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THE ALPHA-VERSION OF THE STEWART’S THEOREM

Abstract. G. Chen [1] developed Chinese checker metric for the plane on the question
“how to develop a metric which would be similar to the movement made by playing Chinese
checker” by E. F. Krause [13]. Tian [17] developed α-metric which is defined by

dα (P1, P2)=max {|x1 − x2| , |y1 − y2|}+ (secα− tanα)min {|x1 − x2| , |y1 − y2|}

where P1 = (x1, y1) and P2 = (x2, y2) are two points in analytical plane, and α ∈ [0, π/4] .
Stewart’s theorem yields a relation between lengths of the sides of a triangle and the
length of a cevian of the triangle. A taxicab and Chinese checkers analogues of Stewart’s
theorem are given in [12] and [9], respectively. In this work, we give an α-analog of the
theorem of Stewart by using the base line concept and we give a α-analog of formulae for
the medians which is the application of Stewart’s theorem.

1. Introduction
As stated in [16], Minkowski geometry is a non-Euclidean geometry in

a finite number of dimensions that is different from elliptic and hyperbolic
geometry (and from the Minkowskian geometry of space-time). Here the
linear structure is the same as the Euclidean one but distance is not uniform
in all directions. Instead of the usual sphere in Euclidean space, the unit ball
is a general symmetric convex set. Therefore, although the parallel axiom is
valid, Pythagoras’ theorem is not.

The taxicab metric was given in a family of metrics of the real plane
by Minkowski. Later, Chen [1] developed a Chinese checker metric, and
Tian [17] gave a family of metrics, α-metric for α ∈ [0, π/4], which include
the taxicab and Chinese checker metrics as special cases. Let P1 = (x1, y1)
and P2 = (x2, y2) be two points in analytical plane R2. α-distance function
is defined by

dα(P1, P2) = max{|x1−x2|, |y1−y2|}+(secα−tanα) min{|x1−x2|, |y1−y2|}
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where α ∈ [0, π/4]. According to the definition of dα-metric, the shortest
path between the points P1 and P2 is the line segment which is parallel
to a coordinate axis and a line segment making the α angle with the other
coordinate axis as shown in Figure 1. Thus, the shortest distance dα between
P1 and P2 is the sum of the Euclidean lengths of such two line segments.

Fig. 1

A metric geometry consists of a set P, whose elements are called points,
together with a collection L of non-empty subsets of P, called lines, and
a distance function d, such that

(1) Every two distinct points in P lie on a unique line.
(2) There exist three points in P, which do not lie all on one line.
(3) There exists a bijective function f : l → R, for all lines in L such that
|f(P )− f(Q)| = d(P,Q), for each pair of points P and Q on l.

A metric geometry defined above is denoted by {P,L, d}. Let PE and LE
denote sets of all points and lines in the Euclidean geometry, respectively.
α-plane geometry consisting of PE , LE and dα is a metric geometry.

Furthermore, if a metric geometry satisfies the plane separation axiom
below, and it has an angle measure function m, then it is called protractor
geometry and denoted by {P,L, d,m}.
(4) For every l in L, there are two subsets H1 and H2 of P (called half planes

determined by l) such that

(i) H1 ∪H2 6= P − l (P with l removed),
(ii) H1 and H2 are disjoint and each is convex,
(iii) if A ∈ H1 and B ∈ H2, then [AB] ∩ l = ∅.
If LE is the set of all lines in the Cartesian coordinate plane, and mE is

the standard angle measure function in the Euclidean plane, then {R2,LE ,
dα,mE}, called α-plane, is a model of protractor geometry. (This can be
shown easily: the proof is similar to that of taxicab plane; refer to [15] or [4]
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to see that the taxicab plane is a model of protractor geometry.) α-plane is
also in the class of non-Euclidean geometries since it fails to satisfy the side-
angle-side axiom. However, α-plane is almost the same as Euclidean plane
{R2, LE , dE ,mE} since the points are the same, the lines are the same, and
the angles are measured in the same way. Since the α-plane

(
R2
α

)
geometry

has a different distance function it seems interesting to study the α-analog of
the topics that include the concepts of distance in the Euclidean geometry.
α-analogues of some of the topics that include the concept of α-distance
have been studied by some authors [17], [7], [8]. The group of isometries
of the α-plane has been given in [11]. Finally, two different α-analogues of
the Pythagoras’ theorem have been introduced in [3]. In this work, we give
α-versions of Stewart’s theorem and the median property. Also, the taxicab
and CC-analogues of Stewart’s theorem are given in [12] and [9], respectively.

2. Preliminaries
The following propositions and corollaries give some results of R2

α by
summarizing from [5].
Proposition 2.1. Every Euclidean translation is an isometry of R2

α.

Proposition 2.2. Let l be a line through the points P1 and P2 in the
analytical plane. If l has slope m, then

dα (P1, P2) =
M√

1 +m2
dE (P1, P2) ,

where

M =

{
1 + (secα− tanα) |m| , if |m| ≤ 1,

(secα− tanα) + |m| , if |m| ≥ 1,

and dE denote the Euclidean distance function.

Proof. If l is parallel to the x-axis or y-axis, then m = 0 and M/
√
m2 + 1

= 1 or m→∞ and limm→∞(M/
√
m2 + 1) = 1. Then, dα(A,B) = dE(A,B)

in both of the cases above. If l is not parallel to the x-axis and y-axis, then
x1 6= x2 and y1 6= y2, m = (y1−y2)/(x1−x2), where m is the slope of l, and

dα(P1, P2) = max{|x1 − x2|, |y1 − y2|}
+ (secα− tanα) min{|x1 − x2|, |y1 − y2|}

=

{
|x1 − x2| (1 + (secα− tanα) |m|), if |m| ≤ 1,

|x1 − x2| (|m|+ secα− tanα), if |m| ≥ 1.

Similarly,

dE (P1, P2) = |x1 − x2|
√

1 +m2, for all m ∈ R,
and consequently the given equality is valid.
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The above proposition says that dα-distance along any line is some pos-
itive constant multiple of Euclidean distance along the same line.

Corollary 2.3. Let P1, P2 and X are any three collinear points in R2.
Then dE(P1, X) = dE(P2, X) if and only if dα(P1, X) = dα(P2, X).

Corollary 2.4. If P1, P2 and X are any three distinct collinear points in
R2, then dα(P1, X)/dα(P2, X) = dE(P1, X)/dE(P2, X).

That is, the ratios of the Euclidean and dα-distances along a line are the
same. Notice that the latter corollary gives us the validity of the theorem of
Menelaus and Ceva in R2

α.
We need the following definitions given in [12] and [14]:
Let ABC be any triangle in the R2

α. Clearly, there exists a pair of lines
passing through every vertex of the triangle, each of which is parallel to a
coordinate axis. A line l is called a base line of ABC iff

(1) l passes through a vertex,
(2) l is parallel to a coordinate axis,
(3) l intersects the opposite side (as a line segment) to the vertex in condition

1. Clearly, at least one of the vertices of a triangle always has one or two
base lines. Such a vertex of a triangle is called a basic vertex. A base
segment is a line segment on a base line, which is bounded by a basic
vertex and its opposite side.
Finally, we consider the following separation of R2

α to eight regions Si
(i = 0, 1, . . . , 7) such that

S0 = {(x, y)|x ≥ y ≥ 0}
S1 = {(x, y)|y ≥ x ≥ 0}
S2 = {(x, y)|y ≥ |x| ≥ 0, x < 0}
S3 = {(x, y)| |x| ≥ y ≥ 0, x < 0}
S4 = {(x, y)|x ≤ y ≤ 0}
S5 = {(x, y)|y ≤ x ≤ 0}
S6 = {(x, y)| |y| ≥ x ≥ 0, y < 0}
S7 = {(x, y)|x ≥ |y| ≥ 0, y < 0}

Fig. 2

as shown in Figure 2. In what follows Si+1, Si+2, Si+3 and Si+4 stand for
Si+1(mod 8), Si+2(mod 8), Si+3(mod 8) and Si+4(mod 8), respectively.

3. The alpha analog of the Stewart’s theorem
In geometry, Stewart’s theorem yields a relation between lengths of the

sides of the triangle and the length of a cevian of the triangle. It is named
in honor of the Scottish mathematician Matthew Stewart who published
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the theorem in 1746. Although, it was probably discovered by Archimedes
about 300 B.C., the first known proof is due to R. Simon in 1751 (see [2]).
It is known for any triangle ABC in the Euclidean plane that if X ∈ BC
and a = d(B,C), b = d(A,C), c = d(A,B), p = d(B,X), q = d(C,X),
x = d(A,X), then

x2 =
b2p+ c2q

p+ q
− pq

which is known as Stewart’s theorem.
As applications of the Stewart’s theorem, we find the formulae for the

medians and angle bisectors of a triangle.
The next theorem gives an alpha version of the Stewart’s theorem. We

consider the formulae for the length of a cevian of a triangle, consisting of
two parts. The first part is nearly like Euclidean one, but the second part
is different. In the second part, there is a parameter ∆ changing according
to position of the triangle in the analytical plane. The table in the Theorem
3.1 explains value of ∆ for every position of the triangle.

Theorem 3.1. Let the sides of a triangle ABC in the R2
α have lengths a =

dα(B,C), b = dα(A,C) and c = dα(A,B). If X ∈ BC and p = dα(B,X),
q = dα(C,X) and x = dα(A,X), then

x =
bp + qc

p + q
− ∆

p + q
,

where ∆ is as in the Table 1, and B = (b1, b2), C = (c1, c2), |b1| = θ,
|b2| = β, |c1| = γ, |c2| = δ and w = secα− tanα.

Proof. Without loss of generality, the vertex A of the triangle ABC in R2
α

can be chosen at origin by Proposition 2.1. Let B = (b1, b2), C = (c1, c2),
X = (x1, x2), |b1| = θ, |b2| = β, |c1| = γ and |c2| = δ. Thus

b = max{γ, δ}+ (secα− tanα) min{γ, δ},
c = max{θ, β}+ (secα− tanα) min{θ, β},
x = max{|x1|, |x2|}+ (secα− tanα) min{|x1|, |x2|}.

Three main cases are possible for the base line through the vertex A:

Case I: Let ABC be a triangle which has no base line through the vertex
A. Since vertex A is at origin, AB and AC are in the same quadrant. So
one can easily obtain

q(γ − θ) = (p + q)(γ − x1), p(δ − β) = (p + q)(x2 − β),

by Corollary 2.3 and Corollary 2.4. Thus x1 = pγ+qθ
p+q and x2 = pδ+qβ

p+q .
Depending on the positions of AB, AC and AX, one can obtain dα(A,X)
= x as follows:
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Table 1

If AB, AC and AX are in Si, as in Figure 3, then x = bp+qc
p+q .

If AB and AX are in Si and AC is in Si+1, as in Figure 3, then

x =
bp + qc

p + q
− (1− (secα− tanα)) |γ − δ|p

p + q
.
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If AB is in Si and AX and AC are in Si+1, as in Figure 3, then

x =
bp + qc

p + q
− (1− (secα− tanα)) |θ − β|q

p + q
.

Fig. 3

Case II: Let ABC be a triangle which has only one base line through
the vertex A. Since vertex A is at origin, AB and AC are in a neighbor
quadrant. That is, b1c1 < 0 or b2c2 < 0. Depending on the positions of AB,
AC and AX, one can obtain

x1 =
pγ + qθ

p + q
and x2 =

pδ − qβ

p + q
or x2 =

−pδ + qβ

p + q
or

x1 =
pγ − qθ

p + q
or x1 =

−pγ + qθ

p + q
and x2 =

pδ + qβ

p + q
.

Now using these values, dα(A,X) = x is obtained as follows:
If AB is in Si and AX and AC are in Si+1, then

x =
bp + q(c− 2(secα− tanα) min {θ, β})

p + q

=
bp + qc

p + q
− 2(secα− tanα) min {θ, β}q

p + q
.

If AB and AX are in Si and AC is in Si+1, as in Figure 4, then

x =
(b− 2(secα− tanα) min {γ, δ} )p + qc

p + q

=
bp + qc

p + q
− 2(secα− tanα) min {γ, δ}p

p + q
.

If AB, AX and AC are in Si, Si+1, Si+2, for i ∈ {1, 3, 5, 7}, respectively,
then

x =
(b− (1− w) |δ − γ|)p + q(c− 2wmin {θ, β})

p + q

=
bp + qc

p + q
− (1− w) |δ − γ|p + 2wmin {θ, β}q

p + q
.
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If AB and AX are in Si and AC is in Si+2, for i ∈ {1, 3, 5, 7}, then

x =
bp + qc

p + q
− ((w − 1) min {γ, δ}+ (1 + w) max {γ, δ}) p

p + q

=
bp + qc

p + q
−

(1 + w) p max
{
γ + w−1

w+1δ, δ + w−1
w+1γ

}
p + q

.

If AB is in Si and AX and AC are in Si+2, for i ∈ {1, 3, 5, 7}, then

x =
bp + qc

p + q
− ((1− w) max {θ, β}+ (1 + w) min {θ, β}) q

p + q

=
bp + qc

p + q
−

(1 + w) q min
{
θ − w−1

w+1β, β −
w−1
w+1θ

}
p + q

.

If AB, AX and AC are in Si, Si+1, Si+2, for i ∈ {0, 2, 4, 6}, as in Figure 4,
respectively, then

x =
bp + qc

p + q
− 2wmin {γ, δ}p + (1− w) |β − θ|q

p + q
.

If AB is in Si and AX and AC are in Si+2, for i ∈ {0, 2, 4, 6}, then

x =
bp + qc

p + q
− ((w − 1) min {θ, β}+ (1 + w) max {θ, β}) q

p + q

=
bp + qc

p + q
−

(1 + w) q max
{
θ + w−1

w+1β, β + w−1
w+1θ

}
p + q

.

If AB and AX are in Si and AC is in Si+2, for i ∈ {0, 2, 4, 6}, then

x =
bp + qc

p + q
− ((1− w) max {γ, δ}+ (1 + w) min {γ, δ}) p

p + q

=
bp + qc

p + q
−

(1 + w) p min
{
γ − w−1

w+1δ, δ −
w−1
w+1γ

}
p + q

.

If AB, AX and AC are in Si, Si+2, Si+3, respectively, then

x =
bp + qc

p + q
− (1−w)|δ − γ|p + q((w−1) min{θ, β}+ (1 + w) max{θ, β})

p + q

=
bp + qc

p + q
−

(1− w)|δ − γ|p + (1 + w)q max{θ + w−1
w+1β, β + w−1

w+1θ}
p + q

.

If AB, AX and AC are in Si, Si+1, Si+3, as in Figure 4, respectively,
then
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x =
bp+qc

p+q
− ((w−1) min{γ, δ}+ (1+w) max {γ, δ})p + q(1− w) |β − θ|

p+q

=
bp + qc

p + q
−

(1 + w) p max
{
γ + w−1

w+1δ, δ + w−1
w+1γ

}
+ q(1− w) |β − θ|

p + q
.

If AB is in Si and AX and AC are in Si+3, then

x =
bp + q(c− 2 max {θ, β})

p + q
=

bp + qc

p + q
− 2 max {θ, β}q

p + q
.

If AB and AX are in Si and AC is in Si+3, then

x =
(b− 2 max {γ, δ})p + qc

p + q
=

bp + qc

p + q
− 2p max {γ, δ}

p + q
.

Fig. 4

Case III: Let ABC be a triangle which has two base lines through the
vertex A. Since the vertex A is at origin, AB and AC are in the opposite
quadrants. Depending on the positions of AB, AC and AX, one can obtain

x1 =
−pγ + qθ

p + q
or x1 =

pγ − qθ

p + q

and
x2 =

−pδ + qβ

p + q
or x2 =

pδ − qβ

p + q
.
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Fig. 5

Using the values of x1 and x2, dα(A,X) = x is obtained as follows:
If AB, AX and AC are in Si, Si+1, Si+3, as in Figure 5, respectively,

then

x =
bp+qc

p+q
− ((1− w) max{γ, δ}+ (1 + w) min{γ, δ})p + 2wq min{θ, β})

p + q

=
bp+qc

p+q
−

(1 + w) p min{γ − w−1
w+1δ, δ −

w−1
w+1γ}+ 2wq min {θ, β})

p + q
.

If AB and AX are in Si and AC is in Si+3, then

x =
(b− (1 + w) (δ + γ))p + qc

p + q
=

bp + qc

p + q
− (1 + w) (δ + γ)p

p + q
.

If AB, AX and AC are in Si, Si+2, Si+3, respectively, then

x =
bp+qc

p+q
− 2wmin{γ, δ}p + q((1− w) max{θ, β}+ (1 + w) min{θ, β})

p + q

=
bp+qc

p+q
−

2wp min{γ, δ}+ (1 + w)q min{θ − w−1
w+1β, β −

w−1
w+1θ}

p + q
.

If AB is in Si and AX and AC are in Si+3, then

x =
bp + q(c− (1 + w) (θ + β))

p + q
=

bp + qc

p + q
− (1 + w) (θ + β) q

p + q
.
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If AB, AX and AC are in Si, Si+1, Si+4, for i ∈ {1, 3, 5, 7}, respectively,
then

x =
(b− 2 max {δ, γ})p + q(c− 2(secα− tanα) min {θ, β})

p + q

=
bp + qc

p + q
− 2p max {δ, γ}+ 2wq min {θ, β}

p + q
.

If AB, AX and AC are in Si, Si+2, Si+4, for i ∈ {1, 3, 5, 7}, as in Figure 5,
respectively, then

x =
bp + qc

p + q

−
(1+w)p max{γ+w−1

w+1δ, δ+w−1
w+1γ}+(1+w)q min{θ−w−1

w+1β, β−
w−1
w+1θ}

p + q
.

If AB, AX and AC are in Si, Si+3, Si+4, for i ∈ {1, 3, 5, 7}, respectively,
then

x =
(b− (1− w) |γ − δ|)p + q(c− (1 + w) (θ + β))

p + q

=
bp + qc

p + q
− (1− w) |γ − δ|p + (1 + w) q(θ + β)

p + q
.

If AB and AC are in Si, Si+4 and AX is in Si+3, Si+2, Si+1, for i ∈
{1, 3, 5, 7}, then

x =
(b− 2wmin {γ, δ})p + q(c− 2 max {θ, β})

p + q

=
bp + qc

p + q
− 2wp min {γ, δ}+ 2q max {θ, β}

p + q
,

x =
bp + qc

p + q

−
(1+w)p min{γ−w−1

w+1δ, δ−
w−1
w+1γ}+(1+w)q max{θ + w−1

w+1β, β + w−1
w+1θ})

p + q
,

x =
(b− (1 + w) (γ + δ))p + q(c− (1− w) |θ − β|)

p + q

=
bp + qc

p + q
− (1 + w) p(γ + δ) + (1− w) q |θ − β|

p + q
,

respectively.
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If AB and AC are in Si, Si+4, respectively, and AX is in Si or Si+4, then

x =
|bp− qc|

p + q
=


bp + qc

p + q
− 2pb

p + q
, AX in Si

bp + qc

p + q
− 2qc

p + q
, AX in Si+4.

As one of applications of the Stewart’s theorem, we can find the formulae
for length of the median of a triangle. If X is the midpoint of BC of any
triangle ABC in the Euclidean plane with a = d(B,C), b = d(A,C), c =
d(A,B) and Va = d(A,X), then

2V 2
a = b2 + c2 − a2/2

which is known as median property. The following corollary gives an Alpha-
version of this property, for p = q in Theorem 3.1. The table in the next
corollary gives the doubled length of the median about a side of a triangle
according to position of the triangle in the analytical plane.

Corollary 3.2. Let the sides of a triangle ABC in the R2
α have lengths

a = dα(B,C), b = dα(A,C). If X is the midpoint of BC and Va = dα(A,X),
then 2Va is given as in Table 2, where B = (b1, b2), C = (c1, c2), |b1| = θ,
|b2| = β, |c1| = γ ,|c2| = δ and w = secα− tanα.

When α = 0 and α = π/4 in α-distance function, one can immediately
obtain Taxicab and Chinese checker distance function, respectively. There-
fore, if α = 0 and α = π/4 is used in corollaries of alpha version of Stewart’s
theorem and median property, we obtain results for Taxicab and Chinese
checkers planes, respectively. (See Kaya and Colakoglu [12] and Gelisgen
and Kaya [9].)

Let A = (0, 0), B = (3, 2) and C = (−4, 1) be three points in analytical
plane, and let X = (−2, 9/7) lies on the side BC of the triangle ABC.
Clearly, x = 2 + (secα − tanα)97 . The sides AB, AX and AC lie in S1,
S4 and S4, respectively, the triangle ABC has only one base line through
vertex A (see Figure 4). So ∆ = 2q max{θ, β} = 12 + 12

7 (secα − tanα).
Thus,

x =
bp + qc

p + q
− ∆

p + q
= 2 + (secα− tanα)

9

7

since b = 4+(secα−tanα), c = 3+2(secα−tanα), p = 5+ 5
7(secα−tanα),

q = 2 + 2
7(secα − tanα), θ = 3 and β = 2. If X is the midpoint of BC of

the triangle ABC, then X = (−1/2, 3/2). So,

2Va = b + c− (1− w) |γ − δ| − (1 + w) max

{
θ +

w − 1

w + 1
β, β +

w − 1

w + 1
θ

}
= 3 + w.
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Table 2.

As a future work, α-analog of law of cosine can be given by using α-
trigonometric functions. Also one can study α-analog for the Stewart’s the-
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orem by using this α-analog of law of cosine and an α-analog of formulae for
the angle bisectors of a triangle.
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