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Lp-GENERAL APPROXIMATIONS BY
MULTIVARIATE SINGULAR INTEGRAL OPERATORS

Abstract. In this article, we study the L,, 1 < p < oo approximation proper-
ties of general multivariate singular integral operators over RN, N > 1. We establish
their convergence to the unit operator with rates. The established inequalities involve
the multivariate higher order modulus of smoothness. We list the multivariate Picard,
Gauss—Weierstrass, Poisson Cauchy and trigonometric singular integral operators where
this theory can be applied directly.

1. Introduction

The rate of L,, 1 < p < oo convergence of univariate singular integral op-
erators has been studied earlier in [1], [6], |7], 8], see also the related [10], [11],
and these articles motivate the current work. Here, we consider some very gen-
eral multivariate singular integral operators over RV, N > 1, and we study the
degree of approximation to the unit operator with rates over smooth functions.
The established related inequalities are involving the multivariate higher mod-
ulus of smoothness with respect to [|-||,, . See Theorems 4, 6, 8, 10. We mention
particular operators that fulfill our theory. The discussed linear operators
are not in general positive, see [2]. Other motivation comes from [3], [4].

2. Main results
Here r € N, m € Z,, we define

3 T . oo .
(—U”()y moifj=1,2,.,r
(1) a[m] - J

7, : T o T
1= (=)™ )i, ifj=0,
Jj=1 J
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and
(2) 6[m] Za%]jk, k=12,...,meN.
See that
3) D=1,
§=0

and

" i (T e
0 Eer()-on()

7j=1
Let p¢, be a probability Borel measure on RN N>1,& >0,neN.
We now define the multiple smooth singular integral operators

(5) Ol (fim,. . 2w)
= Zaﬁ] | f (21 +s1d, 22+ s0j, - an + snj) dpe, (5)
; "

where s := (s1,...,sn), z = (z1,...,2n5) € RV; n,r € N, m € Z,,
f:RY — R is a Borel measurable function, and also (én)nen 1s @ bounded
sequence of positive real numbers.

The operators 97[672] preserve constants, see [2].
Here, we deal with f € C™ (RY), m € ZT, with f, € L, (RY), |a| =

m € ZT, p > 1; where f, denotes the mixed partial %, aj € LT,

N ~ ~
j=1L...,N:jo|:=> aj=j4,j=1,...,m.
i=1

We need

DEFINITION 1. (see also [5]) We call

6)  Auf(z):= Azm, qun S (@15 aN)

—Z < )f(ﬂfl+JU1,$2+JU2,---,$N+jUN)-
Let p > 1, the modulus of smoothness of order r is given by
(7) wr (f3h), == sup [JAL(f)ll,, h>0.
l[ully <P

I) First we consider the case of m € N, p > 1.
We make
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REMARK 2. For 5 =1,....m, and a := (ayq,...,ay), a; € ZT, i =
N ~
1,...,N, |a| := > a; = j, under the assumption of Theorem 4,
i=1
N
(8) ConF = Capn = S Hsf”d,ugn (s1,...,5N) €ER,
RN i=1

see also [2]. From [2], we get

) Bl (2) =61 (fr0) — () = D o (Z W)
=1 7 '

N 1
=m 3 HN1> (S (Hs?ﬂ(l—e)ml( oo <x>>d9) due, <s>>

(10) = R"(z), VazeRN
Letp,q>1:%+%:1. Then
Ell ()] = Rl ()]

N 1 p
(1) =l (Hsfiﬁ(l—e)ml( bsfa (Sﬂ))d9> dpeg, (s)
RN \i=1 0
N 1 p
< < | (H i * § (1= 6)"" 1 |AG, fa (fﬂ)ld9> dp, (8)>
RN \i=1 0

N 1 p
<ec | ( | (H sl § (1= 0)" " | Aj fa (fﬁ)ld9> dyig, (8)) da
RN \RN

=1 0
N
(call 0.y (s,) i= [T Isif"™ fo (1= 0)"""|Ap, fu (z)| dO)

(13) =c1 | (g

P
v (s,x) dpe, (s)) dx =: Is.
RN \RN
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Therefore, it holds

(14) I, < S ( S VP (s, ) dpg, (s)) dx =: I.

RN \RN

But we have

1 i /1 v
(15)  ~y(s,2) < [ Isil (g ((1—e)m—1)qd9> (SIAzsfa (x)l”cw)
i 0

i=1 0

N 1 1 %
T sl : ( A7 fa >|pde>

e s (e

Hence, we get

N 1 1
(16) AP (s,a) < [ lsil™? 2 <§ |Apsfa ()P d9> :
i=1 0

(¢(m—1)+1)s

Thus, we obtain

(17) Iz <c ( H | 54| %P ( fo ()P dG) due, (s)) dx
RN

RN i=1

(set cg =1 ————
(g(m=1)+1)¢

1 N
(S ( S H\sz\ P DG y%) de> de, (s
RN \O \RN i=
N 1
1 —a | |si|aip(s(smgs !dfv>d9>du5n
RN i=1 0 \RN

Consequently, we derive

1
1) n<e ][I P(S (wr (a5l d9> due, (s
0

RN =1

<CQ

0
ISH

wr (fa; lIsll2), dpse, (s)

IE1P
Sz foufn n \S
2 ) ) dpe, (5)

n

A

I :]z ||Ez

I

Q

[\
/—\
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(by wr (f,AR), < (1+N) w, (f,h),, for any h, A >0, p>1)

(20> < Cowy (foufn ( (H ’31’ Zp) < ”21’2> d//fn (S)) .

We have proved that
P 1 m
1) | |EM(2)| de < () : ( )
RN‘ ‘ |a|2 Hfil a;! (q(mf1)+1)%

wr (fasEn)? (R KHMI‘“)( ”;’fyrdugn(s))

Thus, we get (p > 1)

m m ,
(22) HE[ I ( H ((Q(m—1)+1) ) g:m (HZ&')
[(HM%)( ol ‘2>] dpg, <s>]pwr<fa;§n>p.
We make

REMARK 3. Notice that (p > 1)

N
o Isll2 "
(23) ( |si ) 14+ 22 ) due, (s)
RSN E[l ( §n> e
N p %
<3 () (1 1) ) 0] o

by assumption of Theorem 4.
As in |2] then we get that

p

Q=

(24> H ’31’ d/%n

RN i=1
Hence Coni € R.
From the above we have proved
THEOREM 4. Let f € C™ (RY), m € N, N > 1, with f, € L, (RY),
lo| =m, z € RN, Let p,q > 1: %—l—% = 1. Here pg, is a Borel probability

measure on RN, for &, > 0, (§n)pen bounded sequence. Assume, for all
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N
a:=(ay,...,ay), q; €ZY, i=1,...,N, |a| := > a; = m that we have
=1
- 3%
(25) S H’Sl’ T+ —= due, (s) < oo.
RN i=1 &n
Forj=1,....m, and a := (ovu,...,ay), ay € Z*, i = 1,...,N, |a :=

N ~
Yy =7, call
i=1

N
(26) Comi = | H siidpe, (s).
RN i=1
Then
S Conila (@)
(27) = |6l (F30) = £ (@) = 6 (Z o) )
H j=1 " lo|=7 (Hi\il Q ) N

IN

m 1
((q(m— 1)+1)§) }::m Y, ol

l 1sl,\" 1" z
: |S7f|al> 1 + Q ] d n (S)] (JJT (fCl{’ gn)p .
L}N [(E[l ( £, > F

Asn — oo and &, — 0, by (27), we obtain that HEPZ]
One also gets by (27) that

— 0 with rates.
P

" (fyx) — f(w)‘ <y ‘5@ Yo el / S fall, | + RS (20),
" j=1 " lal=j Hz 1
given that || fall, < oo, |a| = j.oi=1,....,m.
Assuming that c,, ni 0, fn fH

0, that is 9@9 — I the unit operator, in L, norm, with rates.

IT) Case of m =0, p > 1.
We make

REMARK 5. In [2] we proved that

(28) 01 (f2) = f (@) = | (ALf (2)) g, (s) -

RN
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Letp,q>1:%+%:1. Hence
P
(29) 0 (1) — £ ()] < (S ALF ()] dpe, <s>>
RN
< Y IALf ()" dpg, (s) -
RN

And it holds

B0 [0 (i)~ ) do < | <§ ALF (@) die, <s>) a
RN RN \RN
(31) = | (S |A§f(f6)|pd$> dpe, () <\ wr (£, 15]12)7 dpe, (5)
RN \RN RN
SR EA
(32> = RSN r <f7 n £ )pdﬂﬁn( )
< wy (f7 fn)g S <1 + H‘;‘J2> dﬂén (8) .

RN
Therefore, we get

rp v
o) -1 < (S (1+52) o, <s>> o (.6
RN "

(33)

We proved

497

THEOREM 6. Let f € (C(RV)NL, (RY)); N> 1;pg>1:3+ =1
Assume pig, probability Borel measures on RY, (§n)neny > 0 and bounded.

Also suppose

(34) | (1+ lsllz )™ d

Z, e, (s) < oo.
RN

Then

(35)

. !
01— 1] < (S (14 52 e, <s>> ar (F.6),-
RN "

As &, — 0, when n — 0o, we obtain

unit operator, in Ly, norm.

III) Next follows the case m =0, p = 1.
We make

ol (f) - pr 50, ie. 0 I, the
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REMARK 7. As before we have

(36) B (Fi2) = £ @)] < | 1AL @) di, (5)
RN
Hence
(37) o (- 1| = L?L(fw)—f(sc)\dx
(38) < | ( J 1A%f (@) due, <s>> da
RN \RN

= | (S IAZf(ﬂf)dx> dpg, (s) < | wr (f, lIsll5), due, ()

RN \RN RN

39) = | w <f,£n” ”2)1 e, (s) < wr (f6n)y | <1+”2|l2> due, (s) -

RN &n RN
We have proved

THEOREM 8. Let f € (C (RN) N L (RN)), N > 1. Assume, pg, probabil-
ity Borel measures on RY (§n)nen > 0 and bounded. Also suppose

(40) S <1 + HSH2)T due, (s) < oo.

RN gn

n-1| < ( <1+@)Tdugn(s>>wr<f,5n>l-

As &, — 0, we get 9”1 — I in Ly norm.

Then

0

(41) ol

=
3

IV) Case of m € N, p = 1.
We make

REMARK 9. We have

(42) |

§ e <m 3 ( )
'L 104Z
N 1
3 (S (H|sz|‘“§<1—e>m1|Azsfa<w>\d0> dyi, <s>) dz
RN \RN

i=1 0
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(S | Aps for (2 )\dﬂ«“) d9> dysg, (3)

(setex:=m Y. (ﬁ))

la|=m i=1 %

:TS

N
(43) <o | (H\SJ‘”) < wy (fasO1lsl2) )duén (s)
RN \i=1
& N
< E <H|52| > fou” H dﬂ-ﬁn( )
=1
_ s a; HSHQ s
(44) —Ial m(HN > <H| z| ) r<fom£n gn >1d”fn()
(45) < ( > (fa:&n )
|a|=m valal
N
1]l
: |54 ) 1 e, (s) .
(I 1) o

We have proved

THEOREM 10. Let f € C™ (RY), m, N € N, with fo € Ly (RY), |a| =m,
z € RN, Here pe, ts a Borel probability measure on RY for &, >0, (&n)nen
is a bounded sequence. Assume, for all a = (aq,...,an), a; € ZT, i =

N
LN, |al == >0 a; = m that we have

i=1
. EY
(46) i ((TLls (1+ ) dpe, (5) < oo.
RN i=1 &n
Forj=1,...,m, and a = (a1,...,an), a; € Z*, i =1,...,N, |a| :=
N ~
Sy =7, call
i=1
(47) Comi = Hs e, (s

RN =1
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CONN ol IS RO Za[m] § Cangle @)
g imvod
—Z( ) o) (w)( 2 g ).
|| z 1@ n

As &, — 0, we get HELTZ]

L 0 with rates. From (48), we get

C
an,j

}

HfaHl + R.H.5.(48),

2 1Y, ai

j= 1 lo]=5
giwen that || fo||; < oo, |af =5, j=1....m

Asn — oo, assuming &, — 0 and ¢~ — 0, we get

a,n,j

that 1s 0,[@ — I in L1 norm, with rates.
3. Applications

Let all entities as in Section 2. We define the following specific operators:
i) The general multivariate Picard singular integral operators:

(49) P (fiay,... 2n) = >
. . . _(ZzN:ﬂsiD

. S f(x1+s17,m2 + s2J,..., N + snj)e & dsy...dsy.

RN
Notice that

1 _(Zﬁ\;ﬂ%\)
(50) e &n dsy...dsy =1,
(26)" RSN

see [1].

ii) The general multivariate Gauss—Weierstrass singular integral opera-
tors:

51) WM (fizp,.. . 2n) = [m]
( ) rn (f I CL‘N) (\/@ NZO[

(Ef\] 18 ?)

N\ fler+ s, a2+ 525, an +sng) e dsy...dsy.

RN
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Notice that

52) R T
— =\ e n s1...dsy =1,
(V”‘fn)NRN

see [6].

iii) The general multivariate Poisson-Cauchy singular integral operators:

(53) U (fran,..2n) =W a%]
7=0

1

. f(z1+s17,...,xn + SnJ) ————ds;...dsn,

RXN 11;[1 (2 + 5721&)5
with « € N, 8 > i, and

T %aﬁ—l
(54) W, = 1(5)0‘ —,
I (55) T (8- 55)
see [7].
Notice that
N 1

(55) wh S Hidsl...dsN:L

B
RV =1 (s7% + €22)
see [7], [12], p. 397, formula 595.
iv) The general multivariate trigonometric singular integral operators:

(56) T (fim,... o) = )\;NZO[‘E.?:}
=0

lf_v[ sin () ” ]

. S f(z1+s17,...,xNn + SNJ) $1...dsy,

RN i=1 5
where 8 € N, and

1-28 3 o k k261
57 Ap =28 P (-1)" B -1 ,
57 SR M e GRS
see [8], [9], p. 210, item 1033.
Notice that
28
N [ sin (?)

(58) NYTTI L —= ] dsi...dsy=1,

S
RN i=1 v

see also [8], [9], p. 210, item 1033.
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[m] yy/lm] prlm] - plm)]

One can apply Theorems 4, 6, 8, 10 to operators Pr ', Wry', Ury', Trn

[m]

(special cases of 6r, ) and derive interesting results. We intend to do that
in a future article.
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