

Li Yin, Zhi-Min Song

INEQUALITIES FOR Γ_p FUNCTION
 AND GAMMA FUNCTION

Abstract. In this paper, we present a double inequality for the gamma function by estimating bounds of Γ_p function. Later, we also give a new inequality of gamma function.

1. Introduction

It is well known that the classical Euler gamma function may be defined by

$$(1.1) \quad \Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} dt \quad x > 0.$$

Later, Euler gave another equivalent definition for the $\Gamma(x)$ (see [1])

$$(1.2) \quad \Gamma_p(x) = \frac{p! p^x}{x(x+1)\cdots(x+p)} = \frac{p^x}{x(1+\frac{x}{1})\cdots(1+\frac{x}{p})},$$

where $\lim_{p \rightarrow \infty} \Gamma_p(x) = \Gamma(x)$. It is common knowledge that these functions are fundamental and have much extensive applications in mathematical science. In the past, several authors proved many remarkable inequalities for $\Gamma(x)$. In 1997, G. D. Anderson and S. L. Qiu [2] presented the following upper and lower bounds for $\Gamma(x)$:

$$(1.3) \quad x^{(1-C)x-1} < \Gamma(x) < x^{x-1} \quad x > 1.$$

Actually, the authors proved more. Next, H. Alzer proved a companion of (1.3) in [3]. He showed that if $x \in (1, \infty)$, then

$$(1.4) \quad x^{\alpha(x-1)-C} < \Gamma(x) < x^{\beta(x-1)-C}$$

2010 *Mathematics Subject Classification*: Primary 26A48, 33B15; Secondary 26D15.

Key words and phrases: inequality, gamma function, Γ_p function.

The first author was supported by the Science Foundation of Binzhou University under grant BZXYL1303.

was valid with the best possible constants $\alpha = \frac{(\frac{\pi^2}{6} - C)}{2}$ and $\beta = 1$. This improved the bounds given in (1.3). Moreover, he showed that if $x \in (0, 1)$, then (1.4) held with the best possible constants $\alpha = 1 - C$ and $\beta = \frac{(\frac{\pi^2}{6} - C)}{2}$. For potential availability to interested readers, we list the collection as references of this paper [4]–[8]. The aim of this article is to establish a new inequality for the gamma function by estimating bound of Γ_p . Finally, we also give an interesting inequality involving gamma function.

2. Main results

LEMMA 2.1. *Let $x \in (0, 1)$, then*

$$(2.1) \quad \frac{(x+n)^{x+n}}{x^x n^n e} < \frac{(x+n)(x+n-1) \cdots (x+1)}{n!} < \frac{(x+n)^{x+n}}{x^x n^n}.$$

Proof. The function

$$(2.2) \quad f(x) = (x+n) \ln(x+n) - x \ln x - n \ln n + \ln n! - \sum_{i=1}^n \ln(x+i)$$

is correctly defined. Simple computation yields

$$(2.3) \quad f'(x) = \ln(x+n) - \ln x - \sum_{i=1}^n \frac{1}{x+i}$$

and

$$(2.4) \quad \begin{aligned} f''(x) &= \frac{1}{x+n} - \frac{1}{x} + \sum_{i=1}^n \frac{1}{(x+i)^2} \\ &< \frac{1}{x+n} - \frac{1}{x} + \sum_{i=1}^n \frac{1}{(x+i-1)(x+i)} = 0. \end{aligned}$$

So the function $f'(x)$ is strictly decreasing on $(0, +\infty)$. Since $f'(\infty) = 0$, hence, $f'(x) > f'(\infty) = 0$. As the function $f(x)$ is strictly increasing on $(0, 1)$, we have

$$(2.5) \quad 0 = f(0) < f(x) < f(1) = n \ln(1 + \frac{1}{n}) < 1.$$

The proof of Lemma 2.1 is complete. ■

LEMMA 2.2. *Let $x \in (0, 1)$, then*

$$(2.6) \quad \frac{x^{x-1} x^{p+x}}{(x+p)^{x+p}} < \Gamma_p(x) < \frac{x^{x-1} x^{p+x} e}{(x+p)^{x+p}}.$$

Proof. Using Lemma 2.1 and (1.2), we easily obtain (2.6). ■

LEMMA 2.3. [9, p. 390, 3.6.48] Let $x_i \in R^+, i = 1, 2 \dots n$ and $\sum_{i=1}^n x_i = nx$, then

$$(2.7) \quad \prod_{i=1}^n \Gamma(x_i) \geq (\Gamma(x))^n.$$

THEOREM 2.1. Let $x \in (0, 1)$, then

$$(2.8) \quad x^{x-1}e^{-x} < \Gamma(x) < x^{x-1}e^{1-x}.$$

Proof. Let $p \rightarrow +\infty$ on the both parts of the inequality (2.6). Using the equality of limit $\lim_{p \rightarrow \infty} (\frac{x}{x+p})^{x+p} = e^{-x}$, we have the inequality (2.8). ■

THEOREM 2.2. Let $x_i, y_i, z_i, \omega_i \in R^+, i = 1, 2 \dots n, \alpha > 0, \beta > 0$ such that

$$\begin{aligned} \sum_{i=1}^n x_i &= nx, \sum_{i=1}^n y_i = ny, \sum_{i=1}^n \omega_i = n\omega, \\ \Gamma(z_i) &\geq \Gamma(\omega_i), \sum_{i=1}^n \Gamma(z_i) = n\Gamma^*(z). \end{aligned}$$

Then

$$(2.9) \quad \sum_{i=1}^n \frac{(\Gamma(x_i) + \Gamma(y_i))^\alpha}{(\Gamma(z_i) - \Gamma(\omega_i))^\beta} \geq n \frac{(\Gamma(x) + \Gamma(y))^\alpha}{(\Gamma^*(z) - \Gamma(\omega))^\beta}.$$

Proof. First, we prove the following inequality

$$(2.10) \quad \frac{\sqrt[n]{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))^\alpha}}{\sqrt[n]{\prod_{i=1}^n (\Gamma(z_i) - \Gamma(\omega_i))^\beta}} \geq \frac{\left(\sqrt[n]{\prod_{i=1}^n \Gamma(x_i)} + \sqrt[n]{\prod_{i=1}^n \Gamma(y_i)} \right)^\alpha}{\left(\sqrt[n]{\prod_{i=1}^n \Gamma(z_i)} - \sqrt[n]{\prod_{i=1}^n \Gamma(\omega_i)} \right)^\beta}.$$

In fact, the inequality (2.10) is equivalent to the following two inequalities:

$$(2.11) \quad \sqrt[n]{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))^\alpha} \geq \left(\sqrt[n]{\prod_{i=1}^n \Gamma(x_i)} + \sqrt[n]{\prod_{i=1}^n \Gamma(y_i)} \right)^\alpha$$

and

$$(2.12) \quad \sqrt[n]{\prod_{i=1}^n (\Gamma(z_i) - \Gamma(\omega_i))^\beta} \leq \left(\sqrt[n]{\prod_{i=1}^n \Gamma(z_i)} - \sqrt[n]{\prod_{i=1}^n \Gamma(\omega_i)} \right)^\beta.$$

It is easily known that

$$(2.13) \quad (2.11) \Leftrightarrow \sqrt[n]{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))} \geq \sqrt[n]{\prod_{i=1}^n \Gamma(x_i)} + \sqrt[n]{\prod_{k=1}^n \Gamma(y_k)}$$

$$\Leftrightarrow 1 \geq \sqrt[n]{\frac{\prod_{i=1}^n \Gamma(x_i)}{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))}} + \sqrt[n]{\frac{\prod_{i=1}^n \Gamma(y_i)}{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))}}.$$

Using the AGM inequality, we easily obtain

$$(2.14) \quad \sqrt[n]{\frac{\prod_{i=1}^n \Gamma(x_i)}{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))}} \leq \frac{\sum_{i=1}^n \frac{\Gamma(x_i)}{\Gamma(x_i) + \Gamma(y_i)}}{n}$$

and

$$(2.15) \quad \sqrt[n]{\frac{\prod_{i=1}^n \Gamma(y_i)}{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))}} \leq \frac{\sum_{i=1}^n \frac{\Gamma(y_i)}{\Gamma(x_i) + \Gamma(y_i)}}{n}.$$

Adding by sides inequalities (2.14) to (2.15), we obtain (2.13). Considering condition $\Gamma(z_i) \geq \Gamma(\omega_i)$,

$$(2.16) \quad (2.12) \Leftrightarrow \sqrt[n]{\prod_{i=1}^n (\Gamma(z_i) - \Gamma(\omega_i))^\beta} \leq \sqrt[n]{\prod_{i=1}^n \Gamma(z_i)} - \sqrt[n]{\prod_{k=1}^n \Gamma(\omega_i)}$$

$$\Leftrightarrow \sqrt[n]{\prod_{i=1}^n (1 - \frac{\Gamma(\omega_i)}{\Gamma(z_i)})} \leq 1 - \sqrt[n]{\prod_{i=1}^n \frac{\Gamma(\omega_i)}{\Gamma(z_i)}}.$$

Then, using the AGM inequality, we easily obtain

$$\begin{aligned}
 (2.17) \quad \sqrt[n]{\prod_{i=1}^n \left(1 - \frac{\Gamma(\omega_i)}{\Gamma(z_i)}\right)} &\leq \left(\frac{\sum_{i=1}^n (1 - \frac{\Gamma(\omega_i)}{\Gamma(z_i)})}{n} \right)^n = \left(\frac{n - \sum_{i=1}^n \frac{\Gamma(\omega_i)}{\Gamma(z_i)}}{n} \right)^n \\
 &\leq \left(\frac{n - n \sqrt[n]{\prod_{i=1}^n \frac{\Gamma(\omega_i)}{\Gamma(z_i)}}}{n} \right)^n = \left(1 - \sqrt[n]{\prod_{i=1}^n \frac{\Gamma(\omega_i)}{\Gamma(z_i)}} \right)^n.
 \end{aligned}$$

Finally, using the inequality (2.10) and Lemma 2.3, we have

$$\begin{aligned}
 \sum_{i=1}^n \frac{(\Gamma(x_i) + \Gamma(y_i))^\alpha}{(\Gamma(z_i) - \Gamma(\omega_i))^\beta} &\geq n \frac{\sqrt[n]{\prod_{i=1}^n (\Gamma(x_i) + \Gamma(y_i))^\alpha}}{\sqrt[n]{\prod_{i=1}^n (\Gamma(z_i) - \Gamma(\omega_i))^\beta}} \\
 &\geq n \frac{\left(\sqrt[n]{\prod_{i=1}^n \Gamma(x_i)} + \sqrt[n]{\prod_{i=1}^n \Gamma(y_i)} \right)^\alpha}{\left(\sqrt[n]{\prod_{i=1}^n \Gamma(z_i)} - \sqrt[n]{\prod_{i=1}^n \Gamma(\omega_i)} \right)^\beta} \\
 &\geq n \frac{(\Gamma(x) + \Gamma(y))^\alpha}{\frac{\sum_{i=1}^n \Gamma(z_k)}{n} - \Gamma(\omega))^\beta} = n \frac{(\Gamma(x) + \Gamma(y))^\alpha}{(\Gamma^*(z) - \Gamma(\omega))^\beta}.
 \end{aligned}$$

The proof is complete. ■

Acknowledgements. The authors thank the referees for valuable comments and suggestions.

References

- [1] V. Krasniqi, F. Merovci, *Inequalities and monotonicity for the ratio of Γ_p functions*, International Journal of Open Problems in Computer Science and Mathematics 3(1) (2010), 1–8.
- [2] G. D. Anderson, S. L. Qiu, *A monotonicity property of the gamma function*, Proc. Amer. Math. Soc. 125 (1997), 3355–3362.
- [3] H. Alzer, *Inequalities for the gamma function*, Proc. Amer. Math. Soc. 128(1) (1999), 141–147.

- [4] H. Alzer, *On some inequalities for the gamma function and psi function*, Math. Comp. 66 (1997), 373–389.
- [5] P. Ivády, *A note on a gamma function inequality*, J. Math. Inequal. 3(2) (2009), 227–236.
- [6] F. Qi, B. N. Guo, *An elegant refinement of a double inequality for the gamma function*, available online at <http://arxiv.org/abs/0902.2509.6>.
- [7] B. N. Guo, F. Qi, *Two new proofs of the complete monotonicity of a function involving the psi function*, Bull. Korean Math. Soc. 47(1) (2010), 103–111.
- [8] H. Alzer, N. Batir, *Monotonicity properties of the gamma function*, Appl. Math. Lett. 20(7) (2007), 778–781.
- [9] D. S. Mitrinovic, *Analytic Inequalities*, Springer-Verlag, New York, 1970.

L. Yin

DEPARTMENT OF MATHEMATICS
BINZHOU UNIVERSITY
BINZHOU CITY
SHANDONG PROVINCE, 256603, CHINA
E-mail: yinli_79@163.com

Z.-M. Song

BEIZHEN MIDDLE SCHOOL
BINZHOU CITY
SHANDONG PROVINCE, 256600, CHINA
E-mail: songzhimin1979@163.com

Received December 17, 2011; revised version March 5, 2012.