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Lucyna Trojnar-Spelina

APPLICATIONS OF CONVOLUTION PROPERTIES

Abstract. K. I. Noor (2007 Appl. Math. Comput. 188, 814-823) has defined the
classes Qg(a,b, A,v) and Ti(a,b, A,v) of analytic functions by means of linear operator
connected with incomplete beta function. In this paper, we have extended some of the
results and have given other properties concerning these classes.

1. Introduction

Let A denote the class of functions f analytic in the open unit disc
U = {z:]|z| < 1} and normalized by the conditions f(0) = f/(0) — 1 = 0.
Denote by §*(a), K(a)(0 < o < 1) the subfamilies consisting of functions
in A that are starlike of order @ and convex of order « respectively. For
0<~vy<1andk > 2let Py(y) denote the class of functions p analytic in U
satisfying the conditions p(0) = 1 and

T |pz) =7
(1) (S) 1—7‘ df < km

where z = re?. The class Pr(7v) has been introduced by Padmanabhan
and Parvatham (see [16]). For special choices of parameters, we obtain the
known classes of functions. For example, for £ = 2 we have the class P(v)
of functions with real part greater than v and consequently, for £k = 2 and
v = 0 we obtain the class of functions with positive real part. For v = 0 we
have the class Py, defined by Pinchuk [19]. From (1), we conclude that

1271'

p(z) = L S 14+ (1—2y)ze™"
0

t

. du(t
1—2ze? uit)
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where pu(t) is a function with bounded variation on [0, 27] such that

2m 2m
S du(t) =2 and S l[du(t)| < k.
0 0
It follows from (1) that p € Pi(y) can be expressed in the form

(2) p(z) = CI + ;) p1(2) — (Z — ;) pa(2), pi € P(v), i=1,2, z€ U.

oo
For the functions f and g with the series expansions f(z) = Y. az2z* and
k=0

g(z) = ¥ b2, the Hadamard product (or convolution) f * g is defined by
k=0

(f *9)( Z ayby.z".

This product is associative, commutative and distributive over addition and

the function é is an identity for it.

For a > 0, b > 0, a linear operator Z,; : A — A is defined in [2| by
Zapf(2) = fap(2) * f(2)

where
(3) A=z fap(2) = =

A simple computation leads to the relation

(1) funl2) = Z ”) B2 g(a, b 2)

where () denotes the Pochhammer symbol defined by

() 1, for k=0, zeC\({0},
€T =
g z(z+1)...(z+k—-1), forke N={1,2,3,...}, z€C,

/\

and ¢(a,b; z) is the incomplete beta function connected with the hypergeo-
metric function by the identity

o(a,b;z) = 20F1(1,b;a, 2).

Therefore, we have immediately that Z,,f = L(b,a)f where L(b,a) is
the well known Carlson—-Shaffer operator (see [1]). As a special case, we note
that for a =1 and b =n + 1, we obtain

(2" (=)™

n!

Tin1f(2) =D"f(2) =
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that is the Ruscheweyh derivative of order n. We recall here the fact that
Dziok and Srivastava [5] have introduced and considered more general the
Dziok—Srivastava operator

H: .Ap,k — .Ap,k
such that
Hf(z) =H(ai,...,aqc1,...,¢5)f(2)
=[P (Fs(al,...,aqc1,...,¢552)] % f(2),

where ,Fy is given by

 (a1)n .. (agn 2"
' L neee (ag)n 2"
oFs(ar, ... agc1,...,¢52) —nE:O (e (ca)n 7l (zel),

and A, ;, denotes the class of functions with the series expansion
oo

f(z) =+ anz" (p<kipheN={1,2,..}).
n=~k

It is easy to observe that for p = s =1, ¢ = 2 and a9 = 1, the Dziok—
Srivastava operator becomes the Carlson—Shaffer operator and consequently
Ze, a, f(2) = H(a1,1;¢1). Many interesting subclasses of analytic functions,
associated with the Dziok—Srivastava operator, were studied recently by (for
example) Srivastava et al. [8], [9], [17], [20], (see also [3], [4], [18]).

The following subclasses have been defined in [13], for k > 2, 0 < A <1
and 0 < v < 1, by using the operator Z, :

_ . Z(Ia,bf)/ + )‘ZQ(Ia,bf)” }
Quaban = {7 e [ T | e m. sev,

n(aa bv )‘77) = {f €A: [(Ia,bf)/ + )‘Z(Ia,bf)”] € Pk(rY)’ S U} :

Note that

1) Qk(a,a,1,0) = Vi where Vj is the class of functions of bounded bound-
ary rotation introduced by Loewner [10] and deeply examined by Paatero
14, 15].

2)Q2(a7 a, 07 7) =8" (’7)

3)Q2(CL, a,l, fY) = IC(’V)
In [13], many of interesting results concerning the classes Q(a, b, A,~y) and
Ti(a,b,\,7) have been obtained. In particular, inclusion results, covering
theorem and radius problems have been studied. In this paper, we continue
and extend the investigation of the paper [13].

2. Main results
In proofs of our main results, we will use the following lemmas
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LEMMmA 2.1. (|21], p. 54) If f € K, g € S*, then for each analytic
function h,
(f *hg)(U)
(f *9)(U)
where coh(U) denotes the closed convex hull of h(U).

LEMMA 2.2. [7] Leta > 0. Ifb > max{2, a} then the function ¢(a,b;z) € K
for ze U.

LEMMA 2.3. [13] Let f € Pr(a), g € Pi(B), for a < 1, B < 1. Then
(f*g) € Pr(d), where 6 =1 —-2(1 —a)(1 —p), for z € U.

LEMMA 2.4. [13] We have
Ti(a,b,A,7) C Ti(a,b,0,6)

C coh(U),

where
1

(5) 0=~v+1—-v)2n—1) and n= S(l—i—t)‘)*ldt.
0

THEOREM 2.1. We have
(i) for by > 0 and by > max{2,b;},

Qa(a,ba, A,7y) C Qa(a, by, A,7),
(i) for a; > 0 and az > max{2, a1},

Qa(a, b, \,7y) C Qa(ag, b, A, 7v).
Proof. (i) Let f € Qa(a,bs, A\,y) and set

2(Zapi ) + A2 (Zapi f)"

(1 =N (Zap f) + A2(Zap, )
From the definition of the class Qa(a,bs, A,7), we have Fa(z) < p(
LHU=2)2 - Py, Fy(z) = p(w(z)) where |w(z)| < 1 and w(0) = 0.

11—z

that

Fi(z) =

FZ(Z) =

i=1,2.

z) =

Note
2(d(b1, a5 2) ¥ f(2)) + A% ((b1, a5 2) * £(2))"

(1= X)((b1,a;2) * f(2)) + Az((b1, a; 2) * f(2))
2(p(br, ba; 2) * Lo p, f(2)) 4+ A22(d(b1, ba; 2) * Ly, f(2))”

(1 — )\)(qb(bl, bo; Z) * Imef(Z)) + )\Z(gf)(bl, bs; Z) * Ia’b2f(2’))/
G(b1,b2; 2) * [2(Zap, £(2)) + X2 (Zap, (2))"]

G(b1,b2; 2) * [(1 = A)(Zap, f(2)) + A2(Zap, £(2))']
G (b1, ba; 2) * [Fa(2) - q(2)] _ (b1, ba; 2) * [p(w(2)) - ¢(2)]

B(b1,b2; 2) * q(2) P(b1, b2; 2) * q(2) ’
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where q(2) = (1=X)(Zap, f(2)) +A2(Zg p, f(2))'. It follows from the definition

of the class Qa(a,b, \,~) that Rezg(g) = ReFy(z) > v > 0 that is, ¢ is

the starlike function. It is easily seen that, by Lemma 2.2, the function
¢(b1,be; 2) is convex function, hence, from Lemma 2.1, we have

¢ (b1, ba; 2) * [p(w(z)) - q(2)]
d(b1,b2;2) * q(2)
because p is convex univalent. Therefore F; < p and the result follows.
(i) Since the desired inclusion relation follows, by applying the method
used in the proof of the part (i), we omit the details.
The proof of Theorem 2.1 is completed. =

c cop(U) C p(U)

THEOREM 2.2. We have
(i) for by > 0 and by > max{2,b;}

Te(a, b2, A, y) C Ti(a, b1, A, ),
(ii) for a; > 0 and az > max{2,a;}
E(alabaka’)/) C 77€(a27b7 A:V)

Proof. (i) Let us define Gi(z) = (Zop, f) + A2(Zap, )", i = 1,2, and let
f € Te(a,ba, \,7v). Thus Gy € Pk(7) or equivalently

Go(2) = (’Z + ;) pi(z) — <Z - ;) p2(2),

where p; € P(v), i = 1,2. Note that

G1(2) = (¢(b1, a;2) % f(2)) + Az (d(b1, a5 2) * f(2))"
= [0(b1, b2 2) * (D(b2, a3 2) * [(2)] + Az [B(b, bas 2) + (H(ba, a5 2) * f(2))]"

osbiz) gy = b2 [(E 1Y (1) )

(5o (2 )

By Lemma 2.2, we have that ¢(by, ba; z) € K so using the well known relation

fek=Tfes ( ) = Re < (Z)> > %, we immediately obtain M €

P (%) . Therefore, from Lemma 2.3 with k& = 2, we conclude that M *
pi(z) € P(8) where § =1 —2(1 — 3)(1—v) =, i = 1,2, what means that
G1 € Pk(7). The proof is thus completed.

(ii) The proof is similar to that of (i) so we omit the details. m

REMARK 2.1. In [13], there are no results concerning inclusion relation-
ships between the classes Qy(a,b, A,v) and Ti(a, b, \,~y) with respect to the
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parameter a. Thus, the results (ii) of Theorem 2.1 and (ii) of Theorem 2.2
become the essential supplement of the results of [13].

THEOREM 2.3. Let f € Ta(a,b, A7), g € A and Re( )) >LforzeU.
Then f =g € Tr(a,b, A, 7).

Proof. We first suppose that f € Ti(a,b,\,7), g € A and Re (g(ZZ ) > %
in U. Let us define

Hy(2) = [Zapf(2)] + Az [Zapf(2)]"
and
Hy(2) = [Zop(f * 9)(2)] + Xz [Zap(f * 9)(2)]"
From the definition of the class T (a, b, A, ), we immediately get

me) = (543 e - (5 -3)me)

where p; € P(y), i = 1,2. Note that

Ho(2) = 6(0,0:2) » (f * 9)()] + A2 [6(6,0:2) # (f = 0)(2))
= 2 [(60,:2) « F) 4 22(00,:2) « 1)) = 2D ),

z

Since (@) € P(3) and Hy € Py(y) then putting o = 1 and 8 = v in
Lemma 2.3, we conclude that Hs € Pi(v). The proof of Theorem 2.3 is
completed. =

REMARK 2.2. We remark that the class of functions in A with Re <@> >

% is known to be equal to the closed convex hull of the convex functions (¢oK)
([6], p. 52). Thus, the previous theorem shows that the class Ti(a,b, A, ) is
invariant under the convolution with functions of ¢ok.

By applying the relation f € K = f € S§* ( ) — Re< (Z)> > %’ we
get the following

COROLLARY 2.1. Let f € Tg(a,b,\,v). We have
(i) if g€ S* (%) then (f * g) € Tr(a,b, A\, ),
(ii) if g € K then (f = g) € Ti(a,b, A, 7).

REMARK 2.3. Let a and ¢ be the complex numbers with ¢ # 0, —1, -2, . ...
We consider the function defined by

o0
®(a,c;z) =1 Fi(a,c;2) :ZCL)Z
c)
k=0
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This function is called the confluent (or Kummer) hypergeometric function.
If Rec > Rea > 0 then
P(e) ¢

S tafl (1 o t)ciailetzdt,

®(a:¢2) = T —a) !

where I" denotes the Gamma function. Miller and Mocanu showed in [11]
that for a,c € R, ¢ > R(a) where

2(1 — a), if a<i,
(6) R(a)=4q (1-2a)*+2, if $1<a<?3,
2a, if %ga,

the function z®(a,c; z) is starlike of order % in U. Thus, we immediately
obtain

COROLLARY 2.2. Ifa,c € R, and satisfy ¢ > R(a) where R(a) is given by
(6) then

f€Tela, b\, v) = (2®(a,c;2) * f(2)) € Tr(a,b,\, 7).

EXAMPLE 2.1. From the last result, we deduce that the class Tx(a,b, A, )
is invariant under convolution with the function
1
gs(z) =2®(1,0 + 1;2) = 5z§(1 — 1) tet2dt; 6> 1,
0

that is, if f(z)=2+ § ap 12" € Te(a, b, A, y) then g(2) =2+ f (gﬁik 2kl
eT(ab A, =
COROLLARY 2.3. Let a > 0. If f > max{2,a} then

feTela,b,\,y) = Zgof € Ti(a, b, A, 7).

Proof. By applying Lemma 2.2 and the definition of Z,;, we immediately
deduce desired assertion from (ii) of Corollary 2.1. m

COROLLARY 2.4. Let, for u >0

+1
A

Fu(f) = Fu(f)(z) = B2 (oL p(t)at.

O e

Then
f e 776(0'767 )\7’7) - Fu(f) e E(aa b7 )‘77)

Proof. It is sufficient to note that F,(f) = L(pn + 1,4+ 2)f. Thus the
desired implication follows directly from Corollary 2.3. m
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oo
COROLLARY 2.5. Let f has the series expansion f(z) = Y. apz® and let
k=2

sn(2) =2+ Zakzk (ne N\ {1}).
k=2

Then
1
fe 776(&’ b, )‘a'Y) = 73n(7ﬂnz) € E(a, b, )\77)

n

where
(7)  rp=sup {T:Re( y zk> >%, (|2] <1)}, (ne N\ {1}).
k=0

2¥, we can write s,(z) =

M=

Proof. Let f € Ti(a,b, \,7). Putting h,(z) =
k=1

(f *hp)(2). Thus from (7), we get Re (M) > 1, forz € U,neN\{1}

rnZ

Hence, by applying Theorem 2.3, we have
1 1 1
—sn(rnz) = —(f x hp)(rn2) = f(2) * —hn(rnz) € Te(a, b, A, 7).
T'n Tn Tn

The proof is thus completed. »

THEOREM 2.4. Let f1 € Ta(a,b,\,v1) and fa € Tp(a,b, A\, 72), (0 <~ <
1, 1=1,2). If f € A is defined by

z

Tapf(2) = | Zapf1(2)) * (Tapfa(2)) dt

0
then f € Ti(a,b,\, k) where kK =1 —8(1—n)%(1 —v1)(1 —2) and n is given
by (5).

Proof. Let fi € Ta(a,b,\,71) and fo € Ti(a,b,\,72). It follows from
Lemma 2.4 that (Z,5f1(2))" € P2(61) and (Zupf2(2)) € Pr(d2) where &; =
vi+(1—7:)(2n—1) and the parameter 7 is given by (5). Using the definition
of the class Pk (), we thus obtain that

(Zapf1(2)) =p(2), pE€P(1)

and

Tt = (54 5) ) - (§ -5 ) me mePG. =12
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which leads to

Tt =)+ [ (5 + 5) ) = (5 - 5) 2]
—(5+3) 0 - (5-3) 06 wme.

Applying Lemma 2.3, we deduce that (Z,,f(2)) € Pr(x) where
k= 1—2(1—6)(1—6)
=1-20-m -1 =m)@2n—-D]- 1 =22 — (1 —-72)2n-1)]
=1-8(1-n)°(1 =)~ )

where the parameter n is given in (5). The proof of theorem is thus com-
pleted. =

THEOREM 2.5. For a fized number n, n € N, let
o

(8) fz) =2+ Z g y12" T
k=1

If f € Ti(a,b,0,7), then f € Ti(a,b,\,7), for |z| < rn, where r, =

1
(\/1 + (An)? — )\n) " . The result is best possible.

Proof. Under the hypothesis that f of the form (8) is in Tx(a,b,0,7), we
have

(Zapf(2)) € Pr(y)
and consequently
) 2t = (5+3) - (5 -3 ) o),
where p; € P(v), i = 1,2. Let us put
F(z) = [Ia,bf(z)]/ + Az [Ia,bf(z)]”'

We can easily prove that

(10) F(2) = Fup () « 22
where
gn(2) = (1 —nA) 1 _Zzn + n)\ﬁ =z+ Z(l + knX)zfn L,

k=1
Let us set 2" = 1—pe®,  (p>0)and |z| = r < 1. It was shown in [22] that

gn(z) _ 1 1 9
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1
Thus, for |z| < r, = (\/1 + (An)? — An) ", we have 9”7(2) € P(3). It follows
from (9) and (10) that

= (53) 2) - 1-1) (-2,

where p; € P(v), i = 1,2. Hence, an application of Lemma 2.3 leads to the
result F' € Pi(7y) and consequently, f € Ti(a,b, A,v) for |z| < ry,. The proof
is completed. =

If n = 1 then from Theorem 2.5, we deduce
o0
COROLLARY 2.6. Let f(2) = z+ Y. apz®. If f € Ti(a,b,0,7), then
k=2

€ Tela,by\,7y), for |z| < V1+ A2 =\
REMARK 2.4. In [13], the following result was proved (Theorem 4.5): Let
(Zupf(2)) € Pr(7). Then f € Tr(a,b,\,7) for |z| < r where
1 1
TN = D
v a1 72

The result is best possible.

In the light of the Corollary 2.6, the previous result of [13] seems to be not
the best possible because, for example, for A = 1, we have

1
VIHENZ > )
A+ V4AN2 — 20+ 1
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