

C. Carpintero, N. Rajesh, E. Rosas

ON $[\gamma, \gamma']$ -PREOPEN SETS

Abstract. In this paper, we introduce and study the concept of $[\gamma, \gamma']$ -preopen sets in topological space.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Kasahara [1] defined the concept of an operation on topological spaces. Maki and Noiri [3] introduced a new class of open sets called $[\gamma, \gamma']$ -open sets into the field of General Topology. In this paper, we have introduced and studied the notion of $[\gamma, \gamma']$ -preopen sets by using operations γ and γ' on a topological space (X, τ) . We also introduced $([\gamma, \gamma'], [\beta, \beta'])$ -preirresolute functions and $[\gamma, \gamma']$ -prehomeomorphisms and investigate some important properties.

2. Preliminaries

DEFINITION 2.1. [1] Let (X, τ) be a topological space. An operation γ on the topology τ is a function from τ to the power set $\mathcal{P}(X)$ of X such that $V \subset V^\gamma$, for each $V \in \tau$, where V^γ denotes the value of γ at V . It is denoted by $\gamma : \tau \rightarrow \mathcal{P}(X)$.

DEFINITION 2.2. Let (X, τ) be a topological space. An operation γ is said to be regular [1] if, for every open neighborhood U and V of each $x \in X$, there exists an open neighborhoods W of x such that $W^\gamma \subset U^\gamma \cap V^\gamma$.

2010 *Mathematics Subject Classification*: 54A05, 54A10, 54D10.

Key words and phrases: topological spaces, preopen set, $[\gamma, \gamma']$ -open set, $[\gamma, \gamma']$ -preopen set.

DEFINITION 2.3. A subset A of a topological space (X, τ) is said to be $[\gamma, \gamma']$ -open set [3] if for each $x \in A$ there exist open neighborhoods U and V of x such that $U^\gamma \cap V^{\gamma'} \subset A$. The complement of $[\gamma, \gamma']$ -open set is called $[\gamma, \gamma']$ -closed. $\tau_{[\gamma, \gamma']}$ denotes set of all $[\gamma, \gamma']$ -open sets in (X, τ) .

DEFINITION 2.4. [3] For a subset A of (X, τ) , $\tau_{[\gamma, \gamma']}\text{-Cl}(A)$ denotes the intersection of all $[\gamma, \gamma']$ -closed sets containing A , that is, $\tau_{[\gamma, \gamma']}\text{-Cl}(A) = \bigcap\{F : A \subset F, X \setminus F \in \tau_{[\gamma, \gamma']}\}$.

DEFINITION 2.5. Let A be any subset of X . The $\tau_{[\gamma, \gamma']}$ -Int(A) is defined as $\tau_{[\gamma, \gamma']}\text{-Int}(A) = \bigcup\{U : U \text{ is a } [\gamma, \gamma']\text{-open set and } U \subset A\}$.

DEFINITION 2.6. A topological space (X, τ) is said to be $[\gamma, \gamma']$ -regular [3] if for each $x \in X$ and for every open neighborhood U of x there exist open neighborhoods W and S of x such that $W^\gamma \cap S^{\gamma'} \subset U$.

3. $[\gamma, \gamma']$ -preopen sets

DEFINITION 3.1. Let (X, τ) be a topological space and γ, γ' be operations on τ . A subset A of X is said to be $[\gamma, \gamma']$ -preopen if $A \subset \tau_{[\gamma, \gamma']}\text{-Int}(\tau_{[\gamma, \gamma']}\text{-Cl}(A))$.

REMARK 3.2. The set of all $[\gamma, \gamma']$ -preopen sets of a topological space (X, τ) is denoted as $\tau_{[\gamma, \gamma']}\text{-PO}(X)$.

EXAMPLE 3.3. Let $X = \{a, b, c\}$, and $\tau = \{\emptyset, X, \{a, b\}\}$, let $\gamma : \tau \rightarrow P(X)$ and $\gamma' : \tau \rightarrow P(X)$ be operators defined as follows: for every $A \in \tau$,

$$\gamma(A) = \begin{cases} \text{Cl}(A), & \text{if } A = \{a\}, \\ A, & \text{if } A \neq \{a\}, \end{cases}$$

$$\gamma'(A) = \begin{cases} \text{Cl}(A), & \text{if } A = \{b\}, \\ A, & \text{if } A \neq \{b\}. \end{cases}$$

Then $\tau_{[\gamma, \gamma']}\text{-PO}(X) = \mathcal{P}(X) \setminus \{\{c\}\}$.

THEOREM 3.4. If A is a $[\gamma, \gamma']$ -open set in (X, τ) , then it is $[\gamma, \gamma']$ -preopen set.

Proof. The proof is clear. ■

REMARK 3.5. The converse of the above Theorem need not be true. From the Example 3.3, we have that $\{a\}$ is $[\gamma, \gamma']$ -preopen set but it is not $[\gamma, \gamma']$ -open.

REMARK 3.6. By Theorem 3.4 and Remark 3.5, we have $\tau_{[\gamma, \gamma']} \subset \tau_{[\gamma, \gamma']}\text{-PO}(X, \tau)$.

THEOREM 3.7. *Let γ and γ' be operations on τ and $\{A_\alpha\}_{\alpha \in \Delta}$ be the collection of $[\gamma, \gamma']$ -preopen sets of (X, τ) , then $\bigcup_{\alpha \in \Delta} A_\alpha$ is also a $[\gamma, \gamma']$ -preopen set.*

Proof. Since each A_α is $[\gamma, \gamma']$ -preopen and $A_\alpha \subset \bigcup_{\alpha \in \Delta} A_\alpha$, we have

$$\bigcup_{\alpha \in \Delta} A_\alpha \subset \tau_{[\gamma, \gamma']} \text{-Int} \left(\tau_{[\gamma, \gamma']} \text{-Cl} \left(\bigcup_{\alpha \in \Delta} A_\alpha \right) \right).$$

Hence $\bigcup_{\alpha \in \Delta} A_\alpha$ is also a $[\gamma, \gamma']$ -preopen set in (X, τ) . ■

REMARK 3.8. If A and B are any two $[\gamma, \gamma']$ -preopen sets in (X, τ) , then $A \cap B$ need not be $[\gamma, \gamma']$ -preopen in (X, τ) . From the Example 3.3, we have that $\{a, c\}$ and $\{b, c\}$ are $[\gamma, \gamma']$ -preopen sets, but their intersection is not a $[\gamma, \gamma']$ -preopen set in (X, τ) .

LEMMA 3.9. *Let (X, τ) be a topological space and γ, γ' operations on τ and A be the subset of X . Then the following properties hold:*

- (i) $\tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Cl}(A)) = \tau_{[\gamma, \gamma']} \text{-Cl}(A)$.
- (ii) $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Int}(A)) = \tau_{[\gamma, \gamma']} \text{-Int}(A)$.
- (iii) $\tau_{[\gamma, \gamma']} \text{-Cl}(A) = X \setminus \tau_{[\gamma, \gamma']} \text{-Int}(X \setminus A)$.
- (iv) $\tau_{[\gamma, \gamma']} \text{-Int}(A) = X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus A)$.

Proof. Straightforward. ■

THEOREM 3.10. *Let (X, τ) be a topological space. Every subset is $[\gamma, \gamma']$ -preopen if and only if every $[\gamma, \gamma']$ -open set in (X, τ) is $[\gamma, \gamma']$ -closed.*

Proof. Let G be $[\gamma, \gamma']$ -open. Then $X \setminus G = \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus G)$ which is $[\gamma, \gamma']$ -preopen, so that $\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus G) \subset \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus G))) = \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus G)) = \tau_{[\gamma, \gamma']} \text{-Int}(X \setminus G)$. Thus, $X \setminus G = \tau_{[\gamma, \gamma']} \text{-Int}(X \setminus G)$, so that $X \setminus G$ is $[\gamma, \gamma']$ -open, and G is $[\gamma, \gamma']$ -closed.

Conversely, let A be any subset of X . Then $X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(A)$ is $[\gamma, \gamma']$ -open, and hence $[\gamma, \gamma']$ -closed. Thus, $X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(A) = \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(A)) = X \setminus \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A))$, so that $A \subset \tau_{[\gamma, \gamma']} \text{-Cl}(A) = \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A))$, and hence A is $[\gamma, \gamma']$ -preopen. ■

THEOREM 3.11. *Let (X, τ) be a topological space, G be a $[\gamma, \gamma']$ -open subset of X and b be a point of $\tau_{[\gamma, \gamma']} \text{-Cl}(G) \setminus G$. Then $\{b\}$ is not $[\gamma, \gamma']$ -preopen in (X, τ) .*

Proof. Suppose that $\{b\}$ is $[\gamma, \gamma']$ -preopen, so that $\{b\} \subset \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\{b\}))$. Thus, $G \cap \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\{b\})) \neq \emptyset$. Let $c \in G \cap \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\{b\}))$, so $c \in \tau_{[\gamma, \gamma']} \text{-Cl}(\{b\})$ and hence $\{b\} \cap (G \cap \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\{b\}))) \neq \emptyset$. This contradicts the fact that $\{b\} \cap G = \emptyset$. Hence $\{b\}$ is not $[\gamma, \gamma']$ -preopen. ■

THEOREM 3.12. *Let (X, τ) be a topological space, G be a $[\gamma, \gamma']$ -regular open subset of X and b be a point of $\tau_{[\gamma, \gamma']} \text{-Cl}(G) \setminus G$. Then $G \cup \{b\}$ is not $[\gamma, \gamma']$ -preopen in (X, τ) .*

Proof. We have, since $\tau_{[\gamma, \gamma']} \text{-Cl}(\{b\}) \subset \tau_{[\gamma, \gamma']} \text{-Cl}(G)$, so that $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(G \cup \{b\})) = \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(G) \cup \tau_{[\gamma, \gamma']} \text{-Cl}(\{b\})) = \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(G) = G)$, and thus $G \cup \{b\} \not\subseteq \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(G \cup \{b\}))$. Hence $G \cup \{b\}$ is not $[\gamma, \gamma']$ -preopen. ■

LEMMA 3.13. *Let (X, τ) be a topological space and γ, γ' be regular operations on τ and A be the subset of X . Then*

- (i) *for every $[\gamma, \gamma']$ -open set G and every subset $A \subset X$, we have $\tau_{[\gamma, \gamma']} \text{-Cl}(A) \cap G \subset \tau_{[\gamma, \gamma']} \text{-Cl}(A \cap G)$,*
- (ii) *for every $[\gamma, \gamma']$ -closed set F and every subset $A \subset X$, we have $\tau_{[\gamma, \gamma']} \text{-Int}(A \cup F) \subset \tau_{[\gamma, \gamma']} \text{-Int}(A) \cup F$.*

Proof. (i). Let $x \in \tau_{[\gamma, \gamma']} \text{-Cl}(A) \cap G$, then $x \in \tau_{[\gamma, \gamma']} \text{-Cl}(A)$ and $x \in G$. Let V be the $[\gamma, \gamma']$ -open set containing x . Then by Proposition 2.9 of [3], $V \cap G$ is also a $[\gamma, \gamma']$ -open set containing x . Since $x \in \tau_{[\gamma, \gamma']} \text{-Cl}(A)$, we have $(V \cap G) \cap A \neq \emptyset$. This implies that $V \cap (G \cap A) \neq \emptyset$. This is true for every $[\gamma, \gamma']$ -open set V containing x , hence by Proposition 3.3 of [3] $x \in \tau_{[\gamma, \gamma']} \text{-Cl}(A \cap G)$. Therefore, $\tau_{[\gamma, \gamma']} \text{-Cl}(A) \cap G \subset \tau_{[\gamma, \gamma']} \text{-Cl}(A \cap G)$.

(ii) Follows from (i) and Lemma 3.9(iv). ■

THEOREM 3.14. *Let (X, τ) be a topological space and γ, γ' be regular operations on τ . Let A be a $[\gamma, \gamma']$ -preopen and U be the $[\gamma, \gamma']$ -open subset of X , then $A \cap U$ is also $[\gamma, \gamma']$ -preopen set.*

Proof. Follows from the Proposition 2.9 of [3] and Lemma 3.9. ■

DEFINITION 3.15. Let (X, τ) be a topological space, a subset A of X is said to be:

- (i) $[\gamma, \gamma']$ -dense if $\tau_{[\gamma, \gamma']} \text{-Cl}(A) = X$.
- (ii) $[\gamma, \gamma']$ -nowhere dense if $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A)) = \emptyset$.

THEOREM 3.16. *Let (X, τ) be a topological space and γ, γ' be regular operations on τ . Then, a subset N of X is $[\gamma, \gamma']$ -nowhere dense if and only if any one of the following conditions holds:*

- (i) $\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(N)) = X$.
- (ii) $N \subset \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(N))$.
- (iii) *Every nonempty $[\gamma, \gamma']$ -open set U contains a nonempty $[\gamma, \gamma']$ -open set A disjoint with N .*

Proof. (i) $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(N)) = \emptyset$ if and only if $X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))) = \emptyset$ if and only if $X \subset \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$ if and only if $X = \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$.

(ii) $N \subset X = \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$ by (i). Conversely, $N \subset \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$, implies $\tau_{[\gamma, \gamma']} \text{-Cl}(N) \subset \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$. Since $X = \tau_{[\gamma, \gamma']} \text{-Cl}(N) \cup (X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$, implies $X \subset \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N))) \cup (X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N))) = \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$. Hence $X = \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)))$.

(iii) Let N be a $[\gamma, \gamma']$ -nowhere dense subset of X , then $\tau_{[\gamma, \gamma']} \text{-Int}(X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(N)) = \emptyset$. This implies that $\tau_{[\gamma, \gamma']} \text{-Cl}(N)$ does not contain any $[\gamma, \gamma']$ -open set. Hence for any nonempty $[\gamma, \gamma']$ -open set U , $U \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(N)) \neq \emptyset$. Thus by Proposition 2.9 of [3], $A = U \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(N)$ is a nonempty $[\gamma, \gamma']$ -open set contained in U and disjoint with N . Conversely, if for any given nonempty $[\gamma, \gamma']$ -open set U , there exists a nonempty $[\gamma, \gamma']$ -open set A such that $A \subset U$ and $A \cap N = \emptyset$, then $N \subset X \setminus A$, $\tau_{[\gamma, \gamma']} \text{-Cl}(N) \subset \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus A) = X \setminus A$. Therefore, $U \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(N) \supset U \setminus (X \setminus A) = U \cap A = A \neq \emptyset$. Thus, $\tau_{[\gamma, \gamma']} \text{-Cl}(N)$ does not contain any nonempty $[\gamma, \gamma']$ -open set. This implies that $\tau_{[\gamma, \gamma']} \text{-Int}(X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(N)) = \emptyset$. Hence N is $[\gamma, \gamma']$ -nowhere dense set in X . ■

THEOREM 3.17. Let (X, τ) be a topological space and γ, γ' operations on τ . Then for every $x \in X$, $\{x\}$ is either $[\gamma, \gamma']$ -preopen or $[\gamma, \gamma']$ -nowhere dense set.

Proof. Suppose that $\{x\}$ is not $[\gamma, \gamma']$ -preopen, then $\tau_{[\gamma, \gamma']} \text{-Int}(X \setminus \tau_{[\gamma, \gamma']} \text{-Cl}(\{x\})) = \emptyset$. This implies that $\{x\}$ is $[\gamma, \gamma']$ -nowhere dense set in X . ■

THEOREM 3.18. For any subset of a space (X, τ) , the following are equivalent:

- (i) $S \in [\gamma, \gamma']\text{-PO}(X)$.
- (ii) There is a $[\gamma, \gamma']$ -regular open set $G \subset X$ such that $S \subset G$ and $\tau_{[\gamma, \gamma']} \text{-Cl}(S) = \tau_{[\gamma, \gamma']} \text{-Cl}(G)$.
- (iii) S is the intersection of a $[\gamma, \gamma']$ -regular open set and a $[\gamma, \gamma']$ -dense set.
- (iv) S is the intersection of a $[\gamma, \gamma']$ -open set and a $[\gamma, \gamma']$ -dense set.

Proof. (i) \Rightarrow (ii): Let $S \in [\gamma, \gamma']\text{-PO}(X)$. Then $S \subset \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(S))$. Let $G = \tau_{[\gamma, \gamma']} \text{-Int}(S)$. Then G is $[\gamma, \gamma']$ -regular open with $S \subset G$ and $S = G$.

(ii) \Rightarrow (iii): Let $D = S \cup (X \setminus G)$. Then D is $[\gamma, \gamma']$ -dense and $S = G \cap D$.

(iii) \Rightarrow (iv): This is trivial.

(iv) \Rightarrow (i): Suppose $S = G \cap D$ with G is $[\gamma, \gamma']$ -open and D $[\gamma, \gamma']$ -dense. Then $S = G$, hence $S \subset G \subset \tau_{[\gamma, \gamma']} \text{-Cl}(G) = S$. ■

THEOREM 3.19. If every subset of X is either $[\gamma, \gamma']$ -open or $[\gamma, \gamma']$ -closed, then every $[\gamma, \gamma']$ -preopen set in X is $[\gamma, \gamma']$ -open.

Proof. Let A be a $[\gamma, \gamma']$ -preopen in X . If A is not $[\gamma, \gamma']$ -open, then A is $[\gamma, \gamma']$ -closed by hypothesis. Hence $A = \tau_{[\gamma, \gamma']} \text{-Cl}(A)$, and $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A)) = \tau_{[\gamma, \gamma']} \text{-Int}(A)$ is a proper subset of A . Thus, $A \not\subseteq \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A))$, so that A is not $[\gamma, \gamma']$ -preopen, contradiction. ■

THEOREM 3.20. *Let (X, τ) be a topological space in which every $[\gamma, \gamma']$ -preopen set in X is $[\gamma, \gamma']$ -open. Then each singleton in X is either $[\gamma, \gamma']$ -open or $[\gamma, \gamma']$ -closed.*

Proof. Let $x \in X$, and suppose that $\{x\}$ is not $[\gamma, \gamma']$ -open. Then $\{x\}$ is not $[\gamma, \gamma']$ -preopen. Hence $\{x\} \not\subseteq \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\{x\}))$, so that $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\{x\})) = \emptyset$. We have that $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus \{x\})) \supset \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Cl}(\{x\})))) = \tau_{[\gamma, \gamma']} \text{-Int}(X \setminus (\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(\{x\})))) = X \supset X \setminus \{x\}$. Thus, $X \setminus \{x\}$ is $[\gamma, \gamma']$ -preopen and hence $[\gamma, \gamma']$ -open. Therefore, $\{x\}$ is $[\gamma, \gamma']$ -closed. ■

THEOREM 3.21. *For a topological space (X, τ) and γ, γ' regular operations on τ , the following are equivalent:*

- (i) *Every $[\gamma, \gamma']$ -preopen set is $[\gamma, \gamma']$ -open.*
- (ii) *Every $[\gamma, \gamma']$ -dense set is $[\gamma, \gamma']$ -open.*

Proof. (i) \Rightarrow (ii): Let A be a $[\gamma, \gamma']$ -dense subset of X . Then $\tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A)) = X$, so that $A \subset \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A))$ and A is $[\gamma, \gamma']$ -preopen. Hence A is $[\gamma, \gamma']$ -open.

(ii) \Rightarrow (i): Let B be a $[\gamma, \gamma']$ -preopen subset of X , so that $B \subset \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(B)) = G$, say. Then $\tau_{[\gamma, \gamma']} \text{-Cl}(B) = \tau_{[\gamma, \gamma']} \text{-Cl}(G)$, so that $\tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus G \cup B) = \tau_{[\gamma, \gamma']} \text{-Cl}(X \setminus G) \cup \tau_{[\gamma, \gamma']} \text{-Cl}(B) = (X \setminus G) \cup \tau_{[\gamma, \gamma']} \text{-Cl}(G) = X$, and thus $(X \setminus G) \cup B$ is $[\gamma, \gamma']$ -dense in X . Thus, $(X \setminus G) \cup B$ is $[\gamma, \gamma']$ -open. Now, $B = (X \setminus G) \cup B$, the intersection of two $[\gamma, \gamma']$ -open sets is $[\gamma, \gamma']$ -open ([3], Proposition 2.9), so that B is $[\gamma, \gamma']$ -open. ■

DEFINITION 3.22. A topological space X is said to be $[\gamma, \gamma']$ -submaximal if every $[\gamma, \gamma']$ -dense subset of X is $[\gamma, \gamma']$ -open.

THEOREM 3.23. *Let (X, τ) be a topological space in which every $[\gamma, \gamma']$ -preopen set is $[\gamma, \gamma']$ -open, then (X, τ) is $[\gamma, \gamma']$ -submaximal.*

Proof. Let A be a $[\gamma, \gamma']$ -dense subset of (X, τ) . Then $A \subset \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A))$; hence A is a $[\gamma, \gamma']$ -preopen set. Therefore, from the assumption it is $[\gamma, \gamma']$ -open. Hence (X, τ) is $[\gamma, \gamma']$ -submaximal. ■

DEFINITION 3.24. Let A be a subset of a topological space (X, τ) and γ, γ' be operations on τ . Then a subset A of X is said to be $[\gamma, \gamma']$ -preclosed if and only if $X \setminus A$ is $[\gamma, \gamma']$ -preopen, equivalently a subset A of X is $[\gamma, \gamma']$ -preclosed if and only if $\tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A)) \subset A$.

REMARK 3.25. The set of all $[\gamma, \gamma']$ -preclosed sets of a topological space (X, τ) is denoted as $\tau_{[\gamma, \gamma']} \text{-PC}(X)$.

DEFINITION 3.26. Let A be a subset of a topological space (X, τ) and let γ, γ' be operations on τ . Then

- (i) the $\tau_{[\gamma, \gamma']}$ -preclosure of A is defined as intersection of all $[\gamma, \gamma']$ -preclosed sets containing A . That is, $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) = \bigcap \{F : F \text{ is } [\gamma, \gamma']\text{-preclosed and } A \subset F\}$,
- (ii) the $\tau_{[\gamma, \gamma']}$ -preinterior of A is defined as union of all $[\gamma, \gamma']$ -preopen sets contained in A . That is, $\tau_{[\gamma, \gamma']} \text{-p Int}(A) = \bigcup \{U : U \text{ is } [\gamma, \gamma']\text{-preopen and } U \subset A\}$.

The proof of the following theorem is obvious and therefore is omitted.

THEOREM 3.27. Let A be a subset of a topological space (X, τ) and γ, γ' be operations on τ . Then

- (i) $\tau_{[\gamma, \gamma']} \text{-p Int}(A)$ is a $[\gamma, \gamma']$ -preopen set contained in A .
- (ii) $\tau_{[\gamma, \gamma']} \text{-p Cl}(A)$ is a $[\gamma, \gamma']$ -preclosed set containing A .
- (iii) A is $[\gamma, \gamma']$ -preclosed if and only if $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) = A$.
- (iv) A is $[\gamma, \gamma']$ -preopen if and only if $\tau_{[\gamma, \gamma']} \text{-p Int}(A) = A$.

REMARK 3.28. From the definitions, we have $A \subset \tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset \tau_{[\gamma, \gamma']} \text{-Cl}(A)$, for any subset A of (X, τ) .

THEOREM 3.29. Let $A \subseteq X$, a point $x \in X$ belongs to $\tau_{[\gamma, \gamma']} \text{-p Cl}(A)$ if and only if $V \cap A \neq \emptyset$, for all $[\gamma, \gamma']$ -preopen set V of X containing x .

Proof. Let E be the set of all $y \in X$ such that $V \cap A \neq \emptyset$, for every $V \in \tau_{[\gamma, \gamma']} \text{-PO}(X)$ and $y \in V$. Now, to prove the theorem it is enough to prove that $E = \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$. Let $x \in \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$ and $x \notin E$. Then there exists a $[\gamma, \gamma']$ -preopen set U of x such that $U \cap A = \emptyset$. This implies $A \subset U^c$. Hence $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset U^c$. Therefore $x \notin \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$. This is a contradiction. Hence $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset E$.

Conversely, let F be a set such that $A \subset F$ and $X \setminus F \in \tau_{[\gamma, \gamma']} \text{-PO}(X)$. Let $x \notin F$, then we have $x \in X \setminus F$ and $(X \setminus F) \cap A = \emptyset$. This implies $x \notin E$. Hence $E \subset \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$. ■

THEOREM 3.30. Let (X, τ) be a topological space and γ, γ' be regular operations on τ and A be a subset of X . Then the following properties hold:

- (i) $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) = A \cup \tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A))$.
- (ii) $\tau_{[\gamma, \gamma']} \text{-p Int}(A) = A \cap \tau_{[\gamma, \gamma']} \text{-Int}(\tau_{[\gamma, \gamma']} \text{-Cl}(A))$.

Proof. (i). $\tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A \cup \tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A)))) \subset \tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A) \cup \tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Cl-Int}(A))) \subset \tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A)) \cup \tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A)) \subset A \cup (\tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A)))$. Hence $A \cup \tau_{[\gamma, \gamma']} \text{-Cl}(\tau_{[\gamma, \gamma']} \text{-Int}(A))$ is

a $[\gamma, \gamma']$ -preclosed set containing A . Therefore, $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A) \subset A \cup \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A))$.

Conversely, $\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A)) \subset \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A))) \subset \tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)$ since $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)$ is a $[\gamma, \gamma']$ -preclosed set. Hence $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A) = A \cup \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A))$.

(ii) Follows from (i) and Lemma 3.9(i). ■

COROLLARY 3.31. *Let (X, τ) be a topological space and γ, γ' be regular operations on τ and A be a subset of X . Then the following properties hold:*

- (i) $\tau_{[\gamma, \gamma']} \text{-} p \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A))$.
- (ii) $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A))$.
- (iii) $\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A)))$.
- (iv) $\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A)))$.

Proof. (i) By Theorem 3.30(ii), $\tau_{[\gamma, \gamma']} \text{-} p \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A) \cap \tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A))) = \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A) \cap \tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(A))$.

(ii) By Theorem 3.30(i), $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Int}(A) \cup \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A))$.

(iii) and (iv) follows from (i) and (ii), respectively. ■

THEOREM 3.32. *Let (X, τ) be a topological space and γ, γ' be regular operations on τ and A be a subset of X . Then $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} p \text{Int}(A)) = \tau_{[\gamma, \gamma']} \text{-} p \text{Int}(A) \cup \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A))$.*

Proof. Since $\tau_{[\gamma, \gamma']} \subset \tau_{[\gamma, \gamma']} \text{-} PO(X)$, implies $\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A) \subset \tau_{[\gamma, \gamma']} \text{-} p \text{Int}(A) \subset A$. Hence $\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} p \text{Int}(A)) = \tau_{[\gamma, \gamma']} \text{-} \text{Int}(A)$. By Theorem 3.30(i), $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} p \text{Int}(A)) = \tau_{[\gamma, \gamma']} \text{-} p \text{Int}(A) \cap \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} p \text{Int}(A))) = \tau_{[\gamma, \gamma']} \text{-} \text{Int}(A) \cup \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(A))$. ■

THEOREM 3.33. *Let (X, τ) be a topological space and γ, γ' be operations on τ and A be a subset of X . Then V is $[\gamma, \gamma']$ -preopen if and only if $V \subset \tau_{[\gamma, \gamma']} \text{-} p \text{Int}(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(V))$.*

Proof. (i) Let V be $[\gamma, \gamma']$ -preopen. Then $\tau_{[\gamma, \gamma']} \text{-} p \text{Int}(V) = V$ and also $V \subset \tau_{[\gamma, \gamma']} \text{-} p \text{Int}(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(V))$. Conversely, let $V \subset \tau_{[\gamma, \gamma']} \text{-} p \text{Int}(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(V))$. Then $V \subset \tau_{[\gamma, \gamma']} \text{-} p \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(V)) = \tau_{[\gamma, \gamma']} \text{-} \text{Cl}(V) \cap \tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(V))) = \tau_{[\gamma, \gamma']} \text{-} \text{Int}(\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(V))$. Hence, V is $[\gamma, \gamma']$ -preopen. ■

THEOREM 3.34. *Let (X, τ) be a topological space. Then every singleton of X is either $[\gamma, \gamma']$ -open or $[\gamma, \gamma']$ -preclosed.*

Proof. If $\{x\}$ is not $[\gamma, \gamma']$ -open, then $\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\{x\}) = \emptyset$. Thus, $\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\{x\})) = \emptyset$; hence $\{x\}$ is $[\gamma, \gamma']$ -preclosed. The proof of the second part is straightforward. ■

DEFINITION 3.35. A subset A of (X, τ) is said to be $[\gamma, \gamma']$ -pregeneralized closed (briefly, $[\gamma, \gamma']$ -pg.closed) if $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset U$ whenever $A \subset U$ and U is $[\gamma, \gamma']$ -preopen in (X, τ) .

THEOREM 3.36. If A is a $[\gamma, \gamma']$ -preopen and $[\gamma, \gamma']$ -pg.closed subset of (X, τ) , then A is $[\gamma, \gamma']$ -preclosed.

Proof. Since A is $[\gamma, \gamma']$ -preopen and $[\gamma, \gamma']$ -pg.closed, $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset A$ and hence $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) = A$. This implies that A is $[\gamma, \gamma']$ -preclosed. ■

THEOREM 3.37. A subset A of (X, τ) is $[\gamma, \gamma']$ -pg.closed if and only if $\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}) \cap A \neq \emptyset$ holds for every $x \in \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$.

Proof. Let U be any $[\gamma, \gamma']$ -preopen set such that $A \subset U$. Let $x \in \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$. By assumption there exists $z \in \tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\})$ and $z \in A \subset U$. It follows from Theorem 3.29 that $U \cap \{x\} \neq \emptyset$. Hence $x \in U$. This implies $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset U$. Therefore A is a $[\gamma, \gamma']$ -pg.closed set in (X, τ) .

Conversely, suppose $x \in \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$ such that $\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}) \cap A = \emptyset$. Since $\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\})$ is $[\gamma, \gamma']$ -preclosed set in (X, τ) , $(\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}))^c$ is a $[\gamma, \gamma']$ -preopen set of (X, τ) . Since $A \subset (\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}))^c$ and A is $[\gamma, \gamma']$ -pg.closed, $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset (\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}))^c$. This implies that $x \notin \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$. This is a contradiction. Hence $\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}) \cap A \neq \emptyset$. ■

THEOREM 3.38. If A is a $[\gamma, \gamma']$ -pg.closed subset of a topological space (X, τ) , then $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \setminus A$ does not contain a nonempty $[\gamma, \gamma']$ -preclosed set.

Proof. Suppose there exists a nonempty $[\gamma, \gamma']$ -preclosed set F such that $F \subset \tau_{[\gamma, \gamma']} \text{-p Cl}(A) \setminus A$. Let $x \in F$, $x \in \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$ holds. Then $F \cap A = \tau_{[\gamma, \gamma']} \text{-p Cl}(F) \cap A \supset \tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}) \cap A \neq \emptyset$. Hence $F \cap A \neq \emptyset$. This is a contradiction. ■

THEOREM 3.39. For each $x \in X$, $\{x\}$ is $[\gamma, \gamma']$ -preclosed or $\{x\}^c$ is $[\gamma, \gamma']$ -pg.closed set in (X, τ) .

Proof. Suppose that $\{x\}$ is not $[\gamma, \gamma']$ -preclosed. Then $X \setminus \{x\}$ is not $[\gamma, \gamma']$ -preopen. Let U be any $[\gamma, \gamma']$ -preopen set such that $\{x\}^c \subset U$. It follows that $U = X$, $\tau_{[\gamma, \gamma']} \text{-p Cl}(\{x\}^c) \subset U$. Therefore, $\{x\}^c$ is $[\gamma, \gamma']$ -pg.closed. ■

THEOREM 3.40. If A is a $[\gamma, \gamma']$ -pg.closed subset of (X, τ) such that $A \subset B \subset \tau_{[\gamma, \gamma']} \text{-p Cl}(A)$, then B is $[\gamma, \gamma']$ -pg.closed subset of (X, τ) .

Proof. Let U be a $[\gamma, \gamma']$ -preopen set in (X, τ) such that $B \subset U$. Then $A \subset U$. Since A is $[\gamma, \gamma']$ -pg.closed, then $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset U$. Now, since $\tau_{[\gamma, \gamma']} \text{-p Cl}(A)$ is $[\gamma, \gamma']$ -preclosed, $\tau_{[\gamma, \gamma']} \text{-p Cl}(B) \subset \tau_{[\gamma, \gamma']} \text{-p Cl}(\tau_{[\gamma, \gamma']} \text{-p Cl}(A)) = \tau_{[\gamma, \gamma']} \text{-p Cl}(A) \subset U$. Therefore, B is also a $[\gamma, \gamma']$ -pg.closed. ■

THEOREM 3.41. *A set A , in a topological space (X, τ) , is $[\gamma, \gamma']$ -pg.open if and only if $F \subset \tau_{[\gamma, \gamma']} \text{-p Int}(A)$ whenever F is $[\gamma, \gamma']$ -preclosed in (X, τ) and $F \subset A$.*

Proof. Let A be $[\gamma, \gamma']$ -pg.open. Let F be $[\gamma, \gamma']$ -preclosed and $F \subset A$. Then $X \setminus A \subset X \setminus F$, where $X \setminus F$ is $[\gamma, \gamma']$ -preopen. $[\gamma, \gamma']$ -pg.closedness of $X \setminus A$ implies $\tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus A) \subset X \setminus F$. By Theorem 3.27, $X \setminus \tau_{[\gamma, \gamma']} \text{-p Int}(A) \subset X \setminus F$. That is, $F \subset \tau_{[\gamma, \gamma']} \text{-p Int}(A)$.

Conversely, suppose that F is $[\gamma, \gamma']$ -preclosed and $F \subset A$ implies $F \subset \tau_{[\gamma, \gamma']} \text{-p Int}(A)$. Let $X \setminus A \subset U$ where U is $[\gamma, \gamma']$ -preopen. Then $X \setminus U \subset A$ where $X \setminus U$ is $[\gamma, \gamma']$ -preclosed. By supposition, $X \setminus U \subset \tau_{[\gamma, \gamma']} \text{-p Int}(A)$. That is, $X \setminus \tau_{[\gamma, \gamma']} \text{-p Int}(A) \subset U$. Then $\tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus A) \subset U$. This implies $X \setminus A$ is $[\gamma, \gamma']$ -pg.closed and hence A is $[\gamma, \gamma']$ -pg.open. ■

THEOREM 3.42. *If $\tau_{[\gamma, \gamma']} \text{-p Int}(A) \subset B \subset A$ and A is $[\gamma, \gamma']$ -pg.open, then B is $[\gamma, \gamma']$ -pg.open.*

Proof. Easily follows from Theorems 3.27 and 3.40. ■

THEOREM 3.43. *If a set A is $[\gamma, \gamma']$ -pg.open in a topological space (X, τ) , then $G = X$ whenever G is $[\gamma, \gamma']$ -preopen in (X, τ) and $\tau_{[\gamma, \gamma']} \text{-p Int}(A) \cup X \setminus A \subset G$.*

Proof. Suppose that G is $[\gamma, \gamma']$ -preopen and $\tau_{[\gamma, \gamma']} \text{-p Int}(A) \cup X \setminus A \subset G$. Now $X \setminus G \subset \tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus A) \cap A = \tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus A) \setminus X \setminus A$. Since $X \setminus G$ is $[\gamma, \gamma']$ -preclosed and $X \setminus A$ is $[\gamma, \gamma']$ -pg.closed, $X \setminus G = \emptyset$ and hence $G = X$. ■

PROPOSITION 3.44. *Let (X, τ) be a topological space and $A, B \subset X$. If B is $[\gamma, \gamma']$ -pg.open and if $A \supset \tau_{[\gamma, \gamma']} \text{-p Int}(B)$, then $A \cap B$ is $[\gamma, \gamma']$ -pg.open.*

Proof. Since B is $[\gamma, \gamma']$ -pg.open and $A \supset \tau_{[\gamma, \gamma']} \text{-p Int}(B)$, $\tau_{[\gamma, \gamma']} \text{-p Int}(B) \subset A \cap B \subset B$. By Theorem 3.42, $A \cap B$ is $[\gamma, \gamma']$ -pg.open. ■

PROPOSITION 3.45. *Let $[\gamma, \gamma']\text{-PO}(X)$, the family of all $[\gamma, \gamma']$ -preopen subsets of (X, τ) , be closed under finite intersections i.e., let $[\gamma, \gamma']\text{-PO}(X)$ be the topology on X . If A and B are $[\gamma, \gamma']$ -pg.open in (X, τ) , then $A \cap B$ is $[\gamma, \gamma']$ -pg.open.*

Proof. Let $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B) \subset U$, where U is $[\gamma, \gamma']$ -preopen. Then $X \setminus A \subset U$ and $X \setminus B \subset U$. Since A and B are $[\gamma, \gamma']$ -pg.open, $\tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus A) \subset U$ and $\tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus B) \subset U$. By hypothesis, $\tau_{[\gamma, \gamma']} \text{-p Cl}((X \setminus A) \cup (X \setminus B)) = \tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus A) \cup \tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus B) \subset U$. That is, $\tau_{[\gamma, \gamma']} \text{-p Cl}(X \setminus (A \cap B)) \subset U$. This shows that $A \cap B$ is $[\gamma, \gamma']$ -pg.open. ■

THEOREM 3.46. *If $A \subset X$ is $[\gamma, \gamma']$ -pg.closed, then $\tau_{[\gamma, \gamma']} \text{-p Cl}(A) \setminus A$ is $[\gamma, \gamma']$ -pg.open.*

Proof. Let A be $[\gamma, \gamma']$ -pg.closed. Let F be a $[\gamma, \gamma']$ -preclosed set such that $F \subset \tau_{[\gamma, \gamma']} \text{-} p\text{Cl}(A) \setminus A$. Then by Theorem 3.38, $F = \emptyset$. So, $F \subset \tau_{[\gamma, \gamma']} \text{-} p\text{Int}(\tau_{[\gamma, \gamma']} \text{-} p\text{Cl}(A) \setminus A)$. This shows $\tau_{[\gamma, \gamma']} \text{-} p\text{Cl}(A) \setminus A$ is $[\gamma, \gamma']$ -pg.open. ■

DEFINITION 3.47. A topological space (X, τ) is said to be $[\gamma, \gamma']$ -pre- $T_{1/2}$ if every $[\gamma, \gamma']$ -pregeneralized closed set in (X, τ) is $[\gamma, \gamma']$ -preclosed.

THEOREM 3.48. A topological space (X, τ) is $[\gamma, \gamma']$ -pre- $T_{1/2}$ space if and only if every singleton subset of X is $[\gamma, \gamma']$ -preclosed or $[\gamma, \gamma']$ -preopen in (X, τ) .

Proof. Let $x \in X$. Suppose $\{x\}$ is not $[\gamma, \gamma']$ -preclosed. Then, it follows from assumption and Theorem 3.46 that $\{x\}$ is $[\gamma, \gamma']$ -preopen.

Conversely, let F be a $[\gamma, \gamma']$ -pregeneralized closed set in (X, τ) . Let x be any point in $\tau_{[\gamma, \gamma']} \text{-} p\text{Cl}(F)$, then by assumption $\{x\}$ is $[\gamma, \gamma']$ -preopen or $[\gamma, \gamma']$ -preclosed.

Case (i): Suppose $\{x\}$ is $[\gamma, \gamma']$ -preopen. Then by Theorem 3.37, we have $\{x\} \cap F \neq \emptyset$. This implies $\tau_{[\gamma, \gamma']} \text{-} p\text{Cl}(F) = F$; hence (X, τ) is $[\gamma, \gamma']$ -pre- $T_{1/2}$.

Case (ii): Suppose $\{x\}$ is $[\gamma, \gamma']$ -preclosed. Assume $x \notin F$, then $x \in \tau_{[\gamma, \gamma']} \text{-} p\text{Cl}(F) \setminus F$. This is not possible by Theorem 3.38. Thus, we have $x \in F$. Therefore, $\tau_{[\gamma, \gamma']} \text{-} p\text{Cl}(F) = F$ and hence F is $[\gamma, \gamma']$ -preclosed. It follows that (X, τ) is $[\gamma, \gamma']$ -pre- $T_{1/2}$. ■

THEOREM 3.49. Every topological space (X, τ) with operations γ and γ' on τ is $[\gamma, \gamma']$ -pre- $T_{1/2}$.

Proof. Let $x \in X$. We prove (X, τ) is $[\gamma, \gamma']$ -pre- $T_{1/2}$, it is sufficient to show that $\{x\}$ is $[\gamma, \gamma']$ -preopen or $[\gamma, \gamma']$ -preclosed. Now, if $\{x\}$ is $[\gamma, \gamma']$ -open, then it is obviously $[\gamma, \gamma']$ -preopen. If $\{x\}$ is not $[\gamma, \gamma']$ -open, then $\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\{x\}) = \emptyset$; hence $\tau_{[\gamma, \gamma']} \text{-} \text{Cl}(\tau_{[\gamma, \gamma']} \text{-} \text{Int}(\{x\})) = \emptyset \subset \{x\}$. Therefore, $\{x\}$ is $[\gamma, \gamma']$ -preclosed. ■

4. $([\gamma, \gamma'], [\beta, \beta'])$ -preirresolute functions

Throughout this section let (X, τ) and (Y, σ) be two topological spaces and let $\gamma, \gamma' : \tau \rightarrow \mathcal{P}(X)$ and $\beta, \beta' : \sigma \rightarrow \mathcal{P}(Y)$ be operations on τ and σ , respectively.

DEFINITION 4.1. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be $([\gamma, \gamma'], [\beta, \beta'])$ -preirresolute if for each $x \in X$ and each $[\beta, \beta']$ -preopen set V containing $f(x)$ there exists a $[\gamma, \gamma']$ -preopen set U such that $x \in U$ and $f(U) \subset V$.

THEOREM 4.2. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be $([\gamma, \gamma'], [\beta, \beta'])$ -preirresolute. Then the following hold:

- (i) $f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)) \subset \sigma_{[\beta, \beta']} \text{-} p \text{Cl}(f(A))$ holds for every subset A of (X, τ) ,
- (ii) for every $[\beta, \beta']$ -preclosed set B of (Y, σ) , $f^{-1}(B)$ is $[\gamma, \gamma']$ -preclosed in (X, τ) .

Proof. (i) Let $y \in f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A))$ and V be any $[\beta, \beta']$ -preopen set containing y . Then there exists $x \in X$ and a $[\gamma, \gamma']$ -preopen set U such that $f(x) = y$ and $x \in U$ and $f(U) \subset V$. Since $x \in \tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)$, we have $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U \cap A) \subset f(U) \cap f(A) \subset V \cap f(A)$. This implies that $x \in \sigma_{[\beta, \beta']} \text{-} p \text{Cl}(f(A))$. Therefore, we have $f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)) \subset \sigma_{[\beta, \beta']} \text{-} p \text{Cl}(f(A))$.

(ii) Let B be a $[\beta, \beta']$ -preclosed set in (Y, σ) . Therefore, $\sigma_{[\beta, \beta']} \text{-} p \text{Cl}(B) = B$. By using (i), we have $f(\tau_{[\gamma, \gamma']} \text{-} b \text{Cl}(f^{-1}(B))) \subset \sigma_{[\beta, \beta']} \text{-} p \text{Cl}(B) = B$. Therefore, we have $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(f^{-1}(B)) = f^{-1}(B)$. Hence $f^{-1}(B)$ is $[\gamma, \gamma']$ -preclosed. ■

DEFINITION 4.3. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be $[\gamma, \gamma']$ -preclosed if for any $[\gamma, \gamma']$ -preclosed set A of (X, τ) , $f(A)$ is a $[\beta, \beta']$ -closed in Y .

THEOREM 4.4. Suppose that f is $([\gamma, \gamma'], [\beta, \beta'])$ -preirresolute and $[\gamma, \gamma']$ -preclosed function. Then,

- (i) for every $[\gamma, \gamma']$ -pg.closed set A of (X, τ) , the image $f(A)$ is $[\beta, \beta']$ -pg.closed.
- (ii) for every $[\beta, \beta']$ -pg.closed set B of (Y, σ) , $f^{-1}(B)$ is $[\gamma, \gamma']$ -pg.closed.

Proof. (i). Let V be any $[\beta, \beta']$ -preopen set in (Y, σ) such that $f(A) \subset V$. By Theorem 4.2(ii), $f^{-1}(V)$ is $[\gamma, \gamma']$ -preopen in (X, τ) . Since A is $[\gamma, \gamma']$ -pg.closed and $A \subset f^{-1}(V)$, we have $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A) \subset f^{-1}(V)$, and hence $f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)) \subset V$. It follows that $f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A))$ is a $[\beta, \beta']$ -preclosed set in Y . Therefore, $\sigma_{[\beta, \beta']} \text{-} p \text{Cl}(f(A)) \subset \sigma_{[\beta, \beta']} \text{-} p \text{Cl}(f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A))) = f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(A)) \subset V$. This implies that $f(A)$ is $[\beta, \beta']$ -pg.closed.

(ii) Let U be a $[\gamma, \gamma']$ -preopen set of (X, τ) such that $f^{-1}(B) \subset U$. Put $F = \tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(f^{-1}(B)) \cap U^c$. It follows that F is $[\gamma, \gamma']$ -preclosed set in (X, τ) . Since f is $[\gamma, \gamma']$ -preclosed, $f(F)$ is $[\beta, \beta']$ -preclosed in (Y, σ) . Then $f(F) \subset f(\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(f^{-1}(B) \cap X \setminus U)) \subset \sigma_{[\beta, \beta']} \text{-} p \text{Cl}(f(f^{-1}(B)) \cap f(X \setminus U)) \subset \tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(B) \setminus B$. This implies $f(F) = \emptyset$, and hence $F = \emptyset$. Therefore, $\tau_{[\gamma, \gamma']} \text{-} p \text{Cl}(f^{-1}(B)) \subset U$. Hence $f^{-1}(B)$ is $[\gamma, \gamma']$ -pregeneralized closed in (X, τ) . ■

THEOREM 4.5. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be $([\gamma, \gamma'], [\beta, \beta'])$ -preirresolute and $[\gamma, \gamma']$ -preclosed function. Then,

- (i) if f is injective and (Y, σ) is $[\beta, \beta']$ -pre- $T_{1/2}$, then (X, τ) is $[\gamma, \gamma']$ -pre- $T_{1/2}$ space.

(ii) if f is surjective and (X, τ) is $[\gamma, \gamma']$ -pre- $T_{1/2}$, then (Y, σ) is $[\beta, \beta']$ -pre- $T_{1/2}$.

Proof. Straightforward. ■

DEFINITION 4.6. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be $[\gamma, \gamma']$ -prehomeomorphism, if f is bijective, $([\gamma, \gamma'], [\beta, \beta'])$ -preirresolute and f^{-1} is $[\beta, \beta']$ -preirresolute.

THEOREM 4.7. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be $[\gamma, \gamma']$ -prehomeomorphism. If (X, τ) is $[\gamma, \gamma']$ -pre- $T_{1/2}$, then (Y, σ) is $[\beta, \beta']$ -pre- $T_{1/2}$.

Proof. Let $\{y\}$ be a singleton set of (Y, σ) . Then there exists a point x of X such that $y = f(x)$ and, by Theorem 3.48, $\{x\}$ is $[\gamma, \gamma']$ -preopen or $[\gamma, \gamma']$ -preclosed. Then by Theorem 4.4(i), $\{y\}$ is $[\beta, \beta']$ -preclosed or $[\beta, \beta']$ -preopen. By Theorem 3.48, (Y, σ) is $[\beta, \beta']$ -pre- $T_{1/2}$ space. ■

References

- [1] S. Kasahara, *Operation-compact spaces*, Math. Japonica 24 (1979), 97–105.
- [2] H. Ogata, *Operation on topological spaces and associated topology*, Math. Japonica 36 (1991), 175–184.
- [3] H. Maki, T. Noiri, *Bioperations and some separation axioms*, Sci. Math. Jpn. 53(1) (2001), 165–180.

C. Carpintero, E. Rosas
 UNIVERSIDAD DE ORIENTE
 NUCLEO DE SUCRE CUMANA
 VENEZUELA
 E-mails: ccarpi@sacre.udo.edu.ve
 ennisrafael@gmail.com

N. Rajesh
 DEPARTMENT OF MATHEMATICS
 RAJAH SERFOJI GOVT. COLLEGE
 THANJAVUR-613005
 TAMILNADU, INDIA
 E-mail: nrajesh_topology@yahoo.co.in

Received April 7, 2011.