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Mevliit Tung

HERMITE-HADAMARD TYPE INEQUALITIES
VIA m AND (o, m)-CONVEXITY

Abstract. In this paper, two new integral inequalities of Hadamard-type for product
of m and (a, m)- convex functions and their applications for special means are given.

1. Introduction

The following definition is well known in the literature: A function
f:I—R,0#1CR,issaid to be convex on I if inequality

fltz+ (1 —t)y) <tf(z)+(1—1)f(y)
holds, for all 2,y € I and t € [0,1]. Geometrically, this means that if P,Q
and R are three distinct points on the graph of f with () between P and R,
then @ is on or below chord PR. Let f: I CR — R be a convex mapping
and a,b € I with a < b. The following double inequality:

b
(1.1) f<a+b)< 1 Sf(x)dng(a);f(b)

2 “b—a;

is known in the literature as Hadamard’s inequality for convex mapping.
Note that some of the classical inequalities for means can be derived from
(1.1) for appropriate particular selections of the mapping f. Both inequal-
ities hold in the reversed direction if f is concave. The inequalities (1.1),
which have many uses in a variety of settings, are of the cornerstones in math-
ematical analysis and optimization. New proofs, extensions, and considering
its refinements, generalizations, numerous interpolations and applications in
the theory of special means and information theory have been provided by
many reports. See [1-7| for some results on generalizations, extensions and
applications of the Hermite-Hadamard inequalities.
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Moreover, in |7], Toader introduced the class of m-convex functions as
the following:

DEFINITION 1. The function f : [0,b] — R is said to be m-convex, where
m € [0, 1], if for every z,y € [0,b] and ¢ € [0, 1], we have
(1.2) fltz+m(l—t)y) <tf(z) +m(l —t)f(y).

Moreover, in [4], Mihesan introduced the class of (a, m)-convex functions
as the following:

DEFINITION 2. The function f : [0,b] — R is said to be (a, m)-convex,
where (o, m) € [0,1]?, if for every z,y € [0,b] and ¢ € [0, 1], we have

(1.3) [tz +m(1—t)y) < t*f(x) + m(1 —1%)f(y).

REMARK 1. Note that for (o, m) €{(0,0), (o, 0), (1,0), (1,m), (1,1), (e, 1)}
one obtains the following classes of functions: increasing, a-starshaped, star-
shaped, m-convex, convex and a-convex.

In [6], Pachpatte established two new Hadamard-type inequalities for
products of convex functions.
THEOREM 1. [6] Let f, g : [a,b] — [0,00) be convexr functions on [a,b] C R,
a <b. Then

1P 1 1
(1.4) — Sf(x)g(:v)dx < gM(a, b) + EN(CL, b)
and
b
15 2 (5 )o(“37) < 2, [ @atodds + M la.b) + 3N (@b

a

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).

Up to today, there are many reports on the two convex functions, two
s-convex functions, two m-convex functions or on the product of the s-convex
function with an ordinary convex function. In the present study, in addition
to previous literature, the some new inequalities on the product of classes
of convex functions which are different from each other and from standard
convex function will be obtained, and some applications in the special means
for the obtained inequalities will be provided. The main purpose of this study
is to establish new inequalities as in the theorem given above, but now we
do aiming the product of different kinds of convex functions.

2. Main result

THEOREM 2. Let a,b € [0,00), a < b and let f,g : [a,b] — R be non-
negative integrable functions, either increasing or decreasing synchronously
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and f,q,fg € L1([a,b]). If f,g9 are (a1,m1), (aa, ma)-convex on [a,b] for

(a1,m1), (a2,ma) € [0,1] x (%,1], then
1 m1b 1 mab b
(2.1) o —— §L f(x)dx.mzb_a § g(z d:cgb_a(xlf
< 5f(a)g(a) + Ef(a)g(b) + M f(b)g(a) + Af(b)g(b)
where S = m, E = m’ M = m7

__mimaajag(ar+as+2)
T (artazt+1) (a1 +1)(az2+1) "

Proof. Since f,g are (ai,mi), (a2, ma)-convex on [a,b] for (ai,mp),
(a2,m2) € [0,1] x (%,1] and as they are the functions either increasing
or decreasing synchronously, we have,

f(ta+my(1=1)b) <t f(a) + ma(1—t*)f (D),

g(ta+ma(1 —1t)b) < t*?g(a) + ma(1l —t*?)g(b).
Multiplying the inequalities above on either side (i.e. from left to left and
right to right), we get

(2.2)  f(ta+mi(1 —1t)b)g(ta + mo(1 —t)b)
< [t fa) +ma(1 = t*1) f(0)][t**g(a) + ma(1 — £72)g(b)]
= 112 f(a)g(a) + mat™ (1 — 1) f(a)g(b)
+mat®? (1 —t%) f(b)g(a) + mama(1 — 1) (1 = °2) f(b)g(b).

Since f, g : [a,b] — R are integrable functions, either increasing or decreasing
synchronously, by using the following Chebyshev inequality (see [5, 8])

1 ° 1 ° 1 °
(23) T | f(2)g(z)da > " a | fla)dey— {g(x)da

and generalization Szegd and Weinberger, we can write

1
| f(ta+m1(1 = t)b)g(ta + ma(1 — t)b)dt

0
1 1
> | f(ta+ma(1 = t)b)dt | g(ta + ma(1 — t)b)dt
0 0
1 mib 1 mob
= _a S f(:p)dm.me — S g(x)dx.

On the other hand, integrating both sides of the inequality (2.2) according
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to t over [0, 1], we obtain

1 mab 1 mab
e ) J@E | e
! 1
< fa)g(a) |11 +*2dt +maf(a)g(b) | £ (1 — £°2)dt
0 0
: 1
+mrf(b)g(a) | £92(1 — t%)dt + mimaf (b)g(b) (1 — t%1)(1 — t°2)dt
0 0
_ Sl -
S artartl 9 (1 + a2 +1)(a1 +1)
+f(b)g(a) m1o1 + f(b)g(b) mimeaias (o + ag + 2)

(a1 +ag+ 1)(az+1)

The proof is complete. m

(a1 +az +1)(e1 +1)(a2 + 1)

REMARK 2. In Theorem 2, if we particularly choose my = mo = a1 =
ag = 1 then (2.1) is reduced to (1.4). In addition, if we choose g(x) = 1,
then we have the right side of Hermite-Hadamard inequality.

THEOREM 3. Let a,b € [0,00), a < b such that f,g : [a,b] — R be non-
negative integrable functions, either increasing or decreasing synchronously,
and f,g, fg € L1([a,b]). If f is my-convex , g is (a, m2)-convex on |a,b], for
a € [0,1] and my 2 € (0,1] then

b b
(2.4) 7 1@)2 [ £(2)dz. | g(x)dz < min{E, L1, F}
where
B = f@o0) 5 + maf@o( ) 52

+mag(a)f (;;1) (a+1)1(a+2)
+myma f (T,Z)g(nl) 2(0[(250;)—(%;:_ 2)’

L= F000) 5 + maf 00 () 5

a0 () et

+mimaf <%>9<£2> Q(QOjioi)—(Fo?L 2)’
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I = f(b)g(a)— i 5+ mzf(b)g<£2> ﬁ
ems@f () i
+mimaf (51)9(:@2) Q(aoioi)j(Lo?)Jr 2)’

P = J(@gt) g + maf(ale( ) 5t

b |
* mlg(b)f<ml> @t D(at2)

+mymaf <n31>9 (TZQ) 2(aoioi)j(L0?)+ 2)

Proof. Since f is mj-convex , g is («, mg)-convex on [a, b, for a € [0, 1] and
mi12 € (0,1], we have

flta+ (1 —1t)b) = f(ta—f—ml(l —t)

b) <tf(a) +mi(l— t)f<b>7

mi
glta+ (1— 1)) = g<ta +ma(1 — t)ni) < () + ma(1 — ta)g<>.

Since f and g are nonnegative for ¥t € [0, 1], we get

(2.5)  f(ta+ (1 —=t)b)g(ta+ (1 —t)b)

< @l + maf(a)g( o )it1 - )
gl (e =0+ mima ()o@ - 00— )

m2
Integrating both sides of the inequality (2.5) according to ¢ over [0, 1], we
obtain

1
| f(ta+ (1= t)b)g(ta+ (1 — t)b)dt
0

1
sfmmmnﬂ“ﬁ+mﬁmm(b)

0 ma2

+mig(a < > t*(1—t)d

1
S
0
+m1m2f< >g<b>§1—t V(1 —t*)dt

ma

O e

(1 — tv)dt
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= f(a)g(a)

1 b «
ar2 m2f(a)g<m2> 2(a + 2)

+mug(a)f <721> (a+1)1(a+2)
+ mymaf (771)9(7722) Z(ao—foi)—i(—j:’ 2)

Similarly, we can write
1
| f(ta+ (1= t)b)g(ta+ (1 —t)b)dt
0

sf@mwa12+mﬁwmcé)%;1®

a 1
+mag(b) f <m1> —(a (@t 2)
and

et (2o 2) gt
1

| f(ta + (1 —t)b)g(ta+ (1 —t)b)dt
0

< 100 +mar (L) 5

+mw@ﬁ@i>@+5@+%
and

+mymaf (;;)9 (Y;) 2<a0j£0£)"('jl_ 2)
1

| f(ta+ (1 —t)b)g(ta+ (1 — t)b)dt
0

o+ 2 mo a+2)
b 1
+mg(b)f <m1> @+ D(at2)
b ala+3)

on the four different inequalities given above, we complete the proof. m
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REMARK 3. In Theorem 3, if we choose m; = mg = a = 1 then (2.4) is
reduced to

b
@iéfwmmwxSmm{MWﬁk?M@M,M%w)+N%th

In addition, if we choose g(x) = 1, then (2.4) is reduced to

10 o f@)+ f(b) fla)+ f(b)
5o aéf(:):)dx < mm{Q 3 , 5 }

3. Applications to some special means

We shall consider the means as arbitrary positive real numbers a, b, a # b.
In the resources following are included also see |2, pp.12|,

The quadratic mean: K = K(a,b) = \/%, a,b> 0.

a?P4-b2p

The p-quadratic mean: K, = K,(a,b) = 5 —> a,b > 0.
The geometric mean: G = G(a,b) = Vab, a,b > 0.

The p-logarithmi L, = Ly(a,b) {a ifa:b}
e p-logarithmic mean: L, = Ly(a,b) = gl _gptigl ,
[m] p lf a ?é b
a#b,a,b>0.
Now, we present some applications of the result in Section 2 to the special
means of real numbers. The following propositions hold:

PROPOSITION 1. Let 0 < a < b < 0o, and then we have
(3.1)  LB(a,mib)LB(a, mab) < L3E(a,b) < Sa® + (E + M)(ab)? + Ab*,
where S, E, M, A is as in the (2.1).

Proof. If we choose in (2.1), f,g:[0,00) — [0,00), f(z) = g(z) = aP with
p > 1, then we obtain

1 mi1b mob

1
Pdp. ———
S v :Umgb—a

1 gp 1 ]mib 1 g1 ]mab
mlb—a[p+1]a 'mgb—a{p—i—l]
(mlb)p“ — gbtl (mgb)pH — gbt1

N (mib—a)(p+1) (meb—a)(p+1) = Lg(avmlb)Lg(a, mab)

a
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= L3P (a,b)

b 2p+1 70 2p+1 _ 2p+1
< 1 Sprdac: 1 T _b a
b—a; b—a|2p+1 2p+1

< Sa® + (E + M)(ab)? + Ab?

and the proof is complete. =

a

REMARK 4. In Proposition 1, if we choose mq = mo = a7 = a9 = 1 then
(3.1) is reduced to

a® + aPbP + b?P
3 .
PROPOSITION 2. Let 0 < a < b < oo, and then we have

LP(a,b) < L3b(a,b) <

(3.2) L2(a,b) < %(2}(5(@, b) + G2 (a, ).

Proof. If we choose in (2.4), f,g:[0,00) — [0,00), f(z) = g(z) = 2P with
p>1and @ =my = my =1, we have that E;

b b
1
b—a) Sxpd:v S xPdr = sz(a, b)
<ot +ml_p(ab)pL+ml_p(ab)p;
- a+2 2 2(a + 2) ! (a+1)(a+2)
ala+3)

+ (m1m2)17pb2p2(a LD

a®®  (ab)? @ 1

- — —(q2p b)P 4+ p2P
Tt 3 T3 3(a + (ab)? + b*P)
1. a* +b* 1
_ g(2% +(ab)) = 5 (2K2(a,b) + G(a,b))

and the proof is complete. n
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