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ON THE GENERALIZED ORDER
AND GENERALIZED TYPE

OF ENTIRE MONOGENIC FUNCTIONS

Abstract. In the present paper we study the generalized growth of entire monogenic
functions. The generalized order, generalized lower order and generalized type of entire
monogenic functions have been obtained in terms of its Taylor’s series coefficients.

1. Introduction
Firstly, following Constales, Almeida and Krausshar (see [2] and [3]), we

give some definitions and associated properties. Let m = (m1, . . . ,mn) ∈
Nn0 be the n-dimensional multi-index and x ∈ Rn, then we define

xm = xm1
1 . . . xmn

n , m! = m1! . . .mn!, |m| = m1 + · · ·+mn.

By {e1, e2, . . . , en} we denote the canonical basis of the Euclidean vector
space Rn. The associated real Clifford algebra Cln is the free algebra gen-
erated by Rn modulo x2 = −‖x‖2e0, where e0 is the neutral element with
respect to multiplication of the Clifford algebra Cln. In the Clifford algebra
Cln following multiplication rule holds:

eiej + ejei = −2δij e0, i, j = 1, 2 . . . . . . , n,

where δij is Kronecker symbol. A basis for Clifford algebra Cln is given
by the set {eA : A ⊆ {1, 2, . . . , n}} with eA = el1el2 . . . elr , where 1 ≤ l1 <
l2 < · · · < lr ≤ n, eφ = e0 = 1. Each a ∈ Cln can be written in the form
a =

∑
A⊆(1,2,...,n) aAeA with aA ∈ R. The conjugation in Clifford algebra

Cln is defined by ā =
∑

A⊆(1,2,...,n) aA ēA, where ēA = ēlr ēlr−1 . . . . . . ēl1
and ēj = −ej , for j = 1, 2, . . . n, ē0 = e0 = 1. The linear subspace
spanR{1, e1, . . . , en} = R ⊕ Rn ⊂ Cln is the so called space of paravectors
z = x0 + x1e1 + x2e2 + · · ·+ xnen which we simply identify with Rn+1. Here
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x0 = Sc(z) is the scalar part and x =x1e1 + x2e2 + · · · + xnen =Vec(z)
is the vector part of a paravector z. The Clifford norm of an arbitrary
a =

∑
A⊆(1,2,...,n) aA eA is given by

‖a‖ =
( ∑
A⊆(1,2,...,n)

|aA|2
)1/2

.

The generalized Cauchy–Riemann operator in Rn+1 is given by

D =
∂

∂x0
+

n∑
i=1

ei
∂

∂xi
.

If U ⊆ Rn+1 is an open set, then a function g : U → Cln is called
left (right) monogenic at a point z ∈ U if Dg(z) = 0 (g D(z) = 0). The
functions which are left (right) monogenic in the whole space are called left
(right) entire monogenic functions.

Let An+1 be the n-dimensional surface area of the n+1-dimensional unit
ball and q0(z) =

_
z

‖z‖n+1 be the Cauchy kernel function, then every function g
which is left monogenic in a neighborhood of closure G of domain G satisfies
the following equation (see [2], p. 766)

g(z) =
1

An+1

�

∂G

q0(z − ζ) dτ(ζ) g(ζ), for all z ∈ G,

where

dτ(ζ) =
n∑
j=0

(−1)jej d̂ζj

with
d̂ζj = dζ0 ∧ . . . ∧ dζj−1 ∧ dζj+1 ∧ . . . ∧ dζn,

is the oriented outer normal surface measure. If g is a left monogenic function
in a ball ‖z‖ < R, then for all ‖z‖ < r with 0 < r < R,

(1.1) g(z) =
∞∑
|m|=0

Vm(z) am.

In (1.1) Vm(z) are called Fueter polynomials and are given as

Vm(z) =
m!
|m|!

∑
π∈perm(m)

zπ(m1) . . . zπ(mn),

where perm(m) is the set of all permutations of the sequence
(m1,m2 . . . ,mn) and zi = xi − x0ei, for i = 1, . . . , n and V0(z) = 1. Also in
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(1.1) am are Clifford numbers which are defined by

am =
1

m!An+1

�

‖ζ‖<r
qm(ζ) dτ(ζ) g(ζ)

and satisfy the inequality

‖am‖ ≤ c(n,m)
M(r, g)

r|m|
.

Here M(r, g) = max
‖z‖=r

{‖g(z)‖} denotes the maximum modulus of the func-

tion g in the closed ball of radius r and

qm(z) =
∂m0+m1+···+mn

∂xm0
0 ∂xm1

1 . . . ∂xmn
n

q0(z), c(n,m) =
n(n+ 1) . . . (n+ |m| − 1)

m!
.

We now introduce two classes of functions as defined by Seremeta [4].
Hence, we denote by L0 the class of functions h satisfying the following
conditions:

(i) h(x) is defined on [a,∞), a ∈ R, and is positive, strictly increasing,
differentiable and tends to ∞ as x→∞,

(ii) lim
x→∞

h[{1+1/ψ(x)}x]
h(x) = 1, for every function ψ(x) such that ψ(x)→∞ as

x→∞.
Let χ denote the class of functions h satisfying conditions (i) and

(iii) lim
x→∞

h(cx)
h(x) = 1, for every c > 0, that is h(x) is slowly increasing.

Using the growth functions of the above classes L0 and χ, following Seremeta
[4] and Shah [5], we define generalized order and generalized type of entire
monogenic functions. For an entire monogenic function g(z) and functions
α(x) ∈ χ, β(x) ∈ L0, we define the generalized order ρ and generalized lower
order λ of g(z) as

(1.2)
ρ(α, β, g)

λ(α, β, g)
= lim

r→∞

sup

inf

α [logM(r, g)]

β (log r)
.

Further, for α(x), β(x) and γ(x) ∈ L0, we define the generalized type σ of
an entire monogenic function g(z) as

(1.3) σ(α, β, ρ, g) = lim
r→∞

sup
α [logM(r, g)]

β [{γ(r)}ρ]
,

where 0 < ρ <∞ is a fixed number.
Now following Almeida and Krausshar [1], we define the maximum term

and central index of entire monogenic functions. Hence, let g : Rn+1 → Cln
be an entire monogenic function whose Taylor’s series representation is given
by g(z) =

∑∞
|m|=0 Vm(z) am. Then for r > 0, the maximum term of this
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entire monogenic function is given by µ(r, g) = max
|m|≥0

{‖am‖r|m|}. Also the

index m with maximal length |m|, for which maximum term is achieved, is
called the central index and is denoted by ν(r, g) = m.

For an entire monogenic function g(z) and functions α(x) ∈ χ, β(x) ∈
L0, we define the generalized order and generalized lower order of g(z) in
terms of maximum term and central index as

(1.4)
ρ1(α, β, g)

λ1(α, β, g)
= lim

r→∞

sup

inf

α{logµ(r, g)}
β(log r)

and

(1.5)
ρ2(α, β, g)

λ2(α, β, g)
= lim

r→∞

sup

inf

α{|ν(r, g)|}
β(log r)

.

On the pattern of classical definitions of growth parameters Constales,
Almeida and Krausshar ([2] and [3]) defined the order and type of an entire
monogenic function and obtained their coefficient characterizations (see [2],
Th. 1 and [3], Th. 1). They also obtained a lower estimate for the lower order
of the entire function (see [2], Th. 2). Almeida and Krausshar obtained a
lower estimate for the order and lower order of entire monogenic function
in terms of maximum term and central indices (see [1], Prop. 5.3). In this
paper, we extend these results for generalized order, generalized lower order
and generalized type. We have also obtained a coefficient characterization
for the generalized lower order. The results obtained here are valid for both
left monogenic or right monogenic entire functions.

2. Main results
We now prove

Theorem 2.1. Let g : Rn+1 → Cln be an entire monogenic function
whose Taylor’s series representation is given by g(z) =

∑∞
|m|=0 Vm(z) am. If

α(x) ∈ χ and β(x) ∈ L0 then the generalized order ρ of g(z) as defined in
(1.2) is given as

(2.1) ρ = ρ(α, β, g) = lim
|m|→∞

sup
α(|m|)

β
{

log ‖am/c(n,m)‖−1/|m|
} .

Proof. Write

θ = lim
|m|→∞

sup
α(|m|)

β
{

log ‖am/c(n,m)‖−1/|m|
} .

Now first we prove that ρ ≥ θ. The coefficients of a monogenic Taylor’s
series satisfy Cauchy’s inequality, that is

(2.2) ‖am‖ ≤M(r, g) c(n,m) r−|m|.
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Also from (1.2), for arbitrary ε > 0 and all r > r0(ε), we have

M(r, g) ≤ exp
[
α−1 { ρ β(log r)}

]
, ρ = ρ+ ε

or
‖am‖ ≤ c(n,m) r−|m| exp

[
α−1 { ρ β(log r)}

]
.

Putting r = exp
[
β−1 {α(|m|)/ ρ}

]
in the above inequality, we get for all

large values of |m|,
‖am‖ ≤ c(n,m) exp

[
|m| − |m|β−1 {α(|m|)/ ρ}

]
or

β−1 {α(|m|)/ ρ} ≤ 1− 1

|m|
{log ‖am/c(n,m)‖}

or
α(|m|)

β
{

1 + log ‖am/c(n,m)‖−1/|m|
} ≤ ρ.

Since β(x) ∈ L0, β(1 + x) ' β(x). Hence proceeding to limits as |m| → ∞,
we get

θ = lim
|m|→∞

sup
α(|m|)

β
{

log ‖am/c(n,m)‖−1/|m|
} ≤ ρ.

Since ε > 0 is arbitrarily small, we finally get

(2.3) θ ≤ ρ.
Now we will prove that θ ≥ ρ. If θ =∞, then there is nothing to prove.

So let us assume that 0 ≤ θ < ∞. Therefore, for a given ε >0, there exists
n0 ∈ N such that for all multi-indices m with |m| > n0, we have

0 ≤ α(|m|)
β
{

log ‖am/c(n,m)‖−1/|m|
} < θ + ε = θ

or
‖am/c(n,m)‖ ≤ exp

[
−| m|β−1

{
α(|m|)/ θ

}]
.

Now from the property of maximum modulus, we have

M(r, g) ≤
∞∑
|m|=0

‖am‖r|m|

or

M(r, g)≤
n0∑
|m|=0

‖am‖r|m|+
∞∑

|m|=n0+1

c(n,m) r|m| exp
[
−|m|β−1

{
α(|m|)/ θ

}]
.

Now for r > 1, we have

(2.4) M(r, g) ≤ A1r
n0 +

∞∑
|m|=n0+1

c(n,m) r|m| exp
[
−|m|β−1

{
α(|m|)/ θ

}]
,
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where A1 is a positive real constant. We take

N(r) =
[
α−1

{
θβ[log{(n+ 1)r}]

}]
,

where [x] denotes the integer part of x ≥ 0. Since α(x) ∈ χ and β(x) ∈ L0,
the integer N(r) is well defined. Now we choose

r > max

{
1,

1

n+ 1
exp

(
β−1

(
α(n0 + 1)

θ̄

))}
.

Then from (2.4), we have

M(r, g) ≤ A1r
n0 + rN(r)

∑
n0+1≤|m|≤N(r)

c(n,m) exp
[
−|m|β−1

{
α(|m|)/ θ

}]
+

∑
|m|>N(r)

c(n,m) r|m| exp
[
−|m|β−1

{
α(|m|)/ θ

}]
or

M(r, g) ≤ A1r
n0 + rN(r)

∞∑
|m|=1

c(n,m) exp
[
−|m|β−1

{
α(|m|)/ θ

}]
(2.5)

+
∑

|m|>N(r)

c(n,m) r|m| exp
[
−|m|β−1

{
α(|m|)/ θ

}]
.

Now the first series in (2.5) can be rewritten as

(2.6)
∞∑
p=1

( ∑
|m|=p

c(n,m)
)

exp
[
−pβ−1

{
α(p)/ θ

}]
.

Now from ([2], Lemma 1), we have

lim
p→∞

sup
( ∑
|m|=p

c(n,m)
)1/p

= n.

Hence, we have

lim
p→∞

sup
[( ∑
|m|=p

c(n,m)
)

exp
[
−pβ−1

{
α(p)/ θ

}]]1/p
= n lim

p→∞
sup exp

[
−β−1

{
α(p)/θ

}]
= 0.

Hence the series (2.6) converges to a positive real constant A2. So from (2.5),
we get

M(r, g) ≤ A1r
n0 +A2r

N(r)

+
∑

|m|>N(r)

c(n,m) r|m| exp
[
−|m|β−1

{
α(|m|)/ θ

}]
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or

M(r, g) ≤ A1r
n0 +A2r

N(r) +
∑

|m|>N(r)

c(n,m) r|m| exp [−|m| log{(n+ 1)r}]

or

M(r, g) ≤ A1r
n0 +A2r

N(r) +
∑

|m|>N(r)

c(n,m)

(
1

n+ 1

)|m|
or

(2.7) M(r, g) ≤ A1r
n0 +A2r

N(r) +
∞∑
|m|=1

c(n,m)

(
1

n+ 1

)|m|
.

The series in (2.7) can be rewritten as

(2.8)
∞∑
p=1

( ∑
|m|=p

c(n,m)
)( 1

n+ 1

)p
.

So we have

lim
p→∞

sup

[( ∑
|m|=p

c(n,m)
){ 1

n+ 1

}p]1/p
=

n

n+ 1
< 1.

Hence the series (2.8) converges to a positive real constant A3. Therefore
from (2.7), we get

M(r, g) ≤ A1r
n0 +A2r

N(r) +A3.

Since N(r)→∞ as r →∞, we can write the above inequality as

logM(r, g) ≤ [1 + o(1)] N(r) log r

or
logM(r, g) ≤ [1 + o(1)]

[
α−1

{
θβ[log{(n+ 1)r}]

}]
log r

or

logM(r, g) ≤
[
α−1

{(
θ + δ1

)
β[log{(n+ 1)r}]

}]
[1 + o(1)],

where δ1 > 0 is suitably small. Using the properties of α(x) and β(x), we
get

α[logM(r, g)]

β[log r]
≤ (θ + δ1) [1 + o(1)].

Since δ1 and ε are arbitrary, proceeding to limits as r → ∞, we get ρ ≤ θ.
Combining this with the inequality (2.3), we get (2.1). Hence Theorem 2.1
is proved.

Next we prove
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Theorem 2.2. Let g : Rn+1 → Cln be an entire monogenic function whose
Taylor’s series representation is given by g(z) =

∑∞
|m|=0 Vm(z) am. Also let

α(x), β(x), γ(x) ∈ L0 and 0 < ρ <∞, then the generalized type σ of g(z) as
defined in (1.3) is given as

(2.9) σ = σ(α, β, ρ, g) = lim
|m|→∞

sup
α(|m|/ρ)

β
[{
γ
(
e1/ρ‖am/c(n,m)‖−1/|m|

)}ρ] .
Proof. Write

η = lim
|m|→∞

sup
α(|m|/ρ)

β
[{
γ
(
e1/ρ‖am/c(n,m)‖−1/|m|

)}ρ] .
First we prove that σ ≥ η. From (1.3), for arbitrary ε > 0 and all

r > r0(ε), we have

M (r, g) ≤ exp
[
α−1 {σ β[{γ(r)}ρ]}

]
,

where σ = σ + ε. Now using (2.2), we get

‖am‖ ≤ c(n,m) r−|m| exp
[
α−1 {σ β[{γ(r)}ρ]}

]
.

Putting r = γ−1
[{
β−1

(
1
σα(|m|/ρ)

)}1/ρ]
, we get

‖am‖ ≤ c(n,m)

(
γ−1

[{
β−1

(
1

σ
α(|m|/ρ)

)}1/ρ])−|m|
exp(|m|/ρ)

or

‖am/c(n,m)‖−1/|m| ≥
(
γ−1

[{
β−1

(
1

σ
α(|m|/ρ)

)}1/ρ])
exp(−1/ρ)

or
α(|m|/ρ)

β
[{
γ
(
e1/ρ‖am/c(n,m)‖−1/|m|

)}ρ] ≤ σ.

Now proceeding to limits as |m| → ∞, we get

η ≤ σ.

Since ε > 0 is arbitrarily small, so finally we get

η ≤ σ.

Now we will prove that η ≥ σ. If η =∞, then there is nothing to prove.
So let us assume that 0 ≤ η < ∞. Therefore, for a given ε >0, there exists
n0 ∈ N such that for all multi-indices m with |m| > n0, we have

0 ≤ α(|m|/ρ)

β
[{
γ
(
e1/ρ‖am/c(n,m)‖−1/|m|

)}ρ] ≤ η + ε =η
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or

‖am/c(n,m)‖ ≤
(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ])−|m|
e|m|/ρ.

Now from the property of maximum modulus, we have

M(r, g) ≤
n0∑
|m|=0

‖am‖r|m| +
∞∑

|m|=n0+1

c(n,m)

×
(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ])−|m|
r|m| e|m|/ρ.

Now for r > 1, we have

M(r, g) ≤ B1r
n0 +

∞∑
|m|=n0+1

c(n,m)(2.10)

×
(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ])−|m|
r|m| e|m|/ρ,

where B1 is a positive real constant. We take

N(r) =
[
ρα−1

{
η β
([
γ{(n+ 1)re1/ρ}

]ρ)}]
,

where [x] denotes the integer part of x ≥ 0. Since α(x), β(x) and γ(x) ∈ L0,
the integer N(r) is well defined. Now we choose

r > max

[
1,
e−1/ρ

n+ 1

{
γ−1

(
β−1

(
1

η̄
α

(
n0 + 1

ρ

)))1/ρ}]
.

Then from (2.10), we have

M(r, g) ≤ B1r
n0 + rN(r)

∑
n0+1≤|m|≤N(r)

c(n,m)

×
(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ])−|m|
e|m|/ρ

+
∑

|m|>N(r)

c(n,m)

(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ
])−|m|

r|m| e|m|/ρ
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or

(2.11) M(r, g) ≤ B1r
n0 + rN(r)

∞∑
|m|=1

c(n,m)

×
(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ])−|m|
e|m|/ρ

+
∑

|m|>N(r)

c(n,m)

(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ])−|m|
r|m| e|m|/ρ.

Now the first series in (2.11) can be rewritten as

(2.12)
∞∑
p=1

( ∑
|m|=p

c(n,m)
)(

γ−1
[{
β−1

(
1

η
α(p/ρ)

)}1/ρ])−p
ep/ρ.

As in the proof of Theorem 2.1, we have

lim
p→∞

sup
[( ∑
|m|=p

c(n,m)
)(

γ−1
[{
β−1

(
1

η
α(p/ρ)

)}1/ρ])−p
ep/ρ

]1/p
= n lim

p→∞
sup

(
γ−1

[{
β−1

(
1

η
α(p/ρ)

)}1/ρ])−1
e1/ρ = 0.

Hence, the series (2.12) converges to a positive real constant B2. So from
(2.11), we get

M(r, g) ≤ B1r
n0 +B2r

N(r) +
∑

|m|>N(r)

c(n,m)

×
(
γ−1

[{
β−1

(
1

η
α(|m|/ρ)

)}1/ρ])−|m|
r|m| e|m|/ρ

or

M(r, g) ≤ B1r
n0 +B2r

N(r) +
∑

|m|>N(r)

c(n, m) [(n+ 1)re1/ρ]−|m| r|m| e|m|/ρ

or

M(r, g) ≤ B1r
n0 +B2r

N(r) +

∞∑
|m|=1

c(n,m)

(
1

n+ 1

)|m|
.

Now from Theorem 2.1, we can say that the series
∞∑
|m|=1

c(n,m)

(
1

n+ 1

)|m|
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converges to a positive real number B3. Hence

M(r, g) ≤ B1r
n0 +B2r

N(r) +B3.

Proceeding as in proof of Theorem 2.1, we get

logM(r, g) ≤ [1 + o(1)]N(r) log r

or

logM(r, g) ≤ [1 + o(1)]
[
ρα−1

{
η β
([
γ{(n+ 1)re1/ρ}

]ρ)}]
log r

or

logM(r, g) ≤ [1 + o(1)]α−1
[
(η + δ2)β

([
γ{(n+ 1)re1/ρ}

]ρ)]
,

where δ2 > 0 is suitably small. Hence, using the properties of α(x), we get

α[logM(r, g)] ≤ (η + δ2)β
([
γ{(n+ 1)re1/ρ}

]ρ)
or

α[logM(r, g)] ≤ (η + δ2)β[{γ(r)}ρ +O(1)]

or
α[logM(r, g)] ≤ (η + δ2)β[{γ(r)}ρ{1 + o(1)}].

Using properties of β(x), we get
α [logM(r, g)]

β [{γ(r)}ρ]
≤ (η + δ2) [1 + o(1)].

Since δ2 and ε are arbitrary, proceeding to limits as r → ∞, we get σ ≤ η.
Combining this with the reverse inequality obtained earlier, we get (2.9).
Hence Theorem 2.2 is proved.

Next we prove

Theorem 2.3. Let g : Rn+1 → Cln be an entire monogenic function whose
Taylor’s series representation is given by g(z) =

∑∞
|m|=0 Vm(z) am. Also

suppose that α(x) ∈ χ, β(x) ∈ L0 and λ2, ρ2 is defined as in (1.5) with
0 ≤ ρ2 <∞. If for arbitrary ε > 0 and ρ2 = ρ2 + ε

(2.13) lim
r→∞

α
{
n log

[
α−1 {ρ2β(log 2r)}

]}
β(log r)

= 0,

then the generalized order ρ(α, β, g) and generalized lower order λ(α, β, g) of
this entire monogenic function g(z) satisfy

ρ(α, β, g) ≤ ρ1(α, β, g) = ρ2(α, β, g)

and
λ(α, β, g) ≤ λ1(α, β, g) = λ2(α, β, g).
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Proof. For simplicity we write ρ(α, β, g) = ρ, λ(α, β, g) = λ and

ρ1 = ρ1(α, β, g), ρ2 = ρ2(α, β, g),

λ1 = λ1(α, β, g), λ2 = λ2(α, β, g).

Now following ([1], page 805), for sufficiently large value of r, we have

(2.14) M(r, g)) ≤ µ(r, g)|ν(2r, g)|n[1 + o(1)].

Also from (1.5), for arbitrary ε > 0 and all r > r0(ε), we have

|v(r, g)| ≤ α−1 {ρ2β(log r)} .
Therefore from (2.14), we get

M(r, g) ≤ µ(r, g)
(
α−1 {ρ2β(log 2r)}

)n
[1 + o(1)]

or

logM(r, g) ≤ logµ(r, g) + n log
[
α−1 {ρ2β(log 2r)}

]
+ log[1 + o(1)]

or

α[logM(r, g)] ≤ α
{

logµ(r, g) + n log
[
α−1 {ρ2β(log 2r)}

]
[1 + o(1)]

}
.

Since α is a slowly increasing function, therefore we have

α[logM(r, g)] ≤ α[logµ(r, g)] + α
{
n log

[
α−1 {ρ2β(log 2r)}

]}
or

α[logM(r, g)]

β(log r)
≤ α[logµ(r, g)]

β(log r)
+
α
{
n log

[
α−1 {ρ2β(log 2r)}

]}
β(log r)

.

Now proceeding to limits and using (2.13), we get

ρ ≤ ρ1 and λ ≤ λ1.
Now following ([1], page 805), we can say that ρ1 = ρ2 and λ1 = λ2. Hence
Theorem 2.3 is proved.

Lastly, we prove

Theorem 2.4. Let g : Rn+1 → Cln be an entire monogenic function whose
Taylor’s series representation is given by g(z) =

∑∞
|m|=0 am Vm(z). Also

if α(x) ∈ χ, β(x) ∈ L0, then the generalized lower order λ of this entire
monogenic function g(z) satisfies

(2.15) λ = λ(α, β, g) ≥ lim
|m|→∞

inf
α(|m|)

β
{

log ‖am/c(n,m)‖−1/|m|
} .

Further, if

ψ(k) = max
|m|=k

{
‖am‖
‖am′‖

, |m′ | = |m|+ 1

}
is a non-decreasing function of k then equality holds in (2.15).
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Proof. Write

Φ = lim
|m|→∞

inf
α(|m|)

β
{

log ‖am/c(n,m)‖−1/|m|
} .

First we prove that λ ≥ Φ. From (1.2), for arbitrary ε > 0 and a sequence
r = rk →∞ as k →∞, we have

M(r, g) ≤ exp[α−1{λβ(log r)}],
where λ = λ+ ε. Now proceeding as in the proof of Theorem 2.1, we get

‖am‖ ≤ c(n,m) r−|m| exp[α−1{λβ(log r)}].
Putting r = exp[β−1{α(|m|)/λ}] in the above inequality, we get

‖am‖ ≤ c(n,m) exp[|m| − |m|β−1{α(|m|)/λ}]
or

β−1
[
α(|m|)/λ

]
≤ 1− 1

|m|
{log ‖am/c(n,m)‖}

or
α(|m|)

β
{

1 + log ‖am/c(n,m)‖−1/|m|
} ≤ λ.

Since β(x) ∈ L0, β(1 + x) ' β(x). Hence proceeding to limits as |m| =
|m(k)| → ∞, we get

Φ = lim
|m|→∞

inf
α(|m|)

β
{

log ‖am/c(n,m)‖−1/|m|
} ≤ λ.

Since ε > 0 is arbitrarily small, so finally we get
Φ ≤ λ.

Now we prove that λ ≤ Φ. From the assumption on ψ, ψ(k) → ∞
as k → ∞. By the definition given in section 1, if ‖am‖ r|m| is the maxi-
mum term for r then for |m1| ≤ |m| < |m2|, ‖am1‖ r|m1| ≤ ‖am‖ r|m| >
‖am2‖ r|m2| and for |m| = k, ψ(k − 1) ≤ r < ψ(k).

Now suppose that ‖am1‖r|m1| and ‖am2‖r|m2| are two consecutive maxi-
mum terms. Then |m1| ≤ |m2| − 1. Let |m1| ≤ |m| ≤ |m2|, then |ν(r, g)| =
|m1| for ψ(|m1∗ |) ≤ r < ψ(|m1|), where |m1∗ | = |m1|− 1. Hence from (1.5),
for arbitrary ε > 0 and all r > r0(ε), we have

|m1| = |ν(r, g)| > α−1
{
λ
′
β(log r)

}
, where λ

′
= λ− ε,

or
|m1| = |ν(r, g)| ≥ α−1

{
λ
′
β[log{ψ(|m1|)− d}]

}
,

where d is a constant such that 0 < d < min
{

1, [ψ(|m1|)− ψ(|m1∗ |)]/2
}

or
logψ(|m1|) ≤ O(1) + β−1{α(|m1|)/λ′}.
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Further we have

ψ(|m1|) = ψ(|m1|+ 1) = · · · = ψ(|m| − 1).

Using the definition of ψ(k), we have
‖am0‖
‖am‖

≤ ψ(|m0|) . . . ψ(|m∗|) ≤ [ψ(|m∗|]|m|−|m0|,

where |m∗| = |m| − 1 and |m| � |m0|,
or

c(n,m)
‖am0‖
‖am‖

≤ c(n,m) [ψ(|m∗|]|m|−|m0|

or
log ‖am/c(n,m)‖−1 ≤ |m| logψ(|m1|) +O(1)

or
log ‖am/c(n,m)‖−1 ≤ |m|β−1{α(|m1|)/λ′}+O(1)

or
− 1

|m|
log ‖am/c(n,m)‖ ≤ [β−1{α(|m1|)/λ′}][1 + o(1)]

or
− 1

|m|
log ‖am/c(n,m)‖ ≤ [β−1{α(|m|)/λ′}][1 + o(1)]

or
λ
′ ≤ α(|m|)

β
{

log ‖am/c(n,m)‖−1/|m|
} [1 + o(1)].

Now taking limits as |m| → ∞, we get λ ≤ Φ. Hence, Theorem 2.4 is
proved.
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