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HERMITE–HADAMARD TYPE INEQUALITIES
VIA m AND (α,m)-CONVEXITY

Abstract. In this paper, two new integral inequalities of Hadamard-type for product
of m and (α,m)- convex functions and their applications for special means are given.

1. Introduction
The following definition is well known in the literature: A function

f : I → R, ∅ 6= I ⊆ R, is said to be convex on I if inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
holds, for all x, y ∈ I and t ∈ [0, 1]. Geometrically, this means that if P,Q
and R are three distinct points on the graph of f with Q between P and R,
then Q is on or below chord PR. Let f : I ⊆ R → R be a convex mapping
and a, b ∈ I with a < b. The following double inequality:

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b�

a

f(x)dx ≤ f(a) + f(b)

2

is known in the literature as Hadamard’s inequality for convex mapping.
Note that some of the classical inequalities for means can be derived from
(1.1) for appropriate particular selections of the mapping f . Both inequal-
ities hold in the reversed direction if f is concave. The inequalities (1.1),
which have many uses in a variety of settings, are of the cornerstones in math-
ematical analysis and optimization. New proofs, extensions, and considering
its refinements, generalizations, numerous interpolations and applications in
the theory of special means and information theory have been provided by
many reports. See [1–7] for some results on generalizations, extensions and
applications of the Hermite–Hadamard inequalities.
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Moreover, in [7], Toader introduced the class of m-convex functions as
the following:

Definition 1. The function f : [0, b] → R is said to be m-convex, where
m ∈ [0, 1], if for every x, y ∈ [0, b] and t ∈ [0, 1], we have

(1.2) f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y).
Moreover, in [4], Miheşan introduced the class of (α,m)-convex functions

as the following:

Definition 2. The function f : [0, b] → R is said to be (α,m)-convex,
where (α,m) ∈ [0, 1]2, if for every x, y ∈ [0, b] and t ∈ [0, 1], we have

(1.3) f(tx+m(1− t)y) ≤ tαf(x) +m(1− tα)f(y).
Remark 1. Note that for (α,m)∈{(0, 0), (α, 0), (1, 0), (1,m), (1, 1), (α, 1)}
one obtains the following classes of functions: increasing, α-starshaped, star-
shaped, m-convex, convex and α-convex.

In [6], Pachpatte established two new Hadamard-type inequalities for
products of convex functions.

Theorem 1. [6] Let f, g : [a, b]→ [0,∞) be convex functions on [a, b] ⊂ R,
a < b. Then

(1.4)
1

b− a

b�

a

f(x)g(x)dx ≤ 1

3
M(a, b) +

1

6
N(a, b)

and

(1.5) 2f

(
a+ b

2

)
g

(
a+ b

2

)
≤ 1

b− a

b�

a

f(x)g(x)dx+
1

6
M(a, b) +

1

3
N(a, b)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Up to today, there are many reports on the two convex functions, two
s-convex functions, twom-convex functions or on the product of the s-convex
function with an ordinary convex function. In the present study, in addition
to previous literature, the some new inequalities on the product of classes
of convex functions which are different from each other and from standard
convex function will be obtained, and some applications in the special means
for the obtained inequalities will be provided. The main purpose of this study
is to establish new inequalities as in the theorem given above, but now we
do aiming the product of different kinds of convex functions.

2. Main result

Theorem 2. Let a, b ∈ [0,∞), a < b and let f, g : [a, b] → R be non-
negative integrable functions, either increasing or decreasing synchronously
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and f, g, fg ∈ L1([a, b]). If f, g are (α1,m1), (α2,m2)-convex on [a, b] for
(α1,m1), (α2,m2) ∈ [0, 1]× (ab , 1], then

(2.1)
1

m1b− a

m1b�

a

f(x)dx.
1

m2b− a

m2b�

a

g(x)dx ≤ 1

b− a

b�

a

f(x)g(x)dx

≤ Sf(a)g(a) + Ef(a)g(b) +Mf(b)g(a) +Af(b)g(b)

where S = 1
α1+α2+1 , E = m2α2

(α1+α2+1)(α1+1) , M = m1α1
(α1+α2+1)(α2+1) ,

A = m1m2α1α2(α1+α2+2)
(α1+α2+1)(α1+1)(α2+1) .

Proof. Since f, g are (α1,m1), (α2,m2)-convex on [a, b] for (α1,m1),
(α2,m2) ∈ [0, 1] × (ab , 1] and as they are the functions either increasing
or decreasing synchronously, we have,

f(ta+m1(1− t)b) ≤ tα1f(a) +m1(1− tα1)f(b),

g(ta+m2(1− t)b) ≤ tα2g(a) +m2(1− tα2)g(b).

Multiplying the inequalities above on either side (i.e. from left to left and
right to right), we get

(2.2) f(ta+m1(1− t)b)g(ta+m2(1− t)b)
≤ [tα1f(a) +m1(1− tα1)f(b)][tα2g(a) +m2(1− tα2)g(b)]

= tα1tα2f(a)g(a) +m2t
α1(1− tα2)f(a)g(b)

+m1t
α2(1− tα1)f(b)g(a) +m1m2(1− tα1)(1− tα2)f(b)g(b).

Since f, g : [a, b]→ R are integrable functions, either increasing or decreasing
synchronously, by using the following Chebyshev inequality (see [5, 8])

(2.3)
1

b− a

b�

a

f(x)g(x)dx ≥ 1

b− a

b�

a

f(x)dx
1

b− a

b�

a

g(x)dx

and generalization Szegö and Weinberger, we can write

1�

0

f(ta+m1(1− t)b)g(ta+m2(1− t)b)dt

≥
1�

0

f(ta+m1(1− t)b)dt
1�

0

g(ta+m2(1− t)b)dt

=
1

m1b− a

m1b�

a

f(x)dx.
1

m2b− a

m2b�

a

g(x)dx.

On the other hand, integrating both sides of the inequality (2.2) according
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to t over [0, 1], we obtain

1

m1b− a

m1b�

a

f(x)dx.
1

m2b− a

m2b�

a

g(x)dx

≤ f(a)g(a)
1�

0

tα1+α2dt+m2f(a)g(b)
1�

0

tα1(1− tα2)dt

+m1f(b)g(a)
1�

0

tα2(1− tα1)dt+m1m2f(b)g(b)
1�

0

(1− tα1)(1− tα2)dt

=
f(a)g(a)

α1 + α2 + 1
+ f(a)g(b)

m2α2

(α1 + α2 + 1)(α1 + 1)

+f(b)g(a)
m1α1

(α1 + α2 + 1)(α2 + 1)
+ f(b)g(b)

m1m2α1α2(α1 + α2 + 2)

(α1 + α2 + 1)(α1 + 1)(α2 + 1)
.

The proof is complete.

Remark 2. In Theorem 2, if we particularly choose m1 = m2 = α1 =
α2 = 1 then (2.1) is reduced to (1.4). In addition, if we choose g(x) = 1,
then we have the right side of Hermite–Hadamard inequality.

Theorem 3. Let a, b ∈ [0,∞), a < b such that f, g : [a, b] → R be non-
negative integrable functions, either increasing or decreasing synchronously,
and f, g, fg ∈ L1([a, b]). If f is m1-convex , g is (α,m2)-convex on [a, b], for
α ∈ [0, 1] and m1,2 ∈ (0, 1] then

(2.4)
1

(b− a)2
b�

a

f(x)dx.
b�

a

g(x)dx ≤ min{E,L, I, F}

where

E = f(a)g(a)
1

α+ 2
+m2f(a)g

(
b

m2

)
α

2(α+ 2)

+m1g(a)f

(
b

m1

)
1

(α+ 1)(α+ 2)

+m1m2f

(
b

m1

)
g

(
b

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
,

L = f(b)g(b)
1

α+ 2
+m2f(b)g

(
a

m2

)
α

2(α+ 2)

+m1g(b)f

(
a

m1

)
1

(α+ 1)(α+ 2)

+m1m2f

(
a

m1

)
g

(
a

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
,
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I = f(b)g(a)
1

α+ 2
+m2f(b)g

(
b

m2

)
α

2(α+ 2)

+m1g(a)f

(
a

m1

)
1

(α+ 1)(α+ 2)

+m1m2f

(
a

m1

)
g

(
b

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
,

F = f(a)g(b)
1

α+ 2
+m2f(a)g

(
a

m2

)
α

2(α+ 2)

+m1g(b)f

(
b

m1

)
1

(α+ 1)(α+ 2)

+m1m2f

(
b

m1

)
g

(
a

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
.

Proof. Since f is m1-convex , g is (α,m2)-convex on [a, b], for α ∈ [0, 1] and
m1,2 ∈ (0, 1], we have

f(ta+ (1− t)b) = f

(
ta+m1(1− t)

b

m1

)
≤ tf(a) +m1(1− t)f

(
b

m1

)
,

g(ta+ (1− t)b) = g

(
ta+m2(1− t)

b

m2

)
≤ tαg(a) +m2(1− tα)g

(
b

m2

)
.

Since f and g are nonnegative for ∀t ∈ [0, 1], we get

(2.5) f(ta+ (1− t)b)g(ta+ (1− t)b)

≤ f(a)g(a)tα+1 +m2f(a)g

(
b

m2

)
t(1− tα)

+m1g(a)f

(
b

m1

)
tα(1− t) +m1m2f

(
b

m1

)
g

(
b

m2

)
(1− t)(1− tα).

Integrating both sides of the inequality (2.5) according to t over [0, 1], we
obtain

1�

0

f(ta+ (1− t)b)g(ta+ (1− t)b)dt

≤ f(a)g(a)
1�

0

tα+1dt+m2f(a)g

(
b

m2

) 1�

0

t(1− tα)dt

+m1g(a)f

(
b

m1

) 1�

0

tα(1− t)dt

+m1m2f

(
b

m1

)
g

(
b

m2

) 1�

0

(1− t)(1− tα)dt
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= f(a)g(a)
1

α+ 2
+m2f(a)g

(
b

m2

)
α

2(α+ 2)

+m1g(a)f

(
b

m1

)
1

(α+ 1)(α+ 2)

+m1m2f

(
b

m1

)
g

(
b

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
.

Similarly, we can write
1�

0

f(ta+ (1− t)b)g(ta+ (1− t)b)dt

≤ f(b)g(b) 1

α+ 2
+m2f(b)g

(
a

m2

)
α

2(α+ 2)

+m1g(b)f

(
a

m1

)
1

(α+ 1)(α+ 2)

+m1m2f

(
a

m1

)
g

(
a

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
and

1�

0

f(ta+ (1− t)b)g(ta+ (1− t)b)dt

≤ f(b)g(a) 1

α+ 2
+m2f(b)g

(
b

m2

)
α

2(α+ 2)

+m1g(a)f

(
a

m1

)
1

(α+ 1)(α+ 2)

+m1m2f

(
a

m1

)
g

(
b

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
and

1�

0

f(ta+ (1− t)b)g(ta+ (1− t)b)dt

≤ f(a)g(b) 1

α+ 2
+m2f(a)g

(
a

m2

)
α

2(α+ 2)

+m1g(b)f

(
b

m1

)
1

(α+ 1)(α+ 2)

+ +m1m2f

(
b

m1

)
g

(
a

m2

)
α(α+ 3)

2(α+ 1)(α+ 2)
.

By applying Chebychev integral inequality

1

b− a

b�

a

f(x)g(x)dx ≥ 1

(b− a)2
b�

a

f(x)dx
b�

a

g(x)dx

on the four different inequalities given above, we complete the proof.
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Remark 3. In Theorem 3, if we choose m1 = m2 = α = 1 then (2.4) is
reduced to

1

b− a

b�

a

f(x)g(x)dx ≤ min

{
M(a, b) +N(a, b)

3
,
M(a, b)

6
+
N(a, b)

3

}
.

In addition, if we choose g(x) = 1, then (2.4) is reduced to

1

b− a

b�

a

f(x)dx ≤ min

{
2
f(a) + f(b)

3
,
f(a) + f(b)

2

}
.

3. Applications to some special means
We shall consider the means as arbitrary positive real numbers a, b, a 6= b.

In the resources following are included also see [2, pp.12],

The quadratic mean: K = K(a, b) =
√

a2+b2

2 , a, b > 0.

The p-quadratic mean: Kp = Kp(a, b) =
√

a2p+b2p

2 , a, b > 0.

The geometric mean: G = G(a, b) =
√
ab, a, b > 0.

The p-logarithmic mean: Lp = Lp(a, b) =

{
a if a = b

[ b
p+1−ap+1

(p+1)(b−a) ]
1
p if a 6= b

}
,

a 6= b, a, b > 0.
Now, we present some applications of the result in Section 2 to the special

means of real numbers. The following propositions hold:

Proposition 1. Let 0 < a < b <∞, and then we have

(3.1) Lpp(a,m1b)L
p
p(a,m2b) ≤ L2p

2p(a, b) ≤ Sa
2p + (E +M)(ab)p +Ab2p,

where S,E,M,A is as in the (2.1).

Proof. If we choose in (2.1), f, g : [0,∞) → [0,∞), f(x) = g(x) = xp with
p ≥ 1, then we obtain

1

m1b− a

m1b�

a

xpdx.
1

m2b− a

m2b�

a

xpdx

=
1

m1b− a

[
xp+1

p+ 1

]m1b

a

.
1

m2b− a

[
xp+1

p+ 1

]m2b

a

=
(m1b)

p+1 − ap+1

(m1b− a)(p+ 1)

(m2b)
p+1 − ap+1

(m2b− a)(p+ 1)
= Lpp(a,m1b)L

p
p(a,m2b)
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≤ 1

b− a

b�

a

x2pdx =
1

b− a

[
x2p+1

2p+ 1

]b
a

=
b2p+1 − a2p+1

2p+ 1
= L2p

2p(a, b)

≤ Sa2p + (E +M)(ab)p +Ab2p

and the proof is complete.

Remark 4. In Proposition 1, if we choose m1 = m2 = α1 = α2 = 1 then
(3.1) is reduced to

L2p
p (a, b) ≤ L2p

2p(a, b) ≤
a2p + apbp + b2p

3
.

Proposition 2. Let 0 < a < b <∞, and then we have

(3.2) L2p
p (a, b) ≤ 1

3
(2K2

p(a, b) +G2p(a, b)).

Proof. If we choose in (2.4), f, g : [0,∞) → [0,∞), f(x) = g(x) = xp with
p ≥ 1 and α = m1 = m2 = 1, we have that E;

1

(b− a)2
b�

a

xpdx
b�

a

xpdx = L2p
p (a, b)

≤ a2p 1

α+ 2
+m1−p

2 (ab)p
α

2(α+ 2)
+m1−p

1 (ab)p
1

(α+ 1)(α+ 2)

+ (m1m2)
1−pb2p

α(α+ 3)

2(α+ 1)(α+ 2)

=
a2p

3
+

(ab)p

3
+
b2p

3
=

1

3
(a2p + (ab)p + b2p)

=
1

3
(2
a2p + b2p

2
+ (ab)p) =

1

3
(2K2

p(a, b) +G2p(a, b))

and the proof is complete.
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