that A > ®. From (1.2), for arbitrary £ > 0 and a sequence
r=r, — 00 as k — oo, we have

M(r,g) < expla™ {XB(logr)}],
where A = A + €. Now proceeding as in the proof of Theorem 2.1, we get
laml| < ¢(n, m)r~ ™ expla™ {X B(log r)}].
Putting 7 = exp[8~!{a(Jm|)/A}] in the above inequality, we get
lam|l < ¢(n, m) exp[lm| — [m|5~ {a(|m|)/A}]

571 [a(ml)/x] <1- |§1| {log [[am /c(n, m)]}
. a(jm)) .
B{1+ log [[am/c(m,m)| V/m} =™

Since B(z) € LY, B(1 + x) ~ B(x). Hence proceeding to limits as |m| =
lm(k)| — oo, we get

i a(|m]) -
® = lim inf <X
m|—oo B {log [|lam/c(n, m)|~1/Iml} =

Since € > 0 is arbitrarily small, so finally we get
D <A

Now we prove that A < ®. From the assumption on 9, (k) — oo
as k — o0o. By the definition given in section 1, if [am| 7™ is the maxi-
mum term for 7 then for |my| < |m| < |my|, ||am, || 7™ < |lam] ™ >
| am, || 7™21 and for |m| =k, ¢(k — 1) < r < (k).

Now suppose that [|amt [|[r™' and [|amyz||r™! are two consecutive maxi-
mum terms. Then |m!| < |m?| — 1. Let |m!| < |m| < |m?|, then |v(r, g)| =
lm!| for ¢)(jm'"|) < r < (Jm?|), where |m!"| = |m!| — 1. Hence from (1.5),
for arbitrary ¢ > 0 and all r > r¢(¢), we have

im!| = |1/(T,g)|>ofl{)\/ﬁ(log7“)}, where X' = A — ¢,

or

m'| = (rg)l = o= {XBllog{w(m')) - )]},

where d is a constant such that 0 < d < min {1, [¢(Jm?'|) — ¢(jm!"
or

)1/2}

logy(jm'[) < O(1) + 8~ {a(lm')/X'}.
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Further we have

Y(lm')) = p(jm'[+1) = =¢(m| - 1).
Using the definition of 1 (k), we have

el < um)) ) <
where | = fnf — Land ] > o
O et ) < i, m) a1
: tog Jam /e, m)]| ! < ] log (') + O(1)
: 108 lam /el m) |1 < fml 3 a(jm')/\'} + O(1)
) 08 (. )] < 5 x(en)/X P[1 + o(1)
) 08 (. )] < 5 () /X Y[1+ o(1)]

/ (|l
= 5 log [/ e{rn, m) |1/}

Now taking limits as |m| — oo, we get A < ®. Hence, Theorem 2.4 is
proved. m

[1+o(1)].
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