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LP -GENERAL APPROXIMATIONS BY
MULTIVARIATE SINGULAR INTEGRAL OPERATORS

Abstract. In this article, we study the Lp, 1 ≤ p < ∞ approximation proper-
ties of general multivariate singular integral operators over RN , N ≥ 1. We establish
their convergence to the unit operator with rates. The established inequalities involve
the multivariate higher order modulus of smoothness. We list the multivariate Picard,
Gauss–Weierstrass, Poisson Cauchy and trigonometric singular integral operators where
this theory can be applied directly.

1. Introduction
The rate of Lp, 1 ≤ p <∞ convergence of univariate singular integral op-

erators has been studied earlier in [1], [6], [7], [8], see also the related [10], [11],
and these articles motivate the current work. Here, we consider some very gen-
eral multivariate singular integral operators overRN ,N ≥ 1, and we study the
degree of approximation to the unit operator with rates over smooth functions.
The established related inequalities are involving themultivariate highermod-
ulus of smoothness with respect to ‖·‖p . See Theorems 4, 6, 8, 10. Wemention
particular operators that fulfill our theory. The discussed linear operators
are not in general positive, see [2]. Other motivation comes from [3], [4].

2. Main results
Here r ∈ N, m ∈ Z+, we define

(1) α
[m]
j,r :=


(−1)r−j

(
r
j

)
j−m, if j = 1, 2, . . . , r,

1−
r∑
j=1

(−1)r−j
(
r

j

)
j−m, if j = 0,
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and

(2) δ
[m]
k,r :=

r∑
j=1

α
[m]
j,r j

k, k = 1, 2, . . . ,m ∈ N.

See that

(3)
r∑
j=0

α
[m]
j,r = 1,

and

(4) −
r∑
j=1

(−1)r−j
(
r

j

)
= (−1)r

(
r

0

)
.

Let µξn be a probability Borel measure on RN , N ≥ 1, ξn > 0, n ∈ N.
We now define the multiple smooth singular integral operators

(5) θ[m]
r,n (f ;x1, . . . , xN )

:=
r∑
j=0

α
[m]
j,r

�

RN
f (x1 + s1j, x2 + s2j, . . . , xN + sN j) dµξn (s) ,

where s := (s1, . . . , sN ), x := (x1, . . . , xN ) ∈ RN ; n, r ∈ N, m ∈ Z+,
f : RN → R is a Borel measurable function, and also (ξn)n∈N is a bounded
sequence of positive real numbers.

The operators θ[m]
r,n preserve constants, see [2].

Here, we deal with f ∈ Cm
(
RN
)
, m ∈ Z+, with fα ∈ Lp

(
RN
)
, |α| =

m ∈ Z+, p ≥ 1; where fα denotes the mixed partial ∂ j̃f(·,...,·)
∂x
α1
1 ...∂x

αN
N

, αj ∈ Z+,

j = 1, . . . , N : |α| :=
N∑
j=1

αj = j̃, j̃ = 1, . . . ,m.

We need

Definition 1. (see also [5]) We call

(6) ∆r
uf (x) := ∆r

u1,u2,...,uN
f (x1, . . . , xN )

:=
r∑
j=0

(−1)r−j
(
r

j

)
f (x1 + ju1, x2 + ju2, . . . , xN + juN ) .

Let p ≥ 1, the modulus of smoothness of order r is given by

(7) ωr (f ;h)p := sup
‖u‖2≤h

‖∆r
u (f)‖p , h > 0.

I) First we consider the case of m ∈ N, p > 1.
We make
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Remark 2. For j̃ = 1, . . . ,m, and α := (α1, . . . , αN ), αi ∈ Z+, i =

1, . . . , N, |α| :=
N∑
i=1

αi = j̃, under the assumption of Theorem 4,

(8) cα,n,̃j := cα,n :=
�

RN

N∏
i=1

sαii dµξn (s1, . . . , sN ) ∈ R,

see also [2]. From [2], we get

(9) E[m]
r,n (x) := θ[m]

r,n (f ;x)− f (x)−
m∑
j̃=1

δ
[m]

j̃,r

∑
|α|=j̃

cα,nfα (x)∏N
i=1 αi!


= m

∑
|α|=m

(
1∏N

i=1 αi!

)( �

RN

(
N∏
i=1

sαii

1�

0

(1− θ)m−1 (∆r
θsfα (x)) dθ

)
dµξn (s)

)

(10) =: R[m]
r,n (x) , ∀ x ∈ RN .

Let p, q > 1 : 1
p + 1

q = 1. Then∣∣∣E[m]
r,n (x)

∣∣∣p =
∣∣∣R[m]

r,n (x)
∣∣∣p

(set c1 :=

(
m

∑
|α|=m

(
1∏N

i=1 αi!

))p
)

(11) = c1

∣∣∣∣∣ �
RN

(
N∏
i=1

sαii

1�

0

(1− θ)m−1 (∆r
θsfα (x)) dθ

)
dµξn (s)

∣∣∣∣∣
p

≤ c1

( �

RN

(
N∏
i=1

|si|αi
1�

0

(1− θ)m−1 |∆r
θsfα (x)| dθ

)
dµξn (s)

)p
.

Hence we have

(12) I1 :=
�

RN

∣∣∣E[m]
r,n (x)

∣∣∣p dx
≤ c1

�

RN

( �

RN

(
N∏
i=1

|si|αi
1�

0

(1− θ)m−1 |∆r
θsfα (x)| dθ

)
dµξn (s)

)p
dx

(call 0 ≤ γ (s, x) :=
N∏
i=1
|si|αi

	1
0 (1− θ)m−1 |∆r

θsfα (x)| dθ)

(13) = c1
�

RN

( �

RN
γ (s, x) dµξn (s)

)p
dx =: I2.
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Therefore, it holds

(14) I2 ≤ c1
�

RN

( �

RN
γp (s, x) dµξn (s)

)
dx =: I3.

But we have

γ (s, x) ≤
N∏
i=1

|si|αi
(

1�

0

(
(1− θ)m−1

)q
dθ

) 1
q
(

1�

0

|∆r
θsfα (x)|p dθ

) 1
p

(15)

=

N∏
i=1

|si|αi
1

(q (m− 1) + 1)
1
q

(
1�

0

|∆r
θsfα (x)|p dθ

) 1
p

.

Hence, we get

(16) γp (s, x) ≤
N∏
i=1

|si|αip
1

(q (m− 1) + 1)
p
q

(
1�

0

|∆r
θsfα (x)|p dθ

)
.

Thus, we obtain

(17) I3 ≤ c2
�

RN

( �

RN

N∏
i=1

|si|αip
(

1�

0

|∆r
θsfα (x)|p dθ

)
dµξn (s)

)
dx

(set c2 := c1 · 1

(q(m−1)+1)
p
q
)

= c2
�

RN

(
1�

0

( �

RN

N∏
i=1

|si|αip |∆r
θsfα (x)|p dx

)
dθ

)
dµξn (s)

= c2
�

RN

N∏
i=1

|si|αip
(

1�

0

( �

RN
|∆r

θsfα (x)|p dx

)
dθ

)
dµξn (s) =: I4.(18)

Consequently, we derive

I4 ≤ c2
�

RN

N∏
i=1

|si|αip
(

1�

0

(
ωr (fα; θ ‖s‖2)p

)p
dθ

)
dµξn (s)(19)

≤ c2
�

RN

(
N∏
i=1

|si|αip
)
ωr (fα; ‖s‖2)

p
p dµξn (s)

= c2
�

RN

(
N∏
i=1

|si|αip
)
ωr

(
fα; ξn

‖s‖2
ξn

)p
p

dµξn (s)
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(by ωr (f, λh)p ≤ (1 + λ)r ωr (f, h)p, for any h, λ > 0, p ≥ 1)

(20) ≤ c2ωr (fα; ξn)pp

( �

RN

(
N∏
i=1

|si|αip
)(

1 +
‖s‖2
ξn

)rp
dµξn (s)

)
.

We have proved that

(21)
�

RN

∣∣∣E[m]
r,n (x)

∣∣∣p dx ≤
 ∑
|α|=m

(
1∏N

i=1 αi!

) ·( m

(q (m− 1) + 1)
1
q

)p

· ωr (fα; ξn)pp

( �

RN

[(
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r]p
dµξn (s)

)
.

Thus, we get (p > 1)

(22)
∥∥∥E[m]

r,n (x)
∥∥∥
p
≤

(
m

(q (m− 1) + 1)
1
q

) ∑
|α|=m

(
1∏N

i=1 αi!

)
·

[ �

RN

[(
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r]p
dµξn (s)

] 1
p

ωr (fα; ξn)p .

We make

Remark 3. Notice that (p > 1)

(23)
�

RN

(
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r
dµξn (s)

≤

[ �

RN

((
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r)p
dµξn (s)

] 1
p

<∞,

by assumption of Theorem 4.
As in [2] then we get that

(24)
�

RN

N∏
i=1

|si|αi dµξn (s) <∞.

Hence cα,n,̃j ∈ R.

From the above we have proved

Theorem 4. Let f ∈ Cm
(
RN
)
, m ∈ N, N ≥ 1, with fα ∈ Lp

(
RN
)
,

|α| = m, x ∈ RN . Let p, q > 1 : 1
p + 1

q = 1. Here µξn is a Borel probability
measure on RN , for ξn > 0, (ξn)n∈N bounded sequence. Assume, for all
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α := (α1, . . . , αN ) , αi ∈ Z+, i = 1, . . . , N, |α| :=
N∑
i=1

αi = m that we have

(25)
�

RN

((
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r)p
dµξn (s) <∞.

For j̃ = 1, . . . ,m, and α := (α1, . . . , αN ) , αi ∈ Z+, i = 1, . . . , N, |α| :=
N∑
i=1

αi = j̃, call

(26) cα,n,̃j :=
�

RN

N∏
i=1

sαii dµξn (s) .

Then

(27)
∥∥∥E[m]

r,n

∥∥∥
p

=

∥∥∥∥∥∥θ[m]
r,n (f ;x)− f (x)−

m∑
j̃=1

δ
[m]

j̃,r

∑
|α|=j̃

cα,n,̃jfα (x)(∏N
i=1 αi!

)
∥∥∥∥∥∥

p,x

≤

(
m

(q (m− 1) + 1)
1
q

) ∑
|α|=m

1∏N
i=1 αi!


·

[ �

RN

[(
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r]p
dµξn (s)

] 1
p

ωr (fα, ξn)p .

As n→∞ and ξn → 0, by (27), we obtain that
∥∥∥E[m]

r,n

∥∥∥
p
→ 0 with rates.

One also gets by (27) that∥∥∥θ[m]
r,n (f ;x)− f (x)

∥∥∥
p,x
≤

m∑
j̃=1

∣∣∣δ[m]

j̃,r

∣∣∣
∑
|α|=j̃

∣∣∣cα,n,̃j∣∣∣∏N
i=1 αi!

‖fα‖p

+R.H.S.(27),

given that ‖fα‖p <∞, |α| = j̃, j̃ = 1, . . . ,m.

Assuming that cα,n,̃j → 0, ξn → 0, as n→∞, we get
∥∥∥θ[m]

r,n (f)− f
∥∥∥
p
→

0, that is θ[m]
r,n → I the unit operator, in Lp norm, with rates.

II) Case of m = 0, p > 1.
We make

Remark 5. In [2] we proved that

(28) θ[0]r,n (f ;x)− f (x) =
�

RN
(∆r

sf (x)) dµξn (s) .
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Let p, q > 1 : 1
p + 1

q = 1. Hence∣∣∣θ[0]r,n (f ;x)− f (x)
∣∣∣p ≤ ( �

RN
|∆r

sf (x)| dµξn (s)

)p
(29)

≤
�

RN
|∆r

sf (x)|p dµξn (s) .

And it holds

(30)
�

RN

∣∣∣θ[0]r,n (f ;x)− f (x)
∣∣∣p dx ≤ �

RN

( �

RN
|∆r

sf (x)|p dµξn (s)

)
dx

(31) =
�

RN

( �

RN
|∆r

sf (x)|p dx

)
dµξn (s) ≤

�

RN
ωr (f, ‖s‖2)

p
p dµξn (s)

(32) =
�

RN
ωr

(
f, ξn

‖s‖2
ξn

)p
p

dµξn (s)

≤ ωr (f, ξn)pp

�

RN

(
1 +
‖s‖2
ξn

)rp
dµξn (s) .

Therefore, we get

(33)
∥∥∥θ[0]r,n (f)− f

∥∥∥
p
≤

( �

RN

(
1 +
‖s‖2
ξn

)rp
dµξn (s)

) 1
p

ωr (f, ξn)p .

We proved

Theorem 6. Let f ∈
(
C
(
RN
)
∩ Lp

(
RN
))

; N ≥ 1; p, q > 1 : 1
p + 1

q = 1.
Assume µξn probability Borel measures on RN , (ξn)n∈N > 0 and bounded.
Also suppose

(34)
�

RN

(
1 +
‖s‖2
ξn

)rp
dµξn (s) <∞.

Then

(35)
∥∥∥θ[0]r,n (f)− f

∥∥∥
p
≤

( �

RN

(
1 +
‖s‖2
ξn

)rp
dµξn (s)

) 1
p

ωr (f, ξn)p .

As ξn → 0, when n→∞, we obtain
∥∥∥θ[0]r,n (f)− f

∥∥∥
p
→ 0, i.e. θ[0]r,n → I, the

unit operator, in Lp norm.

III) Next follows the case m = 0, p = 1.
We make
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Remark 7. As before we have

(36)
∣∣∣θ[0]r,n (f ;x)− f (x)

∣∣∣ ≤ �

RN
|∆r

sf (x)| dµξn (s) .

Hence

(37)
∥∥∥θ[0]r,n (f)− f

∥∥∥
1

=
�

RN

∣∣∣θ[0]r,n (f ;x)− f (x)
∣∣∣ dx

(38) ≤
�

RN

( �

RN
|∆r

sf (x)| dµξn (s)

)
dx

=
�

RN

( �

RN
|∆r

sf (x)| dx

)
dµξn (s) ≤

�

RN
ωr (f, ‖s‖2)1 dµξn (s)

(39) =
�

RN
ωr

(
f, ξn

‖s‖2
ξn

)
1

dµξn (s) ≤ ωr (f, ξn)1

�

RN

(
1 +
‖s‖2
ξn

)r
dµξn (s) .

We have proved

Theorem 8. Let f ∈
(
C
(
RN
)
∩ L1

(
RN
))

, N ≥ 1. Assume, µξn probabil-
ity Borel measures on RN , (ξn)n∈N > 0 and bounded. Also suppose

(40)
�

RN

(
1 +
‖s‖2
ξn

)r
dµξn (s) <∞.

Then

(41)
∥∥∥θ[0]r,n (f)− f

∥∥∥
1
≤

( �

RN

(
1 +
‖s‖2
ξn

)r
dµξn (s)

)
ωr (f, ξn)1 .

As ξn → 0, we get θ[0]r,n → I in L1 norm.

IV) Case of m ∈ N, p = 1.
We make

Remark 9. We have

(42)
∥∥∥E[m]

r,n

∥∥∥
1

=
�

RN

∣∣∣E[m]
r,n (x)

∣∣∣ dx ≤ m ∑
|α|=m

(
1∏N

i=1 αi!

)

·
�

RN

( �

RN

(
N∏
i=1

|si|αi
1�

0

(1− θ)m−1 |∆r
θsfα (x)| dθ

)
dµξn (s)

)
dx
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(set c1 := m
∑
|α|=m

(
1∏N

i=1 αi!

)
)

= c1
�

RN

N∏
i=1

|si|αi
(

1�

0

(1− θ)m−1
( �

RN
|∆r

θsfα (x)| dx

)
dθ

)
dµξn (s)

≤ c1
�

RN

(
N∏
i=1

|si|αi
)(

1�

0

(1− θ)m−1 ωr (fα, θ ‖s‖2)1 dθ

)
dµξn (s)(43)

≤ c1
m

�

RN

(
N∏
i=1

|si|αi
)
ωr (fα, ‖s‖2)1 dµξn (s)

=
∑
|α|=m

(
1∏N

i=1 αi!

) �

RN

(
N∏
i=1

|si|αi
)
ωr

(
fα, ξn

‖s‖2
ξn

)
1

dµξn (s)(44)

≤
∑
|α|=m

(
1∏N

i=1 αi!

)
ωr (fα, ξn)1(45)

·
�

RN

(
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r
dµξn (s) .

We have proved

Theorem 10. Let f ∈ Cm
(
RN
)
, m,N ∈ N, with fα ∈ L1

(
RN
)
, |α| = m,

x ∈ RN . Here µξn is a Borel probability measure on RN for ξn > 0, (ξn)n∈N
is a bounded sequence. Assume, for all α := (α1, . . . , αN ) , αi ∈ Z+, i =

1, . . . , N, |α| :=
N∑
i=1

αi = m that we have

(46)
�

RN

((
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r)
dµξn (s) <∞.

For j̃ = 1, . . . ,m, and α := (α1, . . . , αN ) , αi ∈ Z+, i = 1, . . . , N, |α| :=
N∑
i=1

αi = j̃, call

(47) cα,n,̃j :=
�

RN

N∏
i=1

sαii dµξn (s) .

Then
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(48)
∥∥∥E[m]

r,n

∥∥∥
1

=

∥∥∥∥∥∥θ[m]
r,n (f ;x)− f (x)−

m∑
j̃=1

δ
[m]

j̃,r

∑
|α|=j̃

cα,n,̃jfα (x)∏N
i=1 αi!

∥∥∥∥∥∥
1,x

≤
∑
|α|=m

(
1∏N

i=1 αi!

)
ωr (fα, ξn)1

�

RN

(
N∏
i=1

|si|αi
)(

1 +
‖s‖2
ξn

)r
dµξn (s) .

As ξn → 0, we get
∥∥∥E[m]

r,n

∥∥∥
1
→ 0 with rates. From (48), we get

∥∥∥θ[m]
r,n f − f

∥∥∥
1
≤

m∑
j̃=1

∣∣∣δ[m]

j̃,r

∣∣∣
∑
|α|=j̃

∣∣∣cα,n,̃j∣∣∣∏N
i=1 αi!

‖fα‖1

+R.H.S.(48),

given that ‖fα‖1 <∞, |α| = j̃, j̃ = 1, . . . ,m.

As n → ∞, assuming ξn → 0 and cα,n,̃j → 0, we get
∥∥∥θ[m]

r,n f − f
∥∥∥
1
→ 0,

that is θ[m]
r,n → I in L1 norm, with rates.

3. Applications
Let all entities as in Section 2. We define the following specific operators:
i) The general multivariate Picard singular integral operators:

(49) P [m]
r,n (f ;x1, . . . , xN ) :=

1

(2ξn)N

r∑
j=0

α
[m]
j,r

·
�

RN
f (x1 + s1j, x2 + s2j, . . . , xN + sN j) e

−(
∑N
i=1|si|)
ξn ds1 . . . dsN .

Notice that

(50)
1

(2ξn)N

�

RN
e
−(

∑N
i=1|si|)
ξn ds1 . . . dsN = 1,

see [1].
ii) The general multivariate Gauss–Weierstrass singular integral opera-

tors:

(51) W [m]
r,n (f ;x1, . . . , xN ) :=

1(√
πξn
)N r∑

j=0

α
[m]
j,r

·
�

RN
f (x1 + s1j, x2 + s2j, . . . , xN + sNj) e

−(
∑N
i=1 s

2
i )

ξn ds1 . . . dsN .
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Notice that

(52)
1(√
πξn
)N �

RN
e
−(

∑N
i=1 s

2
i )

ξn ds1 . . . dsN = 1,

see [6].
iii) The general multivariate Poisson–Cauchy singular integral operators:

(53) U [m]
r,n (f ;x1, . . . , xN ) := WN

n

r∑
j=0

α
[m]
j,r

·
�

RN
f (x1 + s1j, . . . , xN + sNj)

N∏
i=1

1(
s2αi + ξ2αn

)β ds1 . . . dsN ,
with α ∈ N, β > 1

2α , and

(54) Wn :=
Γ (β)αξ2αβ−1n

Γ
(

1
2α

)
Γ
(
β − 1

2α

) ,
see [7].

Notice that

(55) WN
n

�

RN

N∏
i=1

1(
s2αi + ξ2αn

)β ds1 . . . dsN = 1,

see [7], [12], p. 397, formula 595.
iv) The general multivariate trigonometric singular integral operators:

(56) T [m]
r,n (f ;x1, . . . , xN ) := λ−Nn

r∑
j=0

α
[m]
j,r

·
�

RN
f (x1 + s1j, . . . , xN + sNj)

N∏
i=1

sin
(
si
ξn

)
si

2β

ds1 . . . dsN ,

where β ∈ N, and

(57) λn := 2ξ1−2βn π (−1)β β

β∑
k=1

(−1)k
k2β−1

(β − k)! (β + k)!
,

see [8], [9], p. 210, item 1033.
Notice that

(58) λ−Nn
�

RN

N∏
i=1

sin
(
si
ξn

)
si

2β

ds1 . . . dsN = 1,

see also [8], [9], p. 210, item 1033.
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One can apply Theorems 4, 6, 8, 10 to operators P [m]
r,n , W

[m]
r,n , U

[m]
r,n , T

[m]
r,n

(special cases of θ[m]
r,n ) and derive interesting results. We intend to do that

in a future article.
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