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TRANSLATIVE COVERING BY UNIT SQUARES

Abstract. Some results concerning translative coverings of squares and triangles by
two, three and four unit squares are presented.

1. Introduction
The question of coverings by translations of the members of a given

collection of convex bodies was described for the first time in [7] by Hlawka.
Let C be a convex body in Euclidean plane E2, i.e., a compact convex set

with nonempty interior and let (Cn) be a (finite or infinite) sequence of planar
convex bodies. The sequence (Cn) is called a covering of D if D ⊂

⋃
Cn.

We say that (Cn) permits a covering of D, if there are rigid motions σn such
that (σnCn) is a covering of D. If there are translations τn such that (τnCn)
is a covering of D, then we say that (Cn) permits a translative covering
of D.

Various results concerning coverings and translative coverings are dis-
cussed in [1], [2], [3], [5] and [12].

Let I be a unit square, i.e., a square of side length 1. We will start with
presenting a few results concerning coverings of I by rectangles with and
without possibility of rotations.

About fifty years ago Leo Moser asked (see Problem LM5 in [11]): “Can
any set of rectangles of largest edge 1 and total area 3 be used to cover a unit
square (No rotations, please)?”.

Moon and Moser [10] proved that I can be covered by any sequence of
rectangles of side lengths not greater than 1 and with total area not smaller
than 3. In the covering method presented in [10], a side of any rectangle,
used for the covering of I, is parallel to a side of I. Groemer showed that any
sequence of rectangles of diameters at most 1, whose total area is greater
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than 3
2(13 + 7

√
3), permits a translative covering of I (see Proposition 1

in [6]).
The optimal bounds can be obtained in case of covering by sequences

of squares. According to the hypothesis of Bognár, any sequence of squares
with total area not smaller than 2, permits a covering of I (see Problem 108
(iv) in [11]). This conjecture was confirmed in [8]. Furthermore, I can be
covered translatively by any sequence of squares whose total area is greater
than or equal to 3 (see [9]).

In this note, we will cover translatively by congruent squares.
The question of coverings of squares and triangles by unit squares (with

possibility of rotations) is a well-known problem. Results concerning cover-
ings by unit squares can be found online in [4].

We will consider coverings without possibility of rotations.
Let the coordinate system in the plane be given. One of the coordinate

system’s axis is called x-axis. Denote by I(t) a square of sides of length t
and with a side parallel to the x-axis.

Let i be a positive integer, let 0 ≤ αi < π/2 and let S(αi) be a unit
square (in the plane) with an angle between the x-axis and a side of S(αi)
equal to αi.

Denote by ρI(n), where n is a positive integer, the greatest number t such
that I(t) can be covered translatively by any collection S(α1), S(α2), . . . ,
S(αn) of n unit squares. Obviously, ρI(n) <

√
n. On the other hand,

ρI(n) ≥
√
n/3 (it follows by Theorem 1 of [9]). By Theorem 6 of [6] we

deduce that limn→∞ ρI(n)/
√
n = 1. The problem is to find ρI(n) for n =

1, 2, 3, . . . .
We will also cover triangles. Let T (t) be an equilateral triangle with

sides of length t and with one side parallel to the x-axis and let R(t) be an
isosceles right triangle with legs of length t parallel to the axes.

Denote by ρT (n) [by ρR(n)] the greatest number t such that any collection
of n unit squares permits a translative covering of T (t) (ofR(t), respectively).

Ten results, that will be proved in Sections 2, 3 and 4, are presented in
the following table.

n ρI(n) ρT (n) ρR(n)

1
√
2/2 1

√
2/2

2 2
√
5/5 2

√
3/3 1

3 1 ?
√
2

4
√
2 ? 1.844. . .
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2. Covering of squares

Proof of ρI(1) =
√
2/2. Obviously, a circle of unit diameter can be covered

translatively by any unit square as well as any circle of unit diameter permits
a translative covering of any square of side length

√
2/2 (see Fig. 1, left).

This implies that ρI(1) ≥
√
2/2. On the other hand, S(π/4) does not permit

a translative covering of I(
√
2/2 + ε), for any ε > 0, i.e., ρI(1) ≤

√
2/2.

Fig. 1.

Proof of ρI(2) = 2
√
5/5 ≈ 0.89. Let s = 2

√
5/5. We show that ρI(2) ≥ s.

Let S(α) and S(β) be unit squares. We can assume that α 6= 0 and β 6= 0,
otherwise I(s) can be covered translatively either by S(α) or byS(β).

We cover by S(α) the left side of I(s) as well as two segments contained
in the top and in the bottom of I(s) of lengths min(p, s) and min(q, s),
respectively, where

p =
1− s sinα

cosα
, q =

1− s cosα
sinα

.

Moreover, we cover by S(β) the right side of I(s) as well as two segments
contained in the top and in the bottom of I(s) of lengths min(u, s) and
min(v, s), respectively (see Fig. 2, left and middle), where

u =
1− s cosβ

sinβ
, v =

1− s sinβ
cosβ

.

It is easy to check that

sinα+
1

2
cosα ≤ sin(arctan 2) +

1

2
cos(arctan 2) =

1

2

√
5.

This implies that p ≥ 1
2s, for any 0 < α < π/2. For the same reason q ≥ 1

2s,
u ≥ 1

2s and v ≥ 1
2s. Consequently, S(α) and S(β) permit a translative

covering of I(s).
Now we show that ρI(2) ≤ s. Let

γ1 = arctan 2, γ2 = arctan
1

2
=
π

2
− γ1

and let ε > 0. We show that S(γ1) and S(γ2) do not permit a translative
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Fig. 2.

covering of I(s+ε). Obviously, S(γi) can cover translatively at the same time
at most two vertices of I(s + ε), for i ∈ {1, 2}. Without loss of generality,
we can assume that S(γ1) covers the left vertices of I(s+ ε) and that S(γ2)
covers the right vertices (see Fig 2, right). Then S(γ1) covers the part of the
top of I(s+ ε) of length not greater than

p1 =
1− 2

√
5

5 sin γ1

cos γ1
=

√
5

5
.

Moreover, S(γ2) covers the part of the top of I(s+ ε) of length not greater
than

u1 =
1− 2

√
5

5 cos γ2

sin γ2
=

√
5

5
.

This means that these two squares do not permit a translative covering of
I(s+ ε).

Proof of ρI(3) = 1. Three unit squares S(0) do not permit a translative
covering of I(1+ ε), for any ε > 0; the reason is that S(0) can cover only one
vertex of I(1+ε). Consequently, ρI(3) ≤ 1. On the other hand, any collection
of three unit squares permits a translative covering of S(1) (see [9]). Thus
ρI(3) ≥ 1.

Proof of ρI(4) =
√
2. Each unit square contains a square with sides parallel

to the axes of the coordinate system and with side length
√
2/2. Four such

squares permit a translative covering of I(
√
2). Consequently, ρI(4) ≥

√
2.

Let ε > 0. Any square S(π/4) can cover translatively a part of the
boundary of I(

√
2+ε) of total length not greater than

√
2 (see Fig. 1, right).

This implies that four squares S(π/4) do not permit a translative covering
of the boundary of I(

√
2 + ε) , i.e., that ρI(4) ≤

√
2.

3. Covering of equilateral triangles

Proof of ρT (1) = 1. Obviously, T (1 + ε) cannot be covered translatively
by S(0), for any ε > 0. This means that ρT (1) ≤ 1. On the other hand, any
square S(α) permits a translative covering of T (1). Three cases: α < π/6,
π/6 ≤ α ≤ π/3 and α > π/3 are presented in Fig. 3.
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Fig. 3.

Proof of ρT (2) = 2
√
3/3 ≈ 1.15. Let ζ = 2

√
3/3. To show that ρT (2)≤ζ, it

suffices to observe that two squares S(0) do not permit a translative covering
of T (ζ+ ε), for any ε > 0. The reason is that S(0) can cover only one vertex
of T (ζ + ε) (see Fig 4, left).

Fig. 4.

Now we show that ρT (2) ≥ ζ. Let S(α) and S(β) be unit squares.
Observe that at least one angle between a side of S(α) and a side of T (ζ)

is smaller than π/6. If π/6 ≤ α < π/3, then α1 = α−π/6 < π/6 (see Fig. 5,
left). If α ≥ π/3, then α2 = α − π/3 < π/6 (see Fig. 5, right). We can
assume that α < π/6.

Fig. 5.

Denote by L the part of T (ζ) lying to the left of the straight line going
through the center of the bottom and the center of the right side of T (ζ).
We show that L can be covered translatively by S(α). If α = 0, then S(α)
permits a translative covering of L. Assume that

0 < α <
π

6
.
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We cover the part L of T (ζ) as in the right-hand picture in Fig. 4. In this
figure γ = π/6− α and δ = π/3− α. Put

f1(α) =
1− cosα+

√
3
3 sinα

sinα

and

f2(α) =
2(1−

√
3
3 cosα− sinα)

cosα−
√
3 sinα

.

It is easy to check that

w1 =
1− ζ sin δ

sinα
= f1(α)

and that
w2 =

1− ζ cos δ
sin γ

= f2(α).

Since f ′1(α) =
1−cosα
sin2 α

> 0, it follows that

w1 > lim
α→0

f1(α) =

√
3

3
.

Moreover,

f ′2(α) =
2(sinα+

√
3 cosα− 2)

(cosα−
√
3 sinα)2

< 0.

Hence,

w2 > lim
α→π/6

f2(α) =

√
3

3
.

This implies that L can be covered translatively by S(α).
By ρT (1) = 1, we conclude that T (ζ) \ L can be covered translatively

by S(β). Thus ρT (2) ≥ ζ.

4. Covering of isosceles right triangles

Proof of ρR(1) =
√
2/2. A circle of unit diameter can be covered transla-

tively by any unit square as well as any circle with unit diameter permits
a translative covering of any isosceles right triangle of legs of length

√
2/2

(see Fig. 6, left). Consequently, ρR(1) ≥
√
2/2. On the other hand, S(π/4)

does not permit a translative covering of R(
√
2/2 + ε), for any ε > 0.

Proof of ρR(2) = 1. Let S(α) and S(β) be unit squares. Moreover, let
R1 and R2 be right triangles of legs of length

√
2/2 presented in Fig. 6. By

ρ1 =
√
2/2 we conclude that S(α) permits a translative covering of R1 as

well as S(β) permits a translative covering of R2. Consequently, ρR(2) ≥ 1.
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Fig. 6.

On the other hand, S(0) can cover translatively only one vertex of
R(1 + ε), for any ε > 0. This implies that two squares S(0) do not per-
mit a translative covering of R(1 + ε), i.e., that ρR(2) ≤ 1.

Proof of ρR(3) =
√
2. Let C1 and C2 be right triangles of legs of length√

2/2 and let C3 be a square presented in the right-hand picture in Fig. 6.
Any unit square permits a translative covering of Ci for i ∈ {1, 2, 3}. Hence,
ρR(3) ≥

√
2.

Fig. 7.

Obviously, in order to cover the hypotenuse of R(
√
2 + ε), we need at

least three squares S(π/4). Moreover, no square S(π/4) that covers a point
of the hypotenuse, covers the left down vertex of R(

√
2+ε) (see Fig. 7, left).

Consequently, R(
√
2 + ε) cannot be covered translatively by three squares

S(π/4), for any ε > 0, i.e., ρR(3) ≤
√
2.

Put
ϕ = arctan ν ≈ 0.3395,

where

ν =
1

3

(
−2 + 3

√
47 + 3

√
249

2
− 2 3

√
2

47 + 3
√
249

)
≈ 0.3532
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and let
r0 =

2 cosϕ+ sinϕ

(sinϕ+ cosϕ) cosϕ
≈ 1.84427.

The proof of ρR(4) = r0 will be divided into two parts.

Proof of ρR(4) ≤ r0 ≈ 1.844. We show that four squares S(ϕ) do not
permit a translative covering of R(r), for any r > r0.

Let the vertices of R(r) are (0, 0), (0, r), (r, 0). No square S(ϕ) can cover
at the same time two vertices of R(r). Let

a(xa, ya), b(xb, 0), c(0, yc), d(xd, yd), ψ =
π

4
− ϕ,

where (see Fig. 7, right)

xa = r − 1√
2 cosψ

= r − 1

cosϕ+ sinϕ
, ya =

1√
2 cosψ

=
1

cosϕ+ sinϕ
,

xb = r − 1

cosϕ
, yc = r − 1

cosϕ
,

xd =
1√

2 cosψ
=

1

cosϕ+ sinϕ
, yd = r − 1√

2 cosψ
= r − 1

cosϕ+ sinϕ
.

A square S(ϕ) that covers (r, 0) can cover neither (xb − ε, 0) nor
(xa − ε, ya + ε), for any ε > 0. Moreover, a square S(ϕ) that covers (0, r)
can cover neither (0, yc − ε) nor (xd + ε, yd − ε), for any ε > 0.

It is easy to verify that a square that covers (0, 0) can cover neither d
nor a. Now, we show that a square S(ϕ) that covers (0, 0) cannot cover at the
same time both point b and c. It suffices to prove that the distance d(b, l)
between b and the straight line l going through points c and d is greater
than 1. Since l is described by the equality

y = tanϕ · x+ yc,

i.e.,
y cosϕ− x sinϕ− r cosϕ+ 1 = 0,

we have

d(b, l) =

∣∣∣∣−(r − 1

cosϕ

)
sinϕ− r cosϕ+ 1

∣∣∣∣.
Thus

d(b, l) = r(sinϕ+ cosϕ)− sinϕ

cosϕ
− 1.

Since r > r0, it follows that

d(b, l) >
2 cosϕ+ sinϕ

cosϕ
− sinϕ

cosϕ
− 1 = 1.
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Moreover, d(b, l) > 1 implies that no square S(ϕ) can cover at the same
time both points b and d.

In the similar way, we show that no square S(ϕ) can cover at the same
time both points c and a. Let k be the straight line described by the equality

y = − 1

tanϕ
· x+ yc,

i.e.,

y sinϕ+ x cosϕ−
(
r − 1

cosϕ

)
sinϕ = 0.

The distance between a and k is equal to

d(a, k) =

∣∣∣∣ sinϕ

cosϕ+ sinϕ
+ r cosϕ− cosϕ

cosϕ+ sinϕ
− r sinϕ+

sinϕ

cosϕ

∣∣∣∣.
Since r > r0, it follows that

d(a, k) >
sinϕ

cosϕ+ sinϕ
+ r0(cosϕ− sinϕ)− cosϕ

cosϕ+ sinϕ
+

sinϕ

cosϕ
= 1.

This implies that four squares S(ϕ) cannot cover translativelyR(r). Thus
ρR(4) ≤ r0.
Remark 1. By the proof presented above, we deduce that four squares
S(α), for 0 ≤ α ≤ π

4 , do not permit a translative covering of R(r), for any
r > f(α), where

f(α) =
2 cosα+ sinα

(sinα+ cosα) cosα
.

Remark 2. The value ϕ was chosen so that

r0 = f(ϕ) ≤ f(α),
for any 0 ≤ α ≤ π

4 . Indeed,

f ′(α) =
sin3 α− cos3 α+ 2 sin2 α cosα+ 2 sinα cos2 α(

sinα cosα+ cos2 α
)2 .

Consequently, f ′(α) = 0 if and only if

tan3 α− 1 + 2 tan2 α+ 2 tanα = 0.

Since x = ν ≈ 0.3532 is the only real root of

x3 + 2x2 + 2x− 1 = 0,

it is easy to check that f(α) is minimal at α = ϕ.

Proof of ρR(4) ≥ r0 ≈ 1.844. Let S(α1), S(α2), S(α3) and S(α4) be unit
squares. We show that these squares permit a translative covering of R(r0).
There are three cases to consider.
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Case 1: at least three angles from among {α1, α2, α3, α4} are not greater
than π/4.

There is no loss of generality in assuming that α1 ≤ α2 ≤ α3 ≤ π
4 . Put

α1 = β, α2 = α and α3 = γ.
We cover by S(α) the points:

(r0, 0), a

(
r0 −

1

sinα+ cosα
,

1

sinα+ cosα

)
and b

(
r0 −

1

cosα
, 0

)
.

Moreover, we cover by S(β) the part of R(r0) as in the left-hand picture in
Fig. 8.

Fig. 8.

Now, we show that S(γ) can cover at the same time both points a and
e(0, ye), where

ye =
1− xb sinβ

cosβ
=

1−
(
r0 − 1

cosα

)
sinβ

cosβ
.

Observe that ya ≤ ye. Indeed, α ≥ β implies that

ya =
1

sinα+ cosα
≤ 1

sinβ + cosβ
and that

ye ≥
1−

(
r0 − 1

cosβ

)
sinβ

cosβ
.

Moreover, the inequality
1

sinβ + cosβ
≤

1−
(
r0 − 1

cosβ

)
sinβ

cosβ
is equivalent to

r0 ≤
2 cosβ + sinβ

(sinβ + cosβ) cosβ
= f(β).

By Remark 2, we deduce that ya ≤ ye.
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Let m be the straight line described by the equality

y − ya = −
1

tan γ
· (x− xa), i.e.,

y sin γ + x cos γ − ya sin γ − xa cos γ = 0.

The distance between e and m is equal to

d(e,m) = |ye sin γ − ya sin γ − xa cos γ| = (ya − ye) sin γ + xa cos γ.

Since ya − ye ≤ 0, it follows that

d(e,m) ≤ xa cos γ ≤ xa cosα =
(
r0 −

1

sinα+ cosα

)
cosα.

By r0 ≤ f(α) (see Remark 2), we obtain

d(m, e) ≤ 2 cosα+ sinα− cosα

sinα+ cosα
= 1.

It is easy to see that the part of R(r0), not covered by S(α), S(β) and
S(γ), can be covered translatively by S(α4) (the distance between the points
(0, r0) and h in the left-hand picture in Fig. 8 is not greater than r0

√
2−2 <√

2/2).
Case 2: at least three angles from among {α1, α2, α3, α4} are not smaller

than π/4. Obviously, if α ≥ π/4 then π/2 − α ≤ π/4. We proceed in a
similar way as in Case 1. In that case, we start with covering of the left side
of R(r0) instead of the bottom.

Case 3: exactly two angles from among {α1, α2, α3, α4} are not greater
than π/4.

We can assume that α1 ≤ α2 ≤ π
4 < α3 ≤ α4.

Subcase 3A: α2 + α3 ≤ π/2. Put α1 = β, α2 = α and γ = π
2 − α3.

Obviously, γ ≥ α. We cover by S(α) and S(β) the part of R(r0) as in the
right-hand picture in Fig. 8.

Observe that S(α3) can cover at the same time two points (0, r0) and e.
The reason is that

1

cos γ
+ ye ≥

1

cosβ
+

1−
(
r0 − 1

cosβ

)
sinβ

cosβ
,

and that the inequality
2

cosβ
− r0 sinβ

cosβ
+

sinβ

cos2 β
≥ r0

is equivalent to

r0 ≤
2 cosβ + sinβ

(sinβ + cosβ) cosβ
= f(β).

Consequently, by Remark 2, we conclude that 1
cos γ + ye ≥ r0.
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We cover by S(α3) the part of R(r0) as in the right-hand picture in
Fig. 8. It is easy to see that the part of R(r0) not covered by S(α1), S(α2)
and S(α3) can be covered translatively by S(α4).

Subcase 3B: α2 + α3 > π/2. Put β = π
2 − α4, α = π

2 − α3 and γ = α2.
Obviously, β ≤ α < γ. We proceed in a similar way as in Subcase 3A. In
that case we cover by S(α3) and S(α4) the left side of R(r0).
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