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Li Yin, Zhi-Min Song

INEQUALITIES FOR I'r FUNCTION
AND GAMMA FUNCTION

Abstract. In this paper, we present a double inequality for the gamma function
by estimating bounds of I', function. Later, we also give a new inequality of gamma
function.

1. Introduction
It is well known that the classical Euler gamma function may be defined
by
o0
(1.1) I(z)=\t""e"dt z>0.
0
Later, Euler gave another equivalent definition for the I'(z) (see [1])

T

B plp”® B P
(1.2) Fp(fv)—x(x+1),,,(m+p)_x(1+%)...(1+%)’

where lim I'y(x) = I'(x). It is common knowledge that these functions are
pP—00

fundamental and have much extensive applications in mathematical science.
In the past, several authors proved many remarkable inequalities for I'(x).
In 1997, G. D. Anderson and S. L. Qiu [2]| presented the following upper and
lower bounds for I'(z):

(1.3) 17O () < 2™ > 1.

Actually, the authors proved more. Next, H. Alzer proved a companion of
(1.3) in [3]. He showed that if z € (1,00), then

(1.4) 2 D=C T () < 2Ple-1-C
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(5 -0)

was valid with the best possible constants a = and 8 = 1. This
improved the bounds given in (1.3). Moreover, he showed that if x € (0, 1),
7r2
then (1.4) held with the best possible constants « =1 —C and § = (?2—0).
For potential availability to interested readers, we list the collection as ref-
erences of this paper [4]-[8]. The aim of this article is to establish a new
inequality for the gamma function by estimating bound of I',. Finally, we

also give an interesting inequality involving gamma function.

2. Main results
LEMMA 2.1. Let x € (0,1), then

(z + n)=tm _ (x+n)(z+n-1)---(x+1) - (x +n)*tn
xTne n! xTnn

(2.1)

Proof. The function

(22) f(z)=(x+n)ln(x+n)—xzlnzr—-nlnn+Inn! — Zln(:c +1)
i=1
is correctly defined. Simple computation yields

n

(2.3) f(z) =In(z +n) —lnx—zxii
i=1

and

(2:4) (@) = x le n é * Z (z 4{ i)?

=1
n

1 1 1
< - =0.
ztn x+;(x+i—1)(x+i)

So the function f’(z) is strictly decreasing on (0,+00). Since f’(oc0) = 0,
hence, f'(z) > f'(o0) = 0. As the function f(x) is strictly increasing on
(0,1), we have

1
(2.5) O:f(())<f(:c)<f(1):nln(1+ﬁ)<1.
The proof of Lemma 2.1 is complete. =

LEMMA 2.2. Let x € (0,1), then
xx—lxp+x xw—lxp+xe

e < S G

Proof. Using Lemma 2.1 and (1.2), we easily obtain (2.6). m

(2.6)
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n

LEMMA 2.3. |9, p. 390, 3.6.48| Let x; € R*,i=1,2---n and > x; = nx,
=1

then

(2.7) [Ir@) = @)
THEOREM 2.1. Let x € (0,1), then
(2.8) 2®le™® < D(x) < 2% el 2.

Proof. Let p — 400 on the both parts of the inequality (2.6). Using the
equality of limit lim (;5)"*P = e™%, we have the inequality (2.8).
P—+00 p

THEOREM 2.2. Let x;,v;, zi,w; € RY,i=1,2---n,a > 0,3 > 0 such that

n n n
E T; = nx, § Yi = ny, E w; = nw,
=1 j= i=1

i=1
Then
(D) T T L (@) + ()"
2 ()~ Ten))? = ")~ )

i=1

Proof. First, we prove the following inequality

\/H (2:) + T(y))2 (\/erz +\/ r<yz->>
(2.10) ! 5
\/H =) <\/H He) \/ rw)
=1

In fact, the inequality (2.10) is equivalent to the following two inequalities:

=

o
n

(2.11) VI @) T = | ¢ TIT@) + ¢ T w)
=1 =1

i=1

and
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B
(2.12) $ [T (C(z) - Dw))? < (J IR J Hrm)) .
=1 ) i

It is easily known that

(213)  (2.11) Jﬁ (i) + T(yi)) > Jﬁf(w)ﬂL v ﬁf(yi)
=1 =1 k=1

[ D) 11 0(y)
] 2 n _ =1 4 _ i=1
{1 () + D) A I () + )

ﬁ F<mz) i Yi)
(2.14) | —= < =1
[T (T(:) + () "
and
f[ L) ZWF)@)
(2.15) " <= :
[T (0@) + () "

Adding by sides inequalities (2.14) to (2.15), we obtain (2.13). Considering
condition I'(z;) > I'(w;),

(2.16) (2.12) & KH(P(%) —D(w)) < dl‘[r(zi) - dnr(wi)

o on ﬁ(1—r(w?))§1— n ﬁr(%)'
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Then, using the AGM inequality, we easily obtain

. | > (- Fe) n—y He
CRTIRAN § N E T2 I = Sy R (=
[(z)) — n

i=1

The proof is complete. m
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