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Janusz Matkowski

MEAN-VALUE THEOREMS AND
SOME SYMMETRIC MEANS

Abstract. Some variants of the Lagrange and Cauchy mean-value theorems lead
to the conclusion that means, in general, are not symmetric. They are symmetric iff
they coincide (respectively) with the Lagrange and Cauchy means. Under some regularity
assumptions, we determine the form of all the relevant symmetric means.

Introduction

In [10], it has been proved that, under some natural conditions, if f and
g are real differentiable functions in an interval I C R, then there exists a
unique mean : I? — I such that

S @) — @) f
9(y) — g(MU9(z,y)) ¢
If the mean M9 is symmetric, then it coincides with the Cauchy mean
Cl/9] generated by f and g (cf. Bullen, Mitrinovi¢, Vasié¢ [1], Bullen [2]). If

g = id |1 we denote this mean by M 1. 1f M1 is symmetric, then it is equal
to the Lagrange mean L.

(M9 (2, y)), zy€l, x#y.

At this background, the following problem arises: determine all functions
f and ¢ such that the means M1 and M9 are symmetric.

In the present paper, we solve this problem assuming that the functions
f and g are three times continously differentiable. In particular, we show
that M/ is symmetric iff f is a non-affine homographic function. This fact
allows to establish the effective form of all symmetric M9 means. Note
that, contrary to the case of Cauchy means, it is rather difficult problem to
find general form of M9}, even in the case when ¢ is the identity function

(ct. [10]).
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In section 1, for a given function f, we present a variant of the Lagrange
mean-value theorem and a result on the existence and uniqueness of a rel-
evant mean M/ that slightly improve some results of [10]. In section 2,
we show that (under the above mentioned regularity assumptions) M is
symmetric iff, for some real ¢, it is the translated c-geometric mean (Theo-
rem 3). In section 3, for a given functions f and g, we prove a variant of the
Cauchy mean-value theorem, and we give conditions guarantying the exis-
tence of a relevant unique strict and continuous mean M9, According to
the main result of section 4, the mean M9 is symmetric iff it is g-conjugate
of a c-translated geometric mean. We also note that, as ¢ — oo, the point-
wise limit of g-conjugate of c-translated quasi-geometric mean tends to the
quasi-arithmetic mean generated by g.

Some symmetric counterparts of the Lagrange and Cauchy mean-value
theorems is presented in [8] (cf. also [9] where some applications are given).
The weighted extensions of the Cauchy means are considered in [7]. The
mean-type mappings, their iterates, and invariant means are treated in [3]-[6].

1. A variant of the Lagrange mean-value theorem and the relevant
means

THEOREM 1. Let f : [a,b] — R be differentiable on (a,b) and continuous
at a and b. Then
(1): (]10]) there is n € (a,b) such that
f(n) B f(a) _pt .
bh— n - f (77)7

(ii): if moreover the function

f(z) — f(a)

(a,b) >z — r—

— f'(x) s strictly monotonic,

then the point n € (a,b) is unique.
Part (i), by the Rolle theorem, follows from the fact that ¢ : [a,b] — R,
p(x) == [g(b) — g(@)] [f(x) — f(a)], =€ [a,b],

is continuous in [a,b] and p(a) = 0 = ¢(b) ([10], Corollary 1). Part (ii) is an
immediate consequence of the strict monotonicity of the assumed function.

REMARK 1. The assumption of part (ii) is satisfied if f is increasing and
g’ is strictly decreasing or if f is decreasing and ¢’ is strictly increasing.

Let I C R be a nontrivial interval. Recall that a function M : I? — T is
called a mean in I if it is internal, that is if

min(z,y) < M(z,y) < max(z,y), forall z,y€l.
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The mean M is called strict if these inequalities are strict, for all z,y € I,
x # vy, and symmetric if M (x,y) = M (y,z), for all z,y € I.

THEOREM 2. Suppose that I C R is an open interval, f : I — R is
continuously differentiable and f'(x) # 0, for all x € L. Then

(i): ([10]) if for every z,y € I there is a unique mean-value M (x,y) such
that

f(M(z,y)) = f(z) = f'(M(z,9))(y — M(2,y)),  x,y€l,
then M is continuous;
(ii): if f is increasing (decreasing), and f' is strictly decreasing (strictly

increasing) in I, then there exists a unique strict continuous mean
MU 12 5 T such that

f(MY(z,y)) - f(x)
y— M[ﬂ(xay)

Proof. Part (i) coincides with the first part of Theorem 3 in [10].

To prove part (ii) assume, for instance, that f increasing and f’ is strictly
decreasing. Then, for all arbitrary fixed x,y € I, © < y, the function

:fI(M[f](xvy))v x,yEI, .’L‘#y

[z,y] 2t — f(t) — f(x) is increasing,
the function
[x,y) 2t — y —t is strictly decreasing and positive,

and, consequently, for all z,y € I, x < y, the function

f(t) = f(z)

P f'(t) is strictly increasing.
y [r—

[x,y) >t —
This implies the uniqueness on the mean M in I. In view of part (i), f is
continuous. =

REMARK 2. This result improves Theorem 3 in [10] where, to guaran-

tee the uniqueness of the mean, it is assumed that f is twice continuously
differentiable and f'f” < 0 in I.

The Lagrange mean-value theorem can be formulated in the following
way. If a function f : I — R is differentiable, then there exists a strict
symmetric mean M : I? — I such that, for all z,y € I,x # y,

W = f'(M(z,y)).

If f’ is one-to-one then, obviously, M is uniquely determined. We denote
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this mean by LU Thus
n—1(f=)-f(y)
L[f}(%y) — {(f) ( —y ) , for x#y,

x, for ==y,
and it is called a Lagrange mean generated by f.

EXAMPLE 1. For f(x) = 22, we easily get

ﬂﬂﬂ@w)=%<v&ﬁ+y”+@7 z,y € R,

which shows that MU is not symmetric. Of course, this mean is not a
Lagrange one.

2. Symmetric M/l means
We begin this section with

LEMMA 1. Suppose that f : I — R is differentiable, f' is one-to-one and
the mean MU : 12 — I exists.

(i): The mean MU is symmetric if and only if MUl = L/,
(ii): If MUl = LUY then f satisfies the functional equation
(1) (y—a) f(MI(,) + (f(y) = f(x)) MU (z,y)
:yf(y)_xf(x)v x,y €l
Proof. To prove the first part suppose that MU (z,y) = MU(y, z), for all
x,y € I. Then we have
and

F(MW@,y) = 1) = £ (MI@,p) [2 - M@y)],  wyel
Subtracting the respective sides of these equalities, we get
Fo) - @) =1 (M) (-2),  wyel,
which proves that MUl = LIl The converse implication is obvious.

Now, if M} = LI then
f(z) = f(y)

FOI @g) ~ f&) _ .
y—M[f](x,y) —f(Mm(x,y))—xi_y, rz,y e l,x #y,

whence we get equation (1). m

THEOREM 3. Let a function f: I — R be three times continuously differ-
entiable and let ' be one-to-one. Suppose that MU exists. Then

M = ]
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if and only if f is a non-affine homographic function, that is, if

ar+b
= I
f(z) e zel,

for some a,b,c € R such that ac — b # 0.

Proof. Suppose that MUl = LI/1in I. From (1), we get

(2) (y—2)f(M(z,y)+(fy) — f(2)) M(z,y) =yf(y)—xf(x), z,y€l,
where

fly) = f(=)

B Moy = L) = (1) (12

>, rvyel,x#y.

In the sequel, to make the notations shorter, we write M instead of M (x,y).

There exists an xg € I such that f”(zg) # 0. Indeed, in the opposite case
we would have f”(z) = 0, for all z € I, whence f’(z) = a, for some a and
for all x € I, which contradicts to the injectivity of f’. By the injectivity of
f’, there is at most one point x € I such that f'(x) = 0. Let J C I be a
maximal interval such that xg € J and

f'(x)f"(z) #0, forallzeJ

Differentiating both sides of (2) twice with respect to y, we get, for all
T,y € J,x £y,

. OM . oM\ > L PM
27 ()5 + =)0 (1) + =) 0
2
P 205+ )~ F@)) 5 =2 W) + 0l ),

and differentiating twice with respect to x, we get, for all x,y € J, x £ v,

2 2
—2 00 G + =00 (G0 ) + - o0y

ox
oM O2*M

— @M =20/ (@) S+ [£) — F@) Sy = —2f (@) — af" (@)

Adding this two equations by sides and then dividing the both sides of the
resulting equality by y — x we obtain, for all z,y € J,z # v,
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oM oM

o o (21 (2)]

, M M " — My
+ (M) [8y2 + 5 ] +f (y;_i Gy
FOGE=F@)%E  fy) - flz) [°M M
2 yy—x + Yy—x [ayQ 8:62]
_ oS W) = @) | yf"(y) —af(z)
Y —T Yy—T
Since, for all x € J,
lim M(z,y) ==
and, by (3),
im M _ 1 fWly—=) - fy+fl=) 1
y=u Oy y—ow f(M(z,y)) (y — )2 2’
im M 1 f@y-—o)+fy) - fl@) 1
y=o 0x y—w f(M(z,y)) (y —z)? 2’
L L [+ @l 2 ) - S(@)]
yor Yy —a y=z [ (M(z,y)) (y —x)?
_ lfm(w)
6 f'(z)’
- FW%— (@)%
y—z Yy —x
i LW Wy = 2) = [ly) + [@)] + [ (@) [ (@) (y — 2) = fy) + f(@)]
y—a 1 (M(z,y))(y — x)?

_ lf”/(x) + lf/(x)f///<x)
2 f"(x) 6 fr(z)

Since
M —f"(M) [f’(y)(y —x) = fly) + f(w)] ?
o [f(M(x,y))? (y — x)?
RO x)? = 2[f'(y)(y — x) — f(y) + f()]
(M (z,y))(y —x)3 ’
and

M —f"(M) [—f’(fﬂ)(y —z)+ fy) - f(w)] ’
Ox® — [f"(M(z,y))P (y —x)?
L @)y~ 2)? = 2 f(@)(y — 2) + f(y) — f@)]
f"(M(z, y))(y — x)? ’
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we have

. O0*M . 9PM 1 f"(x)
lim — = lim = — .
y=e Jy?  y—e 0z 12 f(x)

Now, letting y — « in equality (4), we obtain, for all x € J,

zfxm>é§fgg-+f“@»{(§)2+-(§>2}*-f“$>[f;§383‘*f;§383}

" L") L@@ | [ L)1 @)
+ M (z)x + 2 (2 f(x) T 6 f'(x) ) +fi(z) [12 () - 12 f”(l‘)]
= 2f”(l’) + f”(w) + xfm(x)7

which reduces to the differential equation

2f'(x) f"(x) = 3[f"(x)]? =0,  welJ

that is
@)1\
lo =0, x € J,
<g‘wuﬂ3> boore
whence
FC))
F@p ’

for some real constant A # 0. It follows that

either f”(z) = [Af'(2)]*/2, forall z € J,
or f'(x)=—[Af(x))*?, forall zeJ

Solving each of these two equations, we obtain
1
/ _
@)= G o

for some C,D € R, C' # 0. (Since f’ does not vanish in J, the Darboux
property of derivative implies that f’ has a constant sign in J.) Consequently,
after simple calculations,

x € J,

ar +b
= J.
fla)=—"—o. w€lJ,
for some a, b, c € R such that ac — b # 0. Since —c ¢ [ and
b\’ b\" —b 2(b—
<am+ > <ax+ > _ ac . ( acg)?é07 veR T4 ¢
T +c T+c (x+¢)° (z+0¢)

from the maximality of J we conclude that I = J. This completes the proof. =
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Define G : [(0,00)? U (—00,0)?] — R\{0} by

oy e AV, for (z,y) € (0,00)%,
G(z,y) {_\/g?y7 for (z,y) € (—o00,0)%.

Thus G restricted to (0,00)? is the usual geometric mean in (0,00), and G
restricted to (—oo,0)? is mean in (—o0,0) and, in the sequel, it is called the
negative geometric mean.

Consider the following important

. . b g
EXAMPLE 2. Let a,b,c € R be such that ac—b # 0 and let f(z) : % as

in the conclusion of Theorem 3. For this function, we have either I C (—¢, 00)
or I C (—o0,—c).

Taking I = (—¢, 00), by simple calculations, we obtain
M[f](x7y): (x—l—c)(y—i—c)—c:g(:r—l—c,y—i—c)—c, x,ye(—c,oo),

that is MU is the c-translated geometric mean; and, taking I = (—o0,¢),
we obtain

M[f](x7y) =~V ($+C)(y+0) —Cc = g(x+c,y+c) —¢ I,y € (700’76)7
that is MU is c-translated negative geometric mean.

Applying this example and Lemma 2, we obtain the main result of this
section.

THEOREM 4. Let f : I — R be three times continuously differentiable in
an interval I and let f' be one-to-one. Suppose that MU exists. Then the
following conditions are equivalent
(1): MU is a symmetric mean;
(ii): MUl = LU,
(iil): there is ¢ € R such that either MUl is a c-translated geometric mean
or it is a c-translated negative geometric mean.

This result determines effectively all symmetric means of the type MU,
Let us note that, for a given generating function f, in general, it is a difficult
problem to find the effective formula of the mean MU (cf. [10]).

3. A variant of the Cauchy mean-value theorem and the relevant
means

We begin this section with the following

THEOREM 5. Let f, g : [a,b] — R be differentiable on (a,b) and continuous
at the points a and b. Then

(i): there is n € (a,b) such that
g () [f(n) = f(a)] = f'(n) [9(6) — g(n)],
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(ii): if ¢'(x) # 0 for all x € (a,b), then there exists n € (a,b) such that
f) = f@) _ '),
g(b) —g(n)  g'(n)’
if moreover the function
f@)—fla)  [f(z)
g(b) —g(z)  ¢'(z)
then the point n € (a,b) is unique.

(a,b) >z —

18 strictly monotonic,

Proof. The function ¢ : [a,b] — R,
p(x) = 1[9(b) —g@)][f(z) = fla)], = €]ab],

is continuous in [a, b]. Since ¢(a) = 0 = ¢(b), there exists a point n € (a,b)
such that ¢'(n) = 0. As
¢'(t)=—g @) [f(t) = f(@)] +[9(0) —g®If (),  tEab],

we hence get —g'(n) [f(n) — f(a)] + [g(b) — g(n)]f'(n) = 0. Now the second
part is obvious. =

REMARK 3. Suppose that ¢’'(z) # 0 for x € I. Then, by the Darboux prop-
erty of the derivative, g is invertible. To prove the second part it is enough
to apply Theorem 1 to the function f o (¢~!) defined in the interval g(I).

As a consequence of this result, we obtain the following

THEOREM 6. Suppose that I C R is an open interval, f,g : I — R are
continuously differentiable and f'(x)g'(x) # 0 for all x € L. Then

(i): of for every x,y € I there is a unique mean-value M (x,y) such that

g (M(z,y)) [f(M(z,y)) — f(z)]
= ['(M(z,9) l9(y) —9(M(z,y))],  zyel,
then M is continuous;
(ii): if f" is increasing (decreasing), and § is strictly decreasing (strictly

increasing) in I, then there exists a unique strict continuous mean
MUEal: 12 5 T such that

FMP(z,y) — fa) _ (M9, y))
g(y) — g (M9 (z,y)) g/ (M9 (x,y))’
1

(5) ryel, x#y.

Proof. The function fog™
g(I) and

is continuously differentiable in the open interval

(fog™) (w)=%o0g7 ) £0, ueg(l).
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According to part (i) of Theorem 2, if for any u,v € g(I) there is a unique
mean-value N (u,v) such that

fog  (N(u,v)) = fog™ (w) = (fog™") (N(u,v))[v— N(u,v)],

then N is continuous. Now, setting

M(z,y) =g ' (N(g(z),9(y))), xzyel,

and taking into account that

(fog ™) (9(x) = , wel,

we hence get (i).
The function g is strictly monotonic as ¢'(z) # 0, for all x € I. Assume for
instance that g is strictly increasing. If f is increasing (decreasing) and ?;—: is

!is increasing (decreasing)

strictly decreasing (strictly increasing), then fog™
and (f o g_l)/ = ]gc—,, o g~! is strictly decreasing (strictly increasing). Thus,

the function f o g~! satisfies the assumptions of part (i) of Theorem 2. In

the same way, we can check that f o ¢g~! satisfies these assumptions in the
case when ¢ is strictly decreasing. In view of part (ii) of Theorem 2, there
exists a unique strict and continuous mean N°9™'1 : g(I)2 — ¢(I) such that

fog " (NV°s I(u,v)) — fog~'(u)
v — NIog™(u,v)
— (fogfl),(N[fo-g—l](u,v)), u,v € g(I), u#wv.
It follows that the mean M9l : 12 — I defined by
MU (2,y) = g (N0 (g(a), g(2))).  wy el

is strict, continuous and satisfies (5). m

The Cauchy mean-value theorem can be formulated as follows. If f, g :
I — R are differentiable, ¢'(z) # 0 for all x € I, then there exists a mean
M : I? — I such that for all z,y € I,z # v,

[(@) = J(y) _ F(M(x,9))

9(x) —g(y)  g(M(z,y))
If f—: is one-to-one then C/9 := M is unique, strict, continuous, symmetric
and it is called a Cauchy mean generated by f and g. Moreover, we have

cal(z,y) = <ch,/> R (M

>, v, yel, v #y.
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4. Symmetric M9 means

LEMMA 2. Let f,g: I — R be differentiable, ¢'(x) # 0, for all x € I, and
let J;—: be one-to-one. Suppose that the mean M9 exists. The mean M9
is symmetric if and only if

MmH9 = olfdl,
Proof. Assume that M = M9 is symmetric, i.e. that
M(z,y) = M(y,z), r,y€l, ©#uy.

Hence, changing the roles x and y in (5) (with M9 = M), we get

FOI@y) - f0) Oy
o) —oMy) My TPERTTY
From (5) and from above equality, we have
F(M)g' (M) = f(2)g' (M) = f'(M)g(y) + f'(M)g(M) = 0,
F(M(z,y))g' (M) = f(y)g' (M) — f'(M)g(x) + f'(M)g(M) = 0,

where M = M (z,y) = M (y,z). Subtracting by sides, we hence get
W)y (M) + f(M)g(x) — f(z)g' (M) = f'(M)g(y) = 0,

) = f@) _ F(M(z,y))

9(y) —g9(x)  g(M(z,y))’
Since, by assumption, 5—,, is one-to-one, the mean M is uniquely determined
and

M(z,y) = (;) - (M) _CV(a,y),  awyel, x4y

The converse implication is easy to prove. m

whence

2y €el, ©#y.

Let us note the following easy to verify

REMARK 4. Let I C R be an interval. Assume that g : I — R is continuous
and strictly monotonic and let ¢ € R be such that the function g + ¢ is of a

constant sign in I. Then the function Qc[g] : I? — T defined by

G (a,y) = g7 (senlg + )V g@ + W) +c) —¢) . wyel

is a mean in I. Moreover,

(1) if g+ c¢>0in I, then
Gz.y) =97 (V@ + e +o)—c),  myel,

ie. Qc[g] is g-conjugate of the c-translated geometric mean in I;
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furthermore, the pointwise limit lim. oo g£g} exists, and

lim GY(z,y) = A9 (z,y),  zyel,

c——+00

where A : 1?2 — I defined by

Al (z,y) := g—l (W) ’ z,y€l,

is a quasi-arithmetic mean of a generator g;
(2) if g+ ¢ <0in I then

Gz =97 (V@ + Il +o)—c),  ayel,

ie. Q£g] is g-conjugate of the c-translated negative geometric mean in I.
Moreover

lim GY(z,y) = A9 (z,y),  zyel.

——00
REMARK 5. Since
Al = g[[)eXp og]j

the quasi-arithmetic mean of a generator g is a logog-conjugate geomet-
ric mean in I. The g-conjugate geometric mean can be also called quasi-
geometric mean of a generator g.

The main result of this section reads as follows.

THEOREM 7. Let f,g: I — R be three times differentiable in an interval I,
g (x) #0 for allx € 1, and 5 be one-to-one. Suppose that the mean M9
exists. Then the following conditions are equivalent

(1): M9 is a symmetric mean;
(ii): MLHdl = oltdl,
(iii): there is ¢ € R such that either M9 s g-conjugate of the c-translated
geometric mean in I or M9 is g-conjugate of the c-translated negative
geometric mean in 1.

Proof. In view of Lemma 3, the first two conditions are equivalent. Assume
that M = M9l is symmetric. By the definition of M9, we have

f(M(z,y) = f(z) _ f'(M(z,y)) i )
9(y) — g(M(z,y)) — ¢'(M(x,y))’ el x#y.

Since g is continuous and strictly monotonic, we can write this equality in
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the form

fog ' [gM (g~ (w), 97" (v)))] = fog~'(w)
v—g(M(g~H(u),g71(v)))
~ frogt [g(M (g7 (), g7 (v))]
~ gog t g(M (g7 (u), g7 ()]
for all u,v € g(I), u # v. Setting here

M*(u,0) := g(M(g™" (u), g~ (v))), u,v € g(I),
we get
fog ' (M*(u,v)) = fog™(u)
v — M*(u,v)

_ [log (M (u,v))
g o g (M (w,0))’

uyv € g(I), u+o,

_ / ! —1 .
whence, as (fog™) = g,zg,l, we obtain

fog M (M*(u,v)) — fog ' (u)
v — M*(u,v)
where, obviously, M* is a strict and symmetric mean in g(I). Applying
Lemma 2 with f replaced by f o g¢g~!, we conclude that
au +b

= (fog_l)/(M*(u,v)), u,v € g(I)vu ?é v,

-1
pu— I
fortw) =20 we g,
whence
ag(z) +b
6 = =" el,
(6) f@) =
and, of course,
g(z)+c¢ #0, zel

Consequently, by the continuity of g, the function g + ¢ is of a constant sign
in I,
(ac —b)g'(z)

"(z) = ——F222, €I,
T = @+ o ©
oy ac=b .
7= Gt o <

and

(5)1 (w)=g~" <sgn(g+C)W—c>v “Eg:(”'
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Since, in view of previous result, FI/:9) = Cl59 where Clf9 is the Cauchy
mean, we hence get

for

- (5) (545)

g 9(y) — g(z)

o ac—b
=g |[sen(9+0) | mom mws €
g(@)te  g(y)te
g(x)—9(y)

= g7 (senlg + )v/(9(x) + ) (gly) + o) —c) = G¥ (),

all z,y e l, z #y.
To finish the proof it is enough to observe that Qég] is symmetric M 9]

type mean with f given by (6). m

1]

[10]
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