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TRANSLATIVE COVERING BY UNIT SQUARES

Abstract. Some results concerning translative coverings of squares and triangles by
two, three and four unit squares are presented.

1. Introduction

The question of coverings by translations of the members of a given
collection of convex bodies was described for the first time in [7] by Hlawka.

Let C be a convex body in Euclidean plane E? i.e., a compact convex set
with nonempty interior and let (C,) be a (finite or infinite) sequence of planar
convex bodies. The sequence (C),) is called a covering of D if D C |JC,.
We say that (C),) permits a covering of D, if there are rigid motions o, such
that (0,Cy) is a covering of D. If there are translations 7, such that (7,Cy,)
is a covering of D, then we say that (C),) permits a translative covering
of D.

Various results concerning coverings and translative coverings are dis-
cussed in [1], [2], [3], [5] and [12].

Let I be a unit square, i.e., a square of side length 1. We will start with
presenting a few results concerning coverings of I by rectangles with and
without possibility of rotations.

About fifty years ago Leo Moser asked (see Problem LMS5 in [11]): “Can
any set of rectangles of largest edge 1 and total area 3 be used to cover a unit
square (No rotations, please)?”.

Moon and Moser [10] proved that I can be covered by any sequence of
rectangles of side lengths not greater than 1 and with total area not smaller
than 3. In the covering method presented in [10], a side of any rectangle,
used for the covering of I, is parallel to a side of I. Groemer showed that any
sequence of rectangles of diameters at most 1, whose total area is greater
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than 2(13 + 7v/3), permits a translative covering of I (see Proposition 1
in [6]).

The optimal bounds can be obtained in case of covering by sequences
of squares. According to the hypothesis of Bognér, any sequence of squares
with total area not smaller than 2, permits a covering of I (see Problem 108
(iv) in [11]). This conjecture was confirmed in [8|. Furthermore, I can be
covered translatively by any sequence of squares whose total area is greater
than or equal to 3 (see [9]).

In this note, we will cover translatively by congruent squares.

The question of coverings of squares and triangles by unit squares (with
possibility of rotations) is a well-known problem. Results concerning cover-
ings by unit squares can be found online in [4].

We will consider coverings without possibility of rotations.

Let the coordinate system in the plane be given. One of the coordinate
system’s axis is called z-axis. Denote by I(t) a square of sides of length ¢
and with a side parallel to the z-axis.

Let 7 be a positive integer, let 0 < a; < 7/2 and let S(«;) be a unit
square (in the plane) with an angle between the x-axis and a side of S(«;)
equal to «;.

Denote by pr(n), where n is a positive integer, the greatest number ¢ such
that I(t) can be covered translatively by any collection S(ay),S(2),. ..,
S(ay,) of n unit squares. Obviously, ps(n) < y/n. On the other hand,
pr(n) > +/n/3 (it follows by Theorem 1 of [9]). By Theorem 6 of [6] we
deduce that lim,, o pr(n)/v/n = 1. The problem is to find pr(n) for n =
1,2,3,....

We will also cover triangles. Let T'(t) be an equilateral triangle with
sides of length ¢ and with one side parallel to the z-axis and let R(t) be an
isosceles right triangle with legs of length ¢ parallel to the axes.

Denote by pr(n) [by pr(n)] the greatest number ¢ such that any collection
of n unit squares permits a translative covering of T'(t) (of R(t), respectively).

Ten results, that will be proved in Sections 2, 3 and 4, are presented in
the following table.

n | pi(n) | pr(n) pr(n)
1| v2/2 1 V2/2
2v5/5 | 2v3/3 1

V2 ? 1.844. ..
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2. Covering of squares

Proof of p;(1) = v/2/2. Obviously, a circle of unit diameter can be covered
translatively by any unit square as well as any circle of unit diameter permits
a translative covering of any square of side length v/2/2 (see Fig. 1, left).
This implies that pr(1) > v/2/2. On the other hand, S(7/4) does not permit
a translative covering of I(v/2/2 4 ¢), for any € > 0, i.e., pr(1) < v2/2. =

Fig. 1.

Proof of p;(2) = 2v/5/5 ~ 0.89. Let s = 2v/5/5. We show that pr(2) > s.
Let S(a) and S(B) be unit squares. We can assume that a # 0 and 5 # 0,
otherwise I(s) can be covered translatively either by S(«) or byS(f).
We cover by S(«) the left side of I(s) as well as two segments contained
in the top and in the bottom of I(s) of lengths min(p,s) and min(g, s),
respectively, where
1—ssina 1—scosa
pP=—"" 4= —"—-
cos & sin «
Moreover, we cover by S(f) the right side of I(s) as well as two segments
contained in the top and in the bottom of I(s) of lengths min(u,s) and

min(v, s), respectively (see Fig. 2, left and middle), where
_ 1—scosp _ 1—ssinf

, U
sin 3 cos 3
It is easy to check that

1 1 1
sin o + 5 cos < sin(arctan 2) + 5 cos(arctan 2) = 5\/5

This implies that p > %s, for any 0 < o < /2. For the same reason ¢ > %s,

u > 3s and v > 3s. Consequently, S(a) and S(B) permit a translative
covering of I(s).
Now we show that pr(2) < s. Let

1
1 = arctan 2, -y = arctan B = g -

and let € > 0. We show that S(y1) and S(72) do not permit a translative
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Fig. 2.

covering of I(s+e€). Obviously, S(v;) can cover translatively at the same time
at most two vertices of I(s + ¢€), for i € {1,2}. Without loss of generality,
we can assume that S(v1) covers the left vertices of I(s + €) and that S(v2)
covers the right vertices (see Fig 2, right). Then S(1) covers the part of the
top of I(s + €) of length not greater than

1—Msm71 \/5

pl:W:?‘

Moreover, S(v2) covers the part of the top of I(s + €) of length not greater
than

1-— 2\[00572 V5
U = ——F>—— = —.

sin vy )
This means that these two squares do not permit a translative covering of
I(s+¢€). u

Proof of p;(3) = 1. Three unit squares S(0) do not permit a translative
covering of I(1+¢), for any € > 0; the reason is that S(0) can cover only one
vertex of I(1+4¢€). Consequently, pr(3) < 1. On the other hand, any collection
of three unit squares permits a translative covering of S(1) (see [9]). Thus
p](3) >1. =

Proof of p;(4) = v/2. Each unit square contains a square with sides parallel
to the axes of the coordinate system and with side length v/2/2. Four such
squares permit a translative covering of I(v/2). Consequently, pr(4) > /2.

Let € > 0. Any square S(m/4) can cover translatively a part of the
boundary of I(v/24¢) of total length not greater than v/2 (see Fig. 1, right).
This implies that four squares S(7/4) do not permit a translative covering
of the boundary of I(v/2 +¢) , i.e., that p;(4) < V2. =

3. Covering of equilateral triangles

Proof of pr(1) = 1. Obviously, T'(1 4 €) cannot be covered translatively
by S(0), for any € > 0. This means that p7(1) < 1. On the other hand, any
square S(«) permits a translative covering of 7'(1). Three cases: a < /6,
/6 < a <7/3 and a > /3 are presented in Fig. 3. m
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Fig. 3.

Proof of pr(2) = 2v/3/3 ~ 1.15. Let ¢ = 2v/3/3. To show that p7(2) <(, it
suffices to observe that two squares S(0) do not permit a translative covering
of T({ +¢€), for any € > 0. The reason is that S(0) can cover only one vertex
of T(¢ + ¢€) (see Fig 4, left).

A

d‘\
A\

I

Fig. 4.

Now we show that pr(2) > ¢. Let S(a) and S(8) be unit squares.

Observe that at least one angle between a side of S(«) and a side of T'(()
is smaller than 7/6. If 7/6 < a < 7/3, then oy = o —7/6 < /6 (see Fig. 5,
left). If @« > 7/3, then ap = a — /3 < 7/6 (see Fig. 5, right). We can
assume that o < 7/6.

Fig. 5.

Denote by L the part of T'(¢) lying to the left of the straight line going
through the center of the bottom and the center of the right side of T'(¢).
We show that L can be covered translatively by S(«). If @ = 0, then S(«)
permits a translative covering of L. Assume that

T
0< < —.
S5
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We cover the part L of T'(¢) as in the right-hand picture in Fig. 4. In this
figure y =7/6 — « and 6 = 7/3 — a.. Put

1 —cosoz—i—@sina

f1(a) - sin o
and
fl() 2(1 - ?cosa —sina)
o) =
2 cosa — V/3sina
It is easy to check that
1—sind
=100 (o)
sin «
and that 5
1 —(cos
wo = Ci = fQ(Oé).
siny
. ’ 11— .
Since fi(a) = 532 >0, it follows that
3
wy > lim f(a) = i
a—0 3
Moreover,
, 2(sin o + V3 cos o — 2)
2() = - < 0.
(cosa — v/3sin )2
Hence,

V3
> i = —.
ve > B =5
This implies that L can be covered translatively by S(a).

By pr(1) = 1, we conclude that T'(¢) \ L can be covered translatively
by S(8). Thus pr(2) > ¢.

4. Covering of isosceles right triangles

Proof of pr(1) = v/2/2. A circle of unit diameter can be covered transla-
tively by any unit square as well as any circle with unit diameter permits
a translative covering of any isosceles right triangle of legs of length /2/2
(see Fig. 6, left). Consequently, pr(1) > v/2/2. On the other hand, S(w/4)
does not permit a translative covering of R(v/2/2 + ¢), for any € > 0. m

Proof of pr(2) = 1. Let S(«a) and S(/) be unit squares. Moreover, let
Ry and Ry be right triangles of legs of length v/2/2 presented in Fig. 6. By
p1 = V/2/2 we conclude that S(a) permits a translative covering of R; as
well as S(/3) permits a translative covering of Ry. Consequently, pr(2) > 1.
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Fig. 6.

On the other hand, S(0) can cover translatively only one vertex of
R(1 + €), for any € > 0. This implies that two squares S(0) do not per-
mit a translative covering of R(1 + ¢€), i.e., that pr(2) <1. m
Proof of pr(3) = V2. Let C; and Cy be right triangles of legs of length

v/2/2 and let C3 be a square presented in the right-hand picture in Fig. 6.
Any unit square permits a translative covering of C; for ¢ € {1,2,3}. Hence,

pr(3) > V2.

Fig. 7.

Obviously, in order to cover the hypotenuse of R(v/2 + ¢€), we need at
least three squares S(m/4). Moreover, no square S(7/4) that covers a point
of the hypotenuse, covers the left down vertex of R(v/24¢) (see Fig. 7, left).
Consequently, R(v/2 + €) cannot be covered translatively by three squares
S(m/4), for any € > 0, i.e., pr(3) < V2. =

Put

p = arctan v ~ 0.3395,

1 A7 + 3v/249 2
1/:<—2—|—3 + —9p >z0.3532
3 \/ 2 47 + 3v/249

where
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and let

e 2cosp+sing 1.84497
0 (sin ¢ + cos ) cos ¢ ’ '

The proof of pr(4) = ro will be divided into two parts.

Proof of pr(4) < rop ~ 1.844. We show that four squares S(p) do not
permit a translative covering of R(r), for any r > r(.

Let the vertices of R(r) are (0,0), (0,7), (r,0). No square S(¢) can cover
at the same time two vertices of R(r). Let

T
a(waaya)a b(xb,O), C<07yc)a d(xdvyd)7 ¢: -

4 — ¥,
where (see Fig. 7, right)
1 1 1 1
Lg="——F7—"="r— ———, = = : )
\/ﬁcosqp COS @ + SIn \/§COS¢J COoS + SNy
1 1
Ty =T — sy Ye =T —
CoS CoS
1 1 1 1
g = Yd

= " N :T‘—izr—i’.
\/50051/; COS  + SIn \/5(;031/; COS  + SIn @

A square S(p) that covers (r,0) can cover neither (x; — €,0) nor
(xq — €,yq + €), for any € > 0. Moreover, a square S(y) that covers (0,7)
can cover neither (0,y. — €) nor (xg + €,yq — €), for any € > 0.

It is easy to verify that a square that covers (0,0) can cover neither d
nor a. Now, we show that a square S(¢) that covers (0,0) cannot cover at the
same time both point b and c. It suffices to prove that the distance d(b,1)
between b and the straight line [ going through points ¢ and d is greater
than 1. Since [ is described by the equality

y=tany- - x + Yy,

ie.,
ycosp —xsinp —rcosp 4+ 1 =0,
we have
d(b,1) = ’—(r - coiap) singp — rcosp + 1|.
Thus )
d(b,1) = r(sing + cos @) — ::;i —1.
Since r > rg, it follows that
d(b,1) > 2cosp 4 sin _ sin 11

coS ¢ cos ¢
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Moreover, d(b,l) > 1 implies that no square S(g) can cover at the same
time both points b and d.

In the similar way, we show that no square S(p) can cover at the same
time both points ¢ and a. Let k be the straight line described by the equality

ie.,

YSIn @ + T coS Y — (r— o~

The distance between a and k is equal to

i sin
d(a,k) = L(p-—&—rcoscp—%—rsingo—i— 2l
CoS @ + sin @ COS  + sSin @ COS
Since r > rg, it follows that
i coS sin
d(a, k) > L(P,jtro(cosgp—sin«p)— SO, LAY
COS @ + sin COsp +sSiny  cosy

This implies that four squares S(¢) cannot cover translatively R(r). Thus
pr(4) <7p. m

REMARK 1. By the proof presented above, we deduce that four squares
S(a), for 0 < o < 7, do not permit a translative covering of R(r), for any
r > f(a), where

2cosa +sina

fla) =
REMARK 2. The value ¢ was chosen so that

TOZf((p) < f(CY),

for any 0 < a < 7. Indeed,

3
f(a) =

(sina + cosa) cosa’

2

sin® o — cos® a + 2sin? a cos o + 2 sin o cos? o

(sina cos a + cos? ) 2
Consequently, f'(«) = 0 if and only if
tan® o — 1 + 2tan® a + 2tana = 0.
Since x = v &~ 0.3532 is the only real root of
34222 +22—-1=0,
it is easy to check that f(«) is minimal at o = ¢.

Proof of pr(4) > r9 ~ 1.844. Let S(a1), S(a2), S(as) and S(a4) be unit
squares. We show that these squares permit a translative covering of R(ro).
There are three cases to consider.
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Case 1: at least three angles from among {1, aa, a3, g} are not greater
than 7/4.

There is no loss of generality in assuming that a; < as < a3 < 7. Put
a); =, as =« and ag = 7.

We cover by S(a) the points:

1 1 1
(ro,0), alro— — , — and b rg — ,0 ).
sina 4 cos o’ sin « 4 cos o coSs o

Moreover, we cover by S(3) the part of R(rp) as in the left-hand picture in
Fig. 8.

Fig. 8.

Now, we show that S(v) can cover at the same time both points a and
e(0,ye), where

1-apsin 11— (ro— 5)sing
Ye = " cos 58 cos 3 ’

Observe that y, < y.. Indeed, o > § implies that

1 1
- < =

sina 4+ cosa ~ sin 8 + cos 3
1 .

- 1-— (ro - cosB) sin 3

- cos f3 '

Yo =
and that

Moreover, the inequality

1 <1—(r0—colsﬁ)sin,8
sinf8+cosf8 — cos f3

is equivalent to

2cos 8 +sinf — 1(8)

< =
~ (sinf + cos ) cos B
By Remark 2, we deduce that y, < ye.



Translative covering by unit squares 615

Let m be the straight line described by the equality
1
tan -y

Y— Yg = (r—xy), le.,

ysiny 4+ xcosy — ygsiny — x4 cosy = 0.
The distance between e and m is equal to
d(e,m) = |yesiny — yasiny — 24 cosy| = (Ya — Ye) SNy + x4 o8 7.
Since y, — ye < 0, it follows that

1

7) COSs Q.
sin « 4 cos «

d(e,m) < x4co8y < x4C08 00 = (7‘0 —

By ro < f(«) (see Remark 2), we obtain

d(m, e) < 2cosa + sin o — cos « 1

- sin o + cos «

It is easy to see that the part of R(rp), not covered by S(a), S(5) and
S(v), can be covered translatively by S(ay) (the distance between the points
(0,70) and A in the left-hand picture in Fig. 8 is not greater than r9v/2—2 <
V2/2).

Case 2: at least three angles from among {a1, as, as, s} are not smaller
than 7/4. Obviously, if &« > w/4 then 7/2 — a < 7/4. We proceed in a
similar way as in Case 1. In that case, we start with covering of the left side
of R(rp) instead of the bottom.

Case 3: exactly two angles from among {a, ag, a3, ay} are not greater
than 7/4.

We can assume that a1 < ag < % < ag < oy4.

Subcase 3A: ap + a3 < 7/2. Put oy = 3, a3 = aand v = § — az.
Obviously, v > a. We cover by S(a) and S(f) the part of R(rg) as in the
right-hand picture in Fig. 8.

Observe that S(as3) can cover at the same time two points (0,7p) and e.
The reason is that

1— (rg — =Y) sin
+yeZ 1 + (0 cosB) ﬁ
coS 7y cos 3 cos 3

)

and that the inequality

2 rosinf3  sinf
— T
cos 3 cos f3 cos23 =0
is equivalent to
2cosf +sing
< = .
0= (sin 8 + cos ) cos 3 1B)

1
cos 7y

Consequently, by Remark 2, we conclude that + ye > 10.
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We cover by S(as) the part of R(rg) as in the right-hand picture in

Fig. 8. It is easy to see that the part of R(rg) not covered by S(ay), S(as)
and S(ag) can be covered translatively by S(as).

Subcase 3B: ag + a3 > /2. Put =35 — oy, a = § — a3 and v = as.

Obviously, f < a < 7. We proceed in a similar way as in Subcase 3A. In
that case we cover by S(a3) and S(ay) the left side of R(rp). =

1]

[10]
[11]

[12]
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