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EFFECTIVE ENERGY INTEGRAL FUNCTIONALS FOR
THIN FILMS IN THE ORLICZ-SOBOLEV SPACE SETTING

Abstract. We consider an elastic thin film as a bounded open subset w of R%. First,
the effective energy functional for the thin film w is obtained, by I'-convergence and 3D-2D
dimension reduction techniques applied to the sequence of re-scaled total energy integral
functionals of the elastic cylinders w x (—§, §) as the thickness € goes to 0. Then we prove
the existence of minimizers of the film energy functional. These results are proved in the
case when the energy density function for the elastic cylinders has the growth prescribed
by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and
to satisfy the conditions Az and V2 (that is equivalent to the reflexivity of Orlicz and
Orlicz—Sobolev spaces generated by M). These results extend results of H. Le Dret and
A. Raoult for the case M (t) = |¢|” for some p € (1, 0).

Introduction

The mathematical theory of nonlinear elasticity has a long history with
major contributions from L. Euler, J. Bernoulli, A. Cauchy, G. Kirchhoff,
A. E. Love, T. von Karman and many modern authors (see [4, 8, 16, 26]).
One of main problems in this research is to understand relations between
three-dimensional and two-dimensional theories for thin domains.

We consider an elastic thin film as a bounded open subset w C R? with
Lipschitz boundary. The set Q. := w X (—5,5) C R? for a small thickness
¢ is considered as an elastic cylinder approximate to the film w. A three-
dimensional deformation U, : Q. — R3, defined on the thin cylinder €., has
elastic energy

| W(DU.) dx
Qe
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and one seeks to understand the behavior as ¢ — 0 of minimizers subject
to appropriate boundary conditions. For solving this problem, there were
investigated the limiting energies as € — 0 of the sequence of re-scaled elastic
energies with different scales, for instance, of the energies

1 1
— | W(DU.)dz or = | W(DU.)dx.
e g a

Here, the first re-scaled elastic energy agrees with the expression considered
by G. Kirchhoff (see references in [8, 16, 26]) and the second was studied by
H. Le Dret and A. Raoult in 1995 [25].

Let the energy density function W : R3 x R?> — R have the growth
prescribed by an Orlicz convex function M. In the present paper, we inves-
tigate the above problem by the use of the second re-scaled elastic energy
for the thin cylinder 2., assuming M is non-power-growth-type and satisfies
the conditions Ay and Vg (that is equivalent to the reflexivity of Orlicz and
Orlicz—Sobolev spaces generated by M).

Main results of the present paper (see Theorem 3.1 and Corollary 3.2)
extend results established by H. Le Dret and A. Raoult in |25, Theorem 2,
Theorem 8| (cf. [4, Theorem 12.2.1]) for the case of thin films in the reflexive
Sobolev space setting with M (t) = |¢t|P, for some p € (1, c0).

Roughly speaking, in Theorem 3.1, the effective energy functional for the
thin film w is obtained, by I'-convergence and 3D-2D dimension reduction
techniques applied to the sequence of the re-scaled total energy integral func-
tionals of the elastic cylinders 2. as the thickness € goes to 0. In Corollary
3.2, the existence of minimizers of the energy functional for the thin film is
established by showing that some sequence of re-scaled minimizers weakly
converges in an appropriate Orlicz—Sobolev space to a minimizer of the film
energy functional.

Recall that various concrete examples of M with M € Ay N Vs can be
found in [24, Theorem 7.1, pp. 58-59] and [27, 28]. Furthermore, the as-
sumption M € AsNVy is indispensable in the regularity study of minimizers
of multiple variational integrals with the M-growth on Orlicz—Sobolev spaces
(see discussions and references for many other concrete examples in [12]).

In Section 4, we give the proofs of Theorem 3.1 and Corollary 3.2. Our
proof scheme extends the proof scheme of H. Le Dret and A. Raoult [25]. For
these proofs we apply also results: for Orlicz convex functions [21, Proposi-
tion 4|, for Orlicz—Sobolev spaces [23, Theorem 5, Theorem 7| (cf. [11]), [18,
Proposition 2.1], and for quasiconvex integral functionals and quasiconvexi-
fication in the Orlicz—Sobolev space setting [13].
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1. Some terminology and notation

From now on, unless stated to the contrary, M: R — [0, 00) is assumed
to be a non-power-growth-type Orlicz N-function (i.e., even convex function
satisfying %g% MT(t) =0 and tg?oo MT(t) = +00).

We assume M € Ay N Vo. Here, the condition M € Ay means that
M(2t) < cM(t) (t > to), for some tg € [0,00) and ¢ € (0,00). The condition
M € V5 means that 31 > 1,3, € [0,00) such that M (t) < 4 M(It), for all
t >t

Let M* be the complementary (conjugate) Orlicz N-function of M de-
fined by M*(7) := sup{tr — M(t) : t € R}. It is known that the condition
M € V5 is equivalent to the condition M* € As.

Denote by |v| the Euclidean norm of v and by (u,v) the scalar product.
Given an open bounded subset G C R with Lipschitz (e.g., C?-smooth)
boundary 0G equipped with the (N — 1)-dimensional Hausdorff measure
HN=L. Denote by LM (G;R™) the Orlicz space of all (equivalent classes of)
measurable functions u: G — R™ equipped with the Luxemburg norm

[ull Lar (Gmmy 2= inf{A >0 S M (|Ju(z)|/N)dx < 1}.
Q
It is known that M € AyN V3 is equivalent to the reflexivity of LM (G;R™).

Recall that the Orlicz-Sobolev space WM (G;R?) is defined as the Ba-
nach space of R3-valued functions u of LM (G; R?) with the Sobolev—Schwartz
distributional derivative Du € LM (G;R3*") equipped with the norm

HUHWLM(G;IR?’) = HUHLM(G;RS) + ”DUHLM(G;RSXN) < 0.

The subspace WOI’M(G; R?) is defined as the closure in ||- (|10 (G rsy-norm of

the set C§°(G; R?) of C*°-smooth R3-valued functions with compact support
in G. Since 0G is Lipschitz and M, M* € Ag, by [15, Theorems 2.1, 2.3],
there exists the bounded linear trace operator

Tr: WHM(G;R3) — LM (0G;R?)

such that: (i) Tr(u) = wpg (Yu € C*(G)) and (i) u € WOI’M(G;R3) if
and only if Tr(u) = 0. So, for the simplicity of notation we will write
"u(z) = ¢(z) on A" for u € WHM(G;R3) and ¢ € LM (0G;R3) and A C G
if Tr(u)(x) = ¢(z) for almost every x € A. Due to this reason, we also
denote by "u on A" for "Tr(u) on A", etc.

By [2, Proof of Theorem 3.9] and [20, Proof of Lemma 2.2|, given a
normed subspace (X, |||l (gr3)) and A € X, there exist ho, h1, ...,y €
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LM (G;R?) such that
N

(1.1) Alu) = ho, )dz + Y {(h da; (ue X).
i=1G

Conversely, every functlonal A defined by (1.1) in the case hg, hi,..., AN €
LM (G;R?), is an element of X*.

2. Setup

Define I := (—1,1), Q@ == wx I, 5F 1= w x {3}, T := dw x I, and
for each ¢ > 0, SjE = w x {5}, e := 0w x el. Greek indexes will be
used to distinguish the first two components of a vector, for instance (z,,)
and (x4, x3), designates (1, x2) and (x1, e, x3), respectively. We denote by
R3*3 and R3*2 the vector spaces of respectively 3 X 3 and 3 x 2 real-valued
matrices. Given F' € R3*% and b € R?:, denote by (F'|b) the 3 x 3 matrix
whose first two columns are those of F' and the last column is b. By the
analogous way, set e, = (61|62) € R3*2 where {ey, e2,e3} is the standard
basis of R%. Set Dol := (§Z§2), D3U := §=, DU := (DoU|D3U) for an
R3-valued function U. Denote by C, C generic positive constants that may
vary from line to line.

Let W: R3*3 — R be a continuous function satisfying the M-growth-type
and coercivity conditions:

1

(2.1) M) =1) <W(F) < C(L+ M(|F])  (YF € R™),
for some C € (0,00). Set
(2.2) U, :={U e WhM(QR3) : U(Z) = # on T.}.

We consider the variational integral functional JE : \I/6 — R, where j;(U )
(the re-scaled total energy of the elastic cylinder €2, under a deformation
U : Q. — R3) is represented by the difference of the re-scaled bulk and
surface energies:

(23)  J(U) =

S(1 wiow)iz S<fe, U)dz) - i(§<gg,U>dH2 + {7 0w,

895

E £

Here, f. := f (Za, ?) fe LM (4R3), g (-, £5) € LM (w; R3) and H? de-
notes the 2-dimensional Hausdorff measure in R®. We assume that 1gF(-, +5)

= gi(.’i%),
Let Wy : R3*2 — R be defined by
(2.4) Wo(F) = inf W((F|z)).

z€R3
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By [25, Proof of Proposition 1, p. 554|, Wy is continuous as the continuous
function W satisfies the condition (2.1). Set

(2.5) Vo= {a € WHM(w;R?) : 4(x4) = (24,0) on dw}.
Let Jy : o — R be defined by
(2.6) Jo(2) = S OWy(Dyz) dxe — S(]—", Z)dzx,,

where QW) is the quasiconvex envelope of Wy and

(27)  Floa) =\ f(@a,z5)dzs + g+ <xa, ;) ‘g (xa, ;)

1

Remind that the quasiconvex envelope Qg : R™*"™ — R of a continuous
function g : R™*™ — R is defined (see [6, Definition 6.3], [9, Theorem 6.9])
by

(2.8) Qg(E) := inf § g(E+Dp)dx: ¢ € CSO(B;]R’")},

|

for all E € R™*™ where B is the open unit ball of R™.

3. The formulation of main results
Let Z be the space of membrane deformations defined by

(3.1) Z={zec WHM(Q;R®): D32 =0, 2(z) = (£4,0) on I'}.

Observe that Z is canonically isomorphic to Wo [29, Theorem 1.1.3/1]. Let
Z denote the element of Wy that is associated with z € Z through this
isomorphism:

(3.2) 2(xq,w3) = Z2(24) a.e.

Since we want to identify the sequence convergence with the thickness of
our domain tending to zero, for simplicity we assume this thickness param-
eter ¢ takes its values in a sequence €, — 0.

THEOREM 3.1. Let J. be defined in (2.3) and Jy be defined in (2.6). As-
sume M € AaNVa. Assume the continuous function W : R3*3 5 R satisfies
the conditions (2.1). Let {U.} € Y. For each e >0 and T = (Zo,T3) €
we associate v = (Tq,x3) = (Za,1Z3) € Q and we set z:(rq,13) =
Ue(Za, 3). )
Then the sequence J. converges in LM (Q; R3)-norm to Jy in the following
sense:
(i) (lower bound) if z- — z in LM (Q;R3)-norm, HZEHWLJW(Q;RS) < 400 and
z € Z with z(zq,x3) = Z(x4) through the isomorphism (3.2), then

liminf J.(U.) > Jo(2),
e—0
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(ii) (attainment of lower bound) for every z € Wy there exists a sequence U
such that z. — z in LM (Q;R?)-norm, where [2e lw1.m sy < 400 with
2(xq,w3) = Z(xq) through the isomorphism (3.2) and

Consider the asymptotic behavior of U, € \IIE such that
(3.3) Jo(Ue) < inf Jo(U) +7(e),
Uev,

where v is a positive function such that y(¢) — 0 as ¢ — 0.

COROLLARY 3.2. (The minimization problem) Assume U. € W, satisfies
(3.3). Let the functions M, W and z,Z be such as in Theorem 3.1.
Then:

(i) the sequence z. is relatively weakly compact in WM (Q; R3);

(ii) the set Chim of cluster points of the sequence z. in the weak topology is
a non-empty subset of Z;

(iii) any point z.« of Cam can be identified with z. € Uy by the 3D-2D di-
mension reduction isomorphism (3.2) and Zs is a solution of the mini-
mization problem

inj jo(’L_L)
ueW¥g
4. The proofs of Theorem 3.1 and Corollary 3.2

We will reformulate Theorem 3.1 and Corollary 3.2 by the use of the
following equivalent functionals .J} and Jy (see the re-formulation in Theorem

4.1 and Corollary 4.2). Define
(4.1) () = (zq,ex3), wuo0(x) = (24q,0).

Notice that after the change of variables as in Theorem 3.1 with the associ-
ation

(4.2) 2 = (2o, 23) = (@a, iggg) (e, 3) = Ulda, 3),

the re-scaled energy J.(U) in (2.3) can be rewritten in the equivalent form

(43)  J(u) =

SW(Dau]Dju>dx— [ (f u)de — < V (gT uw)arn®+ | (g_,u)d”H2>,

Q Q S+ S—

where w is an element of

(4.4) U, = {uec WHM(Q;R?) : u(x) = uge(z) on T'}.
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Observe that the re-scaled displacement v = u — ug . belongs to the set
V=W R?) = {v e WM (Q;R) : v(z) = 0 on T}

and

Je(v+upe) = S W(eq + Dovles + %)dw
Q
—V(fuoe +v)de - ( | (g% uoe +0)dH* + | (97 uoe +v) d?—[2>.
Q S+ =
Since the direct consideration of J. would imply the study involving
the weak topology of the Orlicz-Sobolev space W1 (Q; R3) which is non-
metrizable on unbounded sets, then it is needed to extend J; to the functional

J LM(Q;R?) — RU {400} by

J, , if veV,

(4.5) Ji(w) = 4 0T we), ifve

00, otherwise.

Let V be the space of membrane displacements defined by

(4.6) V={veWhMQ;R3): D3v=0,v(z)=00onT}C V.
Similarly as in (3.1)—(3.2), V is canonically isomorphic to VVO1 ad (w; R3) [29,
Theorem 1.1.3/1|. Let © denote the element of W()I’M(w;R?’) that is associ-
ated with v € V through this isomorphism:

(4.7) V(Zq, x3) = 0(Tq) a.e.
Define
(4.8) Jo(v+ugp) = S OWoy(eq + Dov) dao — S(.F, u0,0 + 0)dx,.

In this notion, we have for U, € \TJE
j;-:(Ue) = Je(ue) = JE(UE + uO,e) = Jel(ve)a
where u. € ¥, v. € V and
j()(i) = J()(U + uo,o), (U eV, z=v+ up,0 € @0)

Recall [10], [6, Definition 7.1] that a sequence of functions I. from a
metric space X to R is said to I'-converge to I for the topology of X if the
following conditions are satisfied, for all x € X:

Ve =z, Ip(z) < liminf I (z.),
{Hys =y, 1Le(ye) = Io(y).
THEOREM 4.1. Let J! be defined in (4.5) and Jo be defined in (4.8). As-

sume M, M* € Ay. Assume the continuous function W: R3*3 — R satisfies
the conditions (2.1).

(4.9)
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Then the sequence J* T-converges in LM (Q; R3)-norm to some functional
JL LM R3) — RU{+00} as e — 0 and moreover JL (v) = Jo(v+ugy),
for allv e V.

Consider the asymptotic behavior of u. € ¥, such that
(4.10) Je(ue) < inf Je(u) +7(e),

where 7y is a positive function such that y(g) — 0 as € — 0.

COROLLARY 4.2. (The minimization problem) Let the functions M and
W be such as in Theorem 4.1. Assume u. € U, satisfies (4.10).
Then:

(i) the sequence u. is relatively weakly compact in WHM (Q; R3);

(ii) the set Camm of cluster points of the sequence u. in the weak topology is
a non-empty subset of Z;

(iii) any point u. of Caum can be identified with u, € Wy by the 3D-2D
dimension reduction isomorphism (3.2) and uy is a solution of the min-
imization problem

iILf j()(a)
ue¥y
We start the proofs of Theorem 4.1 and Corollary 4.2, with the following
Lemmas 4.3—4.4.
We consider the following condition (4.11):

Fi(M) € [1,00),3c € (0,00),Fa(M) € (0,1] such that

M(at) < ca®™M(t) (Vt>0,Ya < a(M)).

The condition (4.11) is equivalent to the following condition (4.12):
Ji(M) € [1,00),3c € (0,00),3b(M) € [1,00) such that

(4.11)

(4.12) % b MDA (s) < M(bs) (Vs > 0,¥b > b(M)).

Recall [21] that the condition M € AY (¢ > 1) means the existence of
K > 0 such that KA9M(s) > M(As), for s > 0 and A > 1. Furthermore,
the condition M € A*P (p > 1) means the existence of K > 0 such that
KN M(s) < M(\s), for s >0 and A > 1.

Note that the condition (4.12) with (M) = p is equivalent to the condi-
tion A*P of M. In fact, if the condition (4.12) holds with b(M) > 1 then for
b € [1,b(M)], we have

VMM (s) < b(M)Y MM (s) < b(M)* M) M (bs)

as M(0) = 0 and M is increasing on [0, 00). Therefore, the condition A*? of
M holds with p = i(M) and K = min{1/c, 1/b(M)"M)}.
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The explanation given above shows that the following Lemma 4.3 is a re-
formulation of a part of [21, Proposition 4| (see the proof of the implications
(a) = (b) and (b) = (c) of |21, Proposition 4]).

LEMMA 4.3. Assume the dual Orlicz N-function M* satisfies the condition
AZ e M*(27) < K M*(7), for all 7 € [0,00) and for some K € (0, 00).
Then M* € A9 for some q € (1,00) and M satisfies the condition (4.11)

fori(M) = 45 € (1,00).

LEMMA 4.4. (Compactness) Let M and W be such as in Theorem 4.1. Let
ve € LM(Q;R?) be a sequence such that

(4.13) sup J2(ve) < d < +oo.
€€(0,1)

Then there exists d > 0 such that:
(i)
(4.14) sup |ve|lpriar sy < d < +oo
e€(0,1)
and the sequence v, is relatively weakly compact;

(ii) the set of cluster points of the sequence v in the weak topology o(V,V*)
s a non-empty subset of V.

Proof. We divide the proof into Steps 4.1-4.6, where in Steps 4.2-4.5, we

assume additionally M* € Agl()b.

STEP 4.1. By (4.13) and (4.5) for J1, v. € V, for all € > 0. Denote u. =
Ve + ug . We claim that

D3u,

(4.15) | M(‘ (Daua

Q

) de < C1 + C1((If |l g ooy

+ (g e s+ sy + 119~ a5 m)) | Tr L) | Duell s ymexs)),

for some C; € (0,4oc) and for all ¢ € (0,1). Here | Tr||z := Nt + N—,
where N (resp., N ™) denotes the operator norm of the linear trace operator
Tr: WM (Q;R3) — LM(S*;R?) (resp., Tr : WHM(Q; R3) — LM (S—;R3)).

For this, by the coercivity condition (2.1) together with (4.13), we infer
that
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116 5 (2w P25t - 1)
Q
<d+ |{(f,ue) dz| + S<g+,u5>dﬂ2'+ S(g-,uacmz’
Q S+t S—
= d+ || (f,ue)dz| + | § (g7, Tr(uwe)) dH?| + | | (g7, Tr(uc)) dH?|.
Q S+t S—

By the generalized Holder inequality (see, e.g., [31, Theorems 13.13, 13.11],
[24, 34]), we deduce that

D3u,
g

410 5 (3w P2 - 1)
Q

< d+ 2| fl| v sy lluell Lo (osr)
+2(]lg " || par (s+5r3) || Tr(ue) || Lar 5+ ;g
+ g7 [ pare (- sy | Tr(ue) | v (- 3))
< d+ 2| fll o sy luell Lo sy + 2017 | par 5+ m3)
+ 119~ I sy | Tr [l 2 (llwell o @irs)
+ || Duel| L msxsy)-

By the W%’M—generalization (see [23, Theorem 5, Theorem 7| together
with [11, Theorem 3.9|, [19, Lemma 4.14|, [18, Proposition 2.1]) for the

Poincaré-Sobolev-type inequality (see [30, Theorem 3.6.4]), there exists C' €
(0, 00) such that

(4.18) ||u5||LM(Q;R3) < 6<||DUEHLJ\4(Q;R3X3) + S |u€|d7-[2>

r
= 6'<HDU’8HLM(Q;R3X3) + X ’U07€‘d7'[2>

T
< 6(”Du5”LM(Q;R3Xg) + H2(T) sup z]) < oo,
TEe
for all € € (0,1).

Then (4.17)—(4.18) imply (4.15).

STEP 4.2. By the additional assumption M* € Agl(’b, we may apply
Lemma 4.3, and so M satisfies the condition (4.11) for some (M) € (1, 00).
We claim that

(419) HDuEHLM(Q;R3><3) < 02 < 00, (V€ < (0, 1)),
(420) HuEHLM(Q;IR3) < O < oo, (V&‘ S (07 1))7
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(4.21) | M(|(Dauc|—=)|)dz < Cy < 00, (Ve € (0,1)),

for some C5, C3, Cy.
For this, by (4.15), we infer that

1

4.22
( ) 1+ HDUEHLM(Q;]R3><3)

S M(|Dug|)dx < C5 < 00, (Ve € (0,1)),
Q
for some C5.
Consider the case when || Ducl|par(qrax3)/2 > a(M)™ > 0, where a(M)
€ (0,00) in (4.11). Since

0 < ([ Duel| a1 (0 max3)

[ Duel| Ly (raxs),

2
by the definition of the Luxemburg norm and by (4.11), we deduce that

Du,
z)  1<)M ()

i(M)
< <||Dus||LM QR3x3)> SSZM(|DuE|)dx, (Ve € (0,1)).
Therefore, (4.22) and (4.23) imply that
(4.24) (HDUEHLJW(Q;R3><3)) < (5 < o0
whenever || Ducl|paqpsxsy > 2a(M)~!. Here
SH(M)

A= ena ey

Since i(M) > 1, A(s) — 400 as s = +00, and so there exists Cg € (0, 00)
such that A(s) > C5 (Vs > Cg). Hence, (4.24) implies the claim (4.19):
HDUEHL”T(Q;R?’X?’) < Oy = min{Cg,Qa(M)*l}, (VE S (0, 1)) By (418) and
(4.15), we deduce the claims (4.20) and (4.21).

STEP 4.3. Obviously,

Cr:= sup ||uo.ellwrm(qmrsy < +oo.
e€(0,1)
Therefore, (4.19)—(4.20) imply (4.14):
(4.25) sup H’Ugle,JW(Q;RB) <d:=Cy+ C3+ C7 < o0.

e€(0,1
STEP 4.4. We claim that
e—0 ’
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For this, by the convexity of M and M (0) = 0,
et 1 1

Since |(zole7t23)| > 71|23/, we deduce, by (4.21) that

0 < | M(|1Dsuc|)dz < e | M(e7|D3uc|)da
Q
I3

Q
< e | M(|(Dauele ™ Dsuc)|)dz < e-Cy < 00, (Ve € (0,1)).
Q
Hence
(4.27) lim | M (|Dsuc|)da = 0.
s—>0Q

It is known (see, e.g., [24], [31]) that (4.27) implies (4.26) as M € As.

STEP 4.5. It is known (see, e.g., [20, Theorems 1.1, 3.3]) that W1M(Q; R3)
is a separable reflexive Banach space as M, M* € As. By the reflexivity and
separability of the closed subspace V' = W%’M(Q;R‘?) of WHM (€ R3), the
Alaoglu-Bourbaki theorem together with [22, Theorem V.7.6] imply that any
closed ball of V equipped with the weak topology is compact and metrizable.
Therefore, (4.14) implies the existence of some cluster point of the sequence
ve in the weak topology of V.

Now, let v be a cluster point in the weak topology o(V, V*). Analogously,
(4.19)-(4.20) imply that there exist v € WM (Q;R?) and a subsequence
(not relabeled) of the sequence u. such that u. converges weakly to u in
WHM(Q;R3). Then it is easy to check by the representation (1.1) that v. =
U —up . converges weakly to u—ug o in WHM (Q; R3). Therefore, u—ugg = v
and Dsu, converges to Dsu in the weak topology (LM (Q;R?), LM" (Q; R3)).
By (4.26) and the generalized Holder inequality [31, Theorems 13.13, 13.11],
for every y € LM (Q;R?), we deduce that

S(y, Dsu)dx
Q

= lim‘ S (y, D3u.)dx
e—0 Q

< ilg% 2||yHLM*(Q;R3)||D3UEHLM(Q;]R3) =0.

Therefore, |, (y, Dsu)dx = 0, for every y € LM"((;R?), and so D3u = 0 a.e.
Since D3ugo = 0, D3v = 0 follows, and so v € V.

STEP 4.6. Now consider the general assumption M, M* € As. By [24,
(4.5) in p. 24], there exists some Orlicz N-function Ny € AJ”" such that

Ni(1)=M*(7), (V7 >19),
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for some 79 € (0,00). Let M; := Ny. By known results of the theory of N-
functions and Orlicz spaces [24, 31, 33|, we deduce the following assertions:
(M*)* = M, Mj = (N{)* = Ny € AJ™, Ly- = Ly, and Ly = Liypeys &
(La+)* = (Lny)* & Lyy with equivalent norms, Ly = Lyy = Ly, and
M = Nf € Ay and (LM)* = (LM1)* & Ly~ = LMT with equivalent norms.

So, My € Ay, Mj € A", W™ (9, R3) = WM (; R3), WM (Q; R)
= WHMi(Q; R3) with equivalent norms.

Furthermore, we deduce that the continuous function W: R3*3 — R
satisfying the conditions (2.1) with respect to M, satisfies the conditions
(2.1) with respect to Mj:

1
S(M(F]) = 1) < W(E) < C'(L+ My(F]),  (VF € R,
for some C” € (0, ).

Therefore, we can apply the results of Steps 4.1-4.5 with respect to M;
in place of M. Then by the above assertions for relations between M, M*
and My, M, we deduce all assertions of Lemma 4.4 with respect to M under

the general assumption M, M* € As. u
COROLLARY 4.5. Ifv € LM(;R3), but v ¢ V then JL (v) = +oc.

Proof. This follows from Lemma 4.4 by the same argument as in [25, Proof
of Corollary 4, p. 555| =

LEMMA 4.6. (The lower bound) For allv € V with © from the isomorphism
(4.7), we have that

T () > | OWi(eq + Do) dza — \(F, uo0 + 7)dza.
w w
Proof. Fix v € V. Using D3v = 0, we infer that C := SUP¢(0,1) Je(v4upe) <
+00. Then, by the definition of I'-convergence (4.9), JL (v) < C < 4o00. By
(4.9), there exists a sequence v, € V such that v — v in LM (Q;R?)-norm
and J!(v.) — JL (v).

Then, by Lemma 4.4, there exists some subsequence (not relabeled) such
that v, converges to v in the weak topology o(V,V*). Hence, it is easy
to check by the representation (1.1) and the isomorphism (4.7) and by the
Fubini theorem that

(4.28) S(f, U e + ve) dr + S (g7, uoe + v )dH?
Q S+
+ V(g7 uoe +vo)dH® = \(Fouo0+ 0)dzqg
S w
where F is from (2.7).
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Define u. := v. + up.. By (2.4) and (2.8), we infer that
(4.29) \ W(Dauele ' Dgue)dz > | Wo(Dgue)da
Q

>\ OWy(Dyue)dx.

QD= 2

Define Z : R3*3 — R by
Z(zalz3) = QWo(2a).

By the same arguments as in [25, p. 556 and in |25, Proof of Proposition 1,
p. 554], we deduce that Z is quasiconvex (i.e., Z = QZ) and Wy, Z satisfy
the conditions (cf. (2.1)):

Z(M(F) ~ 1) < Wo(F) < C(1+ M(F),

(4.30) ¢ 1
-5 S4(F) <+ M(F))),

for all FF € R3? and all F € R33 and for some C € (0,00). Define
G : WM (Q:R3) — R by
(4.31) G(u) = S Z(Du)dzx = S OWy(Dqu) dx.
Q Q
Then by the WM _generalization [13, Theorem 3.1] of the Acerbi-Fusco
weak lower semi-continuity W1P-theorem [1], G is sequentially weakly lower

semi-continuous on WM (€; R3). Since u. converges weakly to u := v+ugo
in WHM(Q; R3), (4.29) implies that

(4.32) ligl_jglféW(Dauelslegua)dx > lirgn_}glfG(ug) > G(u)

= | OWo(eq + Dov)dz = | QWo(eq + Dat)dza.
Q w

Hence, by (4.32) and (4.28), the statement of Lemma 4.6 follows. =

LEMMA 4.7. (The upper bound) For allv € V with v from the isomorphism
(4.7), we have that

JL () <\ OWo(eq + Do) dza — \(F, u00 + 7)dza.

w w

Proof. We divide the proof into Steps 4.7—4.11.
STEP 4.7. Let v € WOI’M(W;R?’) from the isomorphism (4.7) for v € V
and set @ := U + ugp. We claim that

(4.33) JL(v) < Gi(0), (VveV)
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where G : W&’M(w;]R
(4.34) Gi(v) ==

— R is defined by
Wo(eq + Do) dzg — S(]:, u0,0 + 0) dzq

w

Wo(Datt) dza — {(F, 10,0 + ) dzq.

w

For this, for every w € VVO1 ’M(w; R?3), define

€ —— € t—— ~—

Ve() = 0(xq) + exsw(zy).
It is easy to check that v. — v in WHM(Q; R3)-norm.

Under the conditions (2.1), the continuous function W generates the
continuous superposition operator Ay : LM (Q; R3*3) — L1(Q; R) defined by
Aw () (z) := W(u(zx)) (see, e.g., [3, Theorem 3|, [32, Theorem 3.2]). Hence
the functional @+ {o, Aw (@)dz is continuous on LM (€; R3*3). Therefore,

D
S W(eq + Daveles + ive)d:n = S W(Dq(u + exzw)|es + w)dr —
Q Q
| W(Datiles + w)de = | W(Daiiles + w)dzq.
Q w

Hence as in (4.28), we deduce that
JHve) — S W(Dqyulez + w)dxq — S(]:, u0,0 + 0)dxq.

w w
By (4.9) we infer that

JL(v) < inf \ W(Dqiles +w)dza — |(F,uo0 + v)dza.

wEWOLM(w;]R3) W w

Analogously, we deduce that the functional @ § Aw (@)dxe is LM (w; R3%3)
-norm-continuous. It is known (see [11, Lemma 2.1|, [2]|) that the set
Cs(w;R3) C WOI’M(w;R?’) is LM (w; R3)-norm-dense in LM (w; R3). Hence,
we infer that

(4.35) inf \ W(Dqles + w)dzq
wGWOI’M(w;]R3) w
= inf S W (Dqytles + w)dzx,

weC§e (w;R3) o

= inf |\ W(Dules + w)dz,.

we LM (w;R?) ')

Since W is continuous function, the function g : w x R3 — R, defined
by g(z,z) := W(Dytu(x)|es + z), is a Carathéodory function. This means
that there exists wo C w such that £2(w \ wp) = 0 and g(x, ) is continuous
for any x € wp and g(-, z) is measurable for any z € R®. Fix § € (0,00).
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The set Ms == {(z,2) € wy x R3 : g(x,2) < Wo(Dyii(x)) + §} belongs to
Ap2(wo) x B(R?) (where Ap2(wp) is the o-algebra of Lebesgue-measurable
subsets of wy and B(R3) is the o-algebra of Borel subsets of R?). Observe
that Ms(z) := {z € Ms : (z,z) € Ms} # (. By the Measurable Selection
Theorem (see, e.g. [7, 17]), there exists a measurable function ws such that
ws(x) € Ms(x) (x € wp). Hence,

W(Dqu(x)|es + ws(z)) < 6 + Wo(Dqu(x)),

for almost every x € w. By the coercivity condition (2.1), we infer that
ws € LM (w; R3). Therefore,

inf |\ W(Dales +w)

ules + wg)dx
weLM (w;R3) ') Da ’ ) “

IN

S 0(Datt)dxe + d|lw| (V8 € (0,400)).

So

4.36 inf W (D,u dre <\ Wo(Dqtt)dzy.
(4.36) weLfl”?(w;E@)é (Datiles + w)dx USJ 0(Dat)dz
By (4.7), (4.35) and (4.36), we infer (4.33).
STEP48 Define Gy : LM(Q;R3) — RU {00} by G1(v) = G1(7) ifv € V
and v € VV0 M(w;R?) from the isomorphism (4.7), G1(v) = +0o otherwise.
Then by Corollary 4.5, (4.33) implies

(4.37) JL(v) <Gi(v), (Yo e LM(Q;R?)).

Let I1(G1) denote the lower semicontinuous envelope of G on LM (€; R3).
Since J1, is lower semicontinuous on L™ (€; R3) as the I'-limit in (4.9) (see,
e.g., |6, Remark 7.3/(i)]), (4.37) implies

(4.38) JL (v) <T(G1)(v).

STEP 4.9. By the Wol’M(w; R3)-generalization of Dacorogna’s Wol’p(w; R3)-
relaxation theorem [9, Theorem 9.1] in the case M € Ag, we deduce, under
the condition (4.30) for Wy, that the sequential weak lower semicontinuous
envelope II(G1) of G; on WOI’M(w; R3) is calculated by
(4.39) II(G1)(0) = | QWo(ea + Da®) daa — {(F,uop + 0)dzq.

w w

STEP 4.10. We claim that (1 is coercive in the sense:

(4.40) G1(v) — 400 as ||v ) = +oc.

HWOl‘M(w;Rg’

For this, observe that A = (o, M*(|f(%q,73)|)dz < 0o as f € LM ((;R3)
and M* € Ag (see [24, 34]). By the Fubini theorem and the Jensen inequality
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[24, p. 62|, we infer that

00>\ = S (S M*(|f(za,z3)]) d$3> dxy > S M* <S |f(xa,x3)] d:v3> dz,.
w N w I
Hence, §; |f(-,x3)|dzs € LM (w;R3) that implies F € LM (w; R3).
Assume that G1(v) < d; < co. By (4.30) for Wy and by the generalized
Holder inequality [31, Theorems 13.13, 13.11], we deduce that

(M (lew + Dad]) = 1)daa < dy +

w

<d + 2”“/_..HLM* (W;R?’)HUO»O

S(]:, u0,0 + T))dﬂ?a

w

Ql=

LM (wird) T 2| Fl par (om0l s (w3

Observe that the Poincaré-type inequality of [19, Corollary 5.8 implies
that ||5]| ,ut (msy < CllDal| L msxzy (7€ Wy (w; R?)).

The convexity of M implies that M (|eq+ Do) > 2M (3| Doo]) — M (V2).

First, we assume additionally M* € Agl(’b. Then we may apply Lemma
4.3, and so M satisfies the condition (4.11), for some i(M) € (1,00). By the

arguments analogous to the arguments from (4.17) up to (4.25) and the end
of Step 4.2 in the proof of Lemma 4.4, we infer that

(4.41) H27||W1,M( < h(dy) < oo whenever G1(v) < d; < 00,
0

w;R3) —
for some function A : (0,00) — (0,00). This is equivalent to (4.40).

Now consider the general assumption M, M* € Ay. Let M be the Orlicz
N-function defined in Step 4.6 such that M; € Ay and M; € Agl‘)b. By all
arguments and assertions obtained in Step 4.6 for relations between M, M*
and Mj, M{, we can apply the coerciveness property (4.40) proved before
with respect to M in place of M, and then we deduce the coerciveness
property (4.40) with respect to M under the general assumption M, M* €
As.

STEP 4.11. Since Wol’M(w; R3) is a reflexive separable Banach space and
G satisfies (4.40), then (see, e.g., [14, Proposition 3.16]|)

II(G1)(v) = min{ lim inf G (7) :
a sequence U, converges weakly to ¥ in I/VO1 M, R}

Then, using the isomorphism (4.7) and the representation (1.1), further ar-
guments which are analogous to the arguments in [25, Proof of Lemma 5,
pages 555-556] imply that

(4.42) T(Gh)(v) = TI(G1)(0), (vEV).
Hence, (4.38)—(4.39) and (4.42) imply the upper bound in Lemma 4.7. =
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Proof of Theorem 4.1. The assertions of Theorem 4.1 follow from Corol-
lary 4.5 for the case v ¢ V and from Lemmas 4.6 and 4.7 for the case v € V. n

Proof of Corollary 4.2. Observe that v, := u. — up, belongs to V. By
(4.10),

(4.43) Jo(ue) = JH(ve) < in‘f/ JL () +v(e).
ve
It is easy to check that

JH0) = Jo(up ) = S W (eqles)dx +
Q

+ <— S(f, Up,e)dr — S (g+,u0,€)d’H2 + S (g,uo7g)d7-[2> < C < +o0,
Q S+ S—

for some C and for all & € (0,1). Hence, (4.43) implies that sup.¢ g 1) J2 (ve)
< +o0. Therefore, by Lemma 4.4, the sequence v, is relatively weakly
compact and the set of cluster points of the sequence v, in the weak topology
o(V,V*) is a non-empty subset of V.

By (4.43) and (4.5),

1 - 1 _ : 1

(4.44) Jo(ve) < Inf Jo(v) +9(e) = L%;m Iz (v) +7(e).

Fix 9 € LM(;R3). By Theorem 4.1 and (4.9), there exists a sequence
7. € LM(Q;R3) such that 9. — © in LM (€; R3)-norm and J2(7.) — JL ().
Therefore, applying Theorem 4.1, (4.9), (4.44) and the assumption y(¢) — 0
as € — 0, we infer that

Jo(vs 4+ u00) = J& (v) < liminf J2 (v:) < liminf(J2(:) +7(¢))
e—0 e—0

= Jolo(f}) = Jo(f) + UO70).

Using the isomorphism (4.7) and the representation (1.1), we re-write
the statements obtained above for v. and v,. By this way, we deduce all
statements of Corollary 4.2. u

Acknowledgement. The authors are grateful for the various construc-
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Let us inform that we have recently obtained results in the setting of the
Orlicz-Sobolev space WM that extend other known results for thin films
in the case M (t) = |t|P for some p € (1,00). In particular, our results extend
results obtained by G. Friesecke, R. D. James and S. Miiller in 2002 [16]
for rigid thin films, and by G. Bouchitté, I. Fonseca and M. L. Mascarenhas
in 2004 [5] for thin films with bending moment. Their proofs require other
techniques and we will discuss these issues in our forthcoming papers.
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