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EFFECTIVE ENERGY INTEGRAL FUNCTIONALS FOR
THIN FILMS IN THE ORLICZ–SOBOLEV SPACE SETTING

Abstract. We consider an elastic thin film as a bounded open subset ω of R2. First,
the effective energy functional for the thin film ω is obtained, by Γ-convergence and 3D-2D
dimension reduction techniques applied to the sequence of re-scaled total energy integral
functionals of the elastic cylinders ω×(− ε

2
, ε
2
) as the thickness ε goes to 0. Then we prove

the existence of minimizers of the film energy functional. These results are proved in the
case when the energy density function for the elastic cylinders has the growth prescribed
by an Orlicz convex function M . Here M is assumed to be non-power-growth-type and
to satisfy the conditions ∆2 and ∇2 (that is equivalent to the reflexivity of Orlicz and
Orlicz–Sobolev spaces generated by M). These results extend results of H. Le Dret and
A. Raoult for the case M(t) = |t|p for some p ∈ (1,∞).

Introduction
The mathematical theory of nonlinear elasticity has a long history with

major contributions from L. Euler, J. Bernoulli, A. Cauchy, G. Kirchhoff,
A. E. Love, T. von Karman and many modern authors (see [4, 8, 16, 26]).
One of main problems in this research is to understand relations between
three-dimensional and two-dimensional theories for thin domains.

We consider an elastic thin film as a bounded open subset ω ⊂ R2 with
Lipschitz boundary. The set Ωε := ω × (− ε

2 ,
ε
2) ⊂ R3 for a small thickness

ε is considered as an elastic cylinder approximate to the film ω. A three-
dimensional deformation Uε : Ωε → R3, defined on the thin cylinder Ωε, has
elastic energy �

Ωε

W (DUε) dx
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and one seeks to understand the behavior as ε → 0 of minimizers subject
to appropriate boundary conditions. For solving this problem, there were
investigated the limiting energies as ε→ 0 of the sequence of re-scaled elastic
energies with different scales, for instance, of the energies

1

ε3

�

Ωε

W (DUε)dx or
1

ε

�

Ωε

W (DUε)dx.

Here, the first re-scaled elastic energy agrees with the expression considered
by G. Kirchhoff (see references in [8, 16, 26]) and the second was studied by
H. Le Dret and A. Raoult in 1995 [25].

Let the energy density function W : R3 × R3 → R have the growth
prescribed by an Orlicz convex function M . In the present paper, we inves-
tigate the above problem by the use of the second re-scaled elastic energy
for the thin cylinder Ωε, assuming M is non-power-growth-type and satisfies
the conditions ∆2 and ∇2 (that is equivalent to the reflexivity of Orlicz and
Orlicz–Sobolev spaces generated by M).

Main results of the present paper (see Theorem 3.1 and Corollary 3.2)
extend results established by H. Le Dret and A. Raoult in [25, Theorem 2,
Theorem 8] (cf. [4, Theorem 12.2.1]) for the case of thin films in the reflexive
Sobolev space setting with M(t) = |t|p, for some p ∈ (1,∞).

Roughly speaking, in Theorem 3.1, the effective energy functional for the
thin film ω is obtained, by Γ-convergence and 3D-2D dimension reduction
techniques applied to the sequence of the re-scaled total energy integral func-
tionals of the elastic cylinders Ωε as the thickness ε goes to 0. In Corollary
3.2, the existence of minimizers of the energy functional for the thin film is
established by showing that some sequence of re-scaled minimizers weakly
converges in an appropriate Orlicz–Sobolev space to a minimizer of the film
energy functional.

Recall that various concrete examples of M with M ∈ ∆2 ∩ ∇2 can be
found in [24, Theorem 7.1, pp. 58–59] and [27, 28]. Furthermore, the as-
sumptionM ∈ ∆2∩∇2 is indispensable in the regularity study of minimizers
of multiple variational integrals with theM -growth on Orlicz–Sobolev spaces
(see discussions and references for many other concrete examples in [12]).

In Section 4, we give the proofs of Theorem 3.1 and Corollary 3.2. Our
proof scheme extends the proof scheme of H. Le Dret and A. Raoult [25]. For
these proofs we apply also results: for Orlicz convex functions [21, Proposi-
tion 4], for Orlicz–Sobolev spaces [23, Theorem 5, Theorem 7] (cf. [11]), [18,
Proposition 2.1], and for quasiconvex integral functionals and quasiconvexi-
fication in the Orlicz–Sobolev space setting [13].
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1. Some terminology and notation
From now on, unless stated to the contrary, M : R → [0,∞) is assumed

to be a non-power-growth-type Orlicz N -function (i.e., even convex function
satisfying lim

t→0

M(t)
t = 0 and lim

t→+∞
M(t)
t = +∞).

We assume M ∈ ∆2 ∩ ∇2. Here, the condition M ∈ ∆2 means that
M(2t) ≤ cM(t) (t ≥ t0), for some t0 ∈ [0,∞) and c ∈ (0,∞). The condition
M ∈ ∇2 means that ∃ l > 1, ∃ t∗ ∈ [0,∞) such that M(t) ≤ 1

2lM(lt), for all
t ≥ t∗.

Let M∗ be the complementary (conjugate) Orlicz N -function of M de-
fined by M∗(τ) := sup{tτ −M(t) : t ∈ R}. It is known that the condition
M ∈ ∇2 is equivalent to the condition M∗ ∈ ∆2.

Denote by |v| the Euclidean norm of v and by (u, v) the scalar product.
Given an open bounded subset G ⊂ RN with Lipschitz (e.g., C2-smooth)
boundary ∂G equipped with the (N − 1)-dimensional Hausdorff measure
HN−1. Denote by LM (G;Rm) the Orlicz space of all (equivalent classes of)
measurable functions u : G→ Rm equipped with the Luxemburg norm

‖u‖LM (G;Rm) := inf{λ > 0 :
�

Ω

M(|u(x)|/λ)dx ≤ 1}.

It is known that M ∈ ∆2∩∇2 is equivalent to the reflexivity of LM (G;Rm).
Recall that the Orlicz–Sobolev space W 1,M (G;R3) is defined as the Ba-

nach space of R3-valued functions u of LM (G;R3) with the Sobolev–Schwartz
distributional derivative Du ∈ LM (G;R3×N ) equipped with the norm

‖u‖W 1,M (G;R3) := ‖u‖LM (G;R3) + ‖Du‖LM (G;R3×N ) <∞.

The subspaceW 1,M
0 (G;R3) is defined as the closure in ‖·‖W 1,M (G;R3)-norm of

the set C∞0 (G;R3) of C∞-smooth R3-valued functions with compact support
in G. Since ∂G is Lipschitz and M,M∗ ∈ ∆2, by [15, Theorems 2.1, 2.3],
there exists the bounded linear trace operator

Tr : W 1,M (G;R3)→ LM (∂G;R3)

such that: (i) Tr(u) = u|∂G (∀u ∈ C∞(G)) and (ii) u ∈ W 1,M
0 (G;R3) if

and only if Tr(u) = 0. So, for the simplicity of notation we will write
"u(x) = ϕ(x) on A" for u ∈W 1,M (G;R3) and ϕ ∈ LM (∂G;R3) and A ⊂ ∂G
if Tr(u)(x) = ϕ(x) for almost every x ∈ A. Due to this reason, we also
denote by "u on A" for "Tr(u) on A", etc.

By [2, Proof of Theorem 3.9] and [20, Proof of Lemma 2.2], given a
normed subspace (X, ‖·‖W 1,M (G;R3)) and Λ ∈ X∗, there exist h0, h1, . . . , hN ∈
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LM
∗
(G;R3) such that

(1.1) Λ(u) =
�

G

(h0, u)dx+
N∑
i=1

�

G

(hi,
∂u

∂xi
)dx (u ∈ X).

Conversely, every functional Λ defined by (1.1) in the case h0, h1, . . . , hN ∈
LM

∗
(G;R3), is an element of X∗.

2. Setup
Define I := (−1

2 ,
1
2), Ω := ω × I, S± := ω × {±1

2}, Γ := ∂ω × I, and
for each ε > 0, S±ε := ω × {± ε

2}, Γε := ∂ω × εI. Greek indexes will be
used to distinguish the first two components of a vector, for instance (xα)
and (xα, x3), designates (x1, x2) and (x1, x2, x3), respectively. We denote by
R3×3 and R3×2 the vector spaces of respectively 3× 3 and 3× 2 real-valued
matrices. Given F̄ ∈ R3×2 and b ∈ R3, denote by (F̄ |b) the 3 × 3 matrix
whose first two columns are those of F̄ and the last column is b. By the
analogous way, set eα := (e1|e2) ∈ R3×2 where {e1, e2, e3} is the standard
basis of R3. Set DαU := ( ∂U∂x1 |

∂U
∂x2

), D3U := ∂U
∂x3

, DU := (DαU |D3U) for an
R3-valued function U . Denote by C, C̃ generic positive constants that may
vary from line to line.

LetW : R3×3 → R be a continuous function satisfying theM -growth-type
and coercivity conditions:

(2.1)
1

C
(M(|F |)− 1) ≤W (F ) ≤ C(1 +M(|F |)) (∀F ∈ R3×3),

for some C ∈ (0,∞). Set

(2.2) Ψ̃ε := {U ∈W 1,M (Ωε;R3) : U(x̃) = x̃ on Γε}.
We consider the variational integral functional J̃ε : Ψ̃ε → R, where J̃ε(U)
(the re-scaled total energy of the elastic cylinder Ωε under a deformation
U : Ωε → R3) is represented by the difference of the re-scaled bulk and
surface energies:

(2.3) J̃ε(U) :=

1

ε

( �

Ωε

W (DU)dx̃−
�

Ωε

(fε, U)dx̃
)
− 1

ε

( �

S+
ε

(g+
ε , U)dH2 +

�

S−ε

(g−ε , U)dH2
)
.

Here, fε := f
(
x̃α,

x̃3
ε

)
, f ∈ LM∗(Ω;R3), g±ε (·,± ε

2) ∈ LM∗(ω;R3) and H2 de-
notes the 2-dimensional Hausdorff measure in R3. We assume that 1

εg
±
ε (·,± ε

2)

= g±(·,±1
2).

Let W0 : R3×2 → R be defined by

(2.4) W0(F̄ ) = inf
z∈R3

W ((F̄ |z)).
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By [25, Proof of Proposition 1, p. 554], W0 is continuous as the continuous
function W satisfies the condition (2.1). Set
(2.5) Ψ0 := {ū ∈W 1,M (ω;R3) : ū(xα) = (xα, 0) on ∂ω}.

Let J̄0 : Ψ0 → R be defined by
(2.6) J̄0(z̄) :=

�

ω

QW0(Dαz̄) dxα −
�

ω

(F , z̄)dxα

where QW0 is the quasiconvex envelope of W0 and

(2.7) F(xα) :=
�

I

f(xα, x3) dx3 + g+

(
xα,

1

2

)
+ g−

(
xα,−

1

2

)
.

Remind that the quasiconvex envelope Qg : Rm×n → R of a continuous
function g : Rm×n → R is defined (see [6, Definition 6.3], [9, Theorem 6.9])
by

(2.8) Qg(E) := inf

{
1

meas(B)

�

B

g(E +Dϕ) dx : ϕ ∈ C∞0 (B;Rm)

}
,

for all E ∈ Rm×n where B is the open unit ball of Rn.

3. The formulation of main results
Let Z be the space of membrane deformations defined by

(3.1) Z = {z ∈W 1,M (Ω;R3) : D3z = 0, z(x) = (xα, 0) on Γ}.
Observe that Z is canonically isomorphic to Ψ0 [29, Theorem 1.1.3/1]. Let
z̄ denote the element of Ψ0 that is associated with z ∈ Z through this
isomorphism:
(3.2) z(xα, x3) = z̄(xα) a.e.

Since we want to identify the sequence convergence with the thickness of
our domain tending to zero, for simplicity we assume this thickness param-
eter ε takes its values in a sequence εn → 0.
Theorem 3.1. Let J̃ε be defined in (2.3) and J̄0 be defined in (2.6). As-
sume M ∈ ∆2∩∇2. Assume the continuous function W : R3×3 → R satisfies
the conditions (2.1). Let {Uε} ∈ Ψ̃ε. For each ε > 0 and x̃ = (x̃α, x̃3) ∈ Ωε

we associate x = (xα, x3) :=
(
x̃α,

1
ε x̃3

)
∈ Ω and we set zε(xα, x3) :=

Uε(x̃α, x̃3).
Then the sequence J̃ε converges in LM (Ω;R3)-norm to J̄0 in the following

sense:

(i) (lower bound) if zε → z in LM (Ω;R3)-norm, ‖zε‖W 1,M (Ω;R3) < +∞ and
z ∈ Z with z(xα, x3) = z̄(xα) through the isomorphism (3.2), then

lim inf
ε→0

J̃ε(Uε) ≥ J̄0(z̄),
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(ii) (attainment of lower bound) for every z̄ ∈ Ψ0 there exists a sequence Uε
such that zε → z in LM (Ω;R3)-norm, where ‖zε‖W 1,M (Ω;R3) < +∞ with
z(xα, x3) = z̄(xα) through the isomorphism (3.2) and

lim
ε→0

J̃ε(Uε) = J̄0(z̄).

Consider the asymptotic behavior of Uε ∈ Ψ̃ε such that

(3.3) J̃ε(Uε) ≤ inf
U∈Ψ̃ε

J̃ε(U) + γ(ε),

where γ is a positive function such that γ(ε)→ 0 as ε→ 0.

Corollary 3.2. (The minimization problem) Assume Uε ∈ Ψ̃ε satisfies
(3.3). Let the functions M , W and zε, z̄ be such as in Theorem 3.1.

Then:

(i) the sequence zε is relatively weakly compact in W 1,M (Ω;R3);
(ii) the set Cfilm of cluster points of the sequence zε in the weak topology is

a non-empty subset of Z;
(iii) any point z∗ of Cfilm can be identified with z̄∗ ∈ Ψ0 by the 3D-2D di-

mension reduction isomorphism (3.2) and z̄∗ is a solution of the mini-
mization problem

inf
ū∈Ψ0

J̄0(ū).

4. The proofs of Theorem 3.1 and Corollary 3.2
We will reformulate Theorem 3.1 and Corollary 3.2 by the use of the

following equivalent functionals J1
ε and J0 (see the re-formulation in Theorem

4.1 and Corollary 4.2). Define

(4.1) u0,ε(x) := (xα, εx3), u0,0(x) := (xα, 0).

Notice that after the change of variables as in Theorem 3.1 with the associ-
ation

(4.2) x = (xα, x3) :=

(
x̃α,

1

ε
x̃3

)
, u(xα, x3) := U(x̃α, x̃3),

the re-scaled energy J̃ε(U) in (2.3) can be rewritten in the equivalent form

(4.3) Jε(u) =
�

Ω

W

(
Dαu|

D3u

ε

)
dx−

�

Ω

(f, u) dx−
( �

S+

(g+, u) dH2 +
�

S−

(g−, u) dH2

)
,

where u is an element of

(4.4) Ψε := {u ∈W 1,M (Ω;R3) : u(x) = u0,ε(x) on Γ}.
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Observe that the re-scaled displacement v = u− u0,ε belongs to the set

V = W 1,M
Γ (Ω;R3) := {v ∈W 1,M (Ω;R3) : v(x) = 0 on Γ}

and

Jε(v + u0,ε) =
�

Ω

W (eα +Dαv|e3 +
D3v

ε
)dx

−
�

Ω

(f, u0,ε + v) dx−
( �

S+

(g+, u0,ε + v) dH2 +
�

S−

(g−, u0,ε + v) dH2
)
.

Since the direct consideration of Jε would imply the study involving
the weak topology of the Orlicz–Sobolev space W 1,M (Ω;R3) which is non-
metrizable on unbounded sets, then it is needed to extend Jε to the functional
J1
ε : LM (Ω;R3)→ R ∪ {+∞} by

(4.5) J1
ε (v) =

{
Jε(v + u0,ε),

+∞,
if v ∈ V,
otherwise.

Let V be the space of membrane displacements defined by
(4.6) V = {v ∈W 1,M (Ω;R3) : D3v = 0, v(x) = 0 on Γ} ⊂ V.
Similarly as in (3.1)–(3.2), V is canonically isomorphic to W 1,M

0 (ω;R3) [29,
Theorem 1.1.3/1]. Let v̄ denote the element of W 1,M

0 (ω;R3) that is associ-
ated with v ∈ V through this isomorphism:
(4.7) v(xα, x3) = v̄(xα) a.e.

Define
(4.8) J0(v + u0,0) =

�

ω

QW0(eα +Dαv̄) dxα −
�

ω

(F , u0,0 + v̄)dxα.

In this notion, we have for Uε ∈ Ψ̃ε

J̃ε(Uε) = Jε(uε) = Jε(vε + u0,ε) = J1
ε (vε),

where uε ∈ Ψε, vε ∈ V and
J̄0(z̄) = J0(v + u0,0), (v ∈ V, z̄ = v̄ + u0,0 ∈ Ψ0).

Recall [10], [6, Definition 7.1] that a sequence of functions Iε from a
metric space X to R is said to Γ-converge to I0 for the topology of X if the
following conditions are satisfied, for all x ∈ X:

(4.9)

{
∀xε → x, I0(x) ≤ lim inf Iε(xε),

∃yε → y, Iε(yε)→ I0(y).

Theorem 4.1. Let J1
ε be defined in (4.5) and J0 be defined in (4.8). As-

sume M,M∗ ∈ ∆2. Assume the continuous function W : R3×3 → R satisfies
the conditions (2.1).
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Then the sequence J1
ε Γ-converges in LM (Ω;R3)-norm to some functional

J1
∞ : LM (Ω;R3)→ R∪{+∞} as ε→ 0 and moreover J1

∞(v) = J0(v+u0,0),
for all v ∈ V.

Consider the asymptotic behavior of uε ∈ Ψε such that

(4.10) Jε(uε) ≤ inf
u∈Ψε

Jε(u) + γ(ε),

where γ is a positive function such that γ(ε)→ 0 as ε→ 0.

Corollary 4.2. (The minimization problem) Let the functions M and
W be such as in Theorem 4.1. Assume uε ∈ Ψε satisfies (4.10).

Then:

(i) the sequence uε is relatively weakly compact in W 1,M (Ω;R3);
(ii) the set Cfilm of cluster points of the sequence uε in the weak topology is

a non-empty subset of Z;
(iii) any point u∗ of Cfilm can be identified with ū∗ ∈ Ψ0 by the 3D-2D

dimension reduction isomorphism (3.2) and ū∗ is a solution of the min-
imization problem

inf
ū∈Ψ0

J̄0(ū).

We start the proofs of Theorem 4.1 and Corollary 4.2, with the following
Lemmas 4.3–4.4.

We consider the following condition (4.11):

∃ i(M) ∈ [1,∞), ∃ c ∈ (0,∞),∃ a(M) ∈ (0, 1] such that

M(at) ≤ c ai(M)M(t) (∀t ≥ 0, ∀a ≤ a(M)).
(4.11)

The condition (4.11) is equivalent to the following condition (4.12):

∃ i(M) ∈ [1,∞),∃ c ∈ (0,∞), ∃ b(M) ∈ [1,∞) such that
1

c
bi(M)M(s) ≤ M(bs) (∀s ≥ 0, ∀b ≥ b(M)).

(4.12)

Recall [21] that the condition M ∈ ∆q (q ≥ 1) means the existence of
K > 0 such that KλqM(s) ≥ M(λs), for s ≥ 0 and λ ≥ 1. Furthermore,
the condition M ∈ ∆∗p (p ≥ 1) means the existence of K > 0 such that
KλpM(s) ≤M(λs), for s ≥ 0 and λ ≥ 1.

Note that the condition (4.12) with i(M) = p is equivalent to the condi-
tion ∆∗p of M . In fact, if the condition (4.12) holds with b(M) > 1 then for
b ∈ [1, b(M)], we have

bi(M)M(s) ≤ b(M)i(M)M(s) ≤ b(M)i(M)M(bs)

as M(0) = 0 and M is increasing on [0,∞). Therefore, the condition ∆∗p of
M holds with p = i(M) and K = min{1/c, 1/b(M)i(M)}.
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The explanation given above shows that the following Lemma 4.3 is a re-
formulation of a part of [21, Proposition 4] (see the proof of the implications
(a)⇒ (b) and (b)⇒ (c) of [21, Proposition 4]).

Lemma 4.3. Assume the dual Orlicz N -function M∗ satisfies the condition
∆glob

2 , i.e. M∗(2τ) ≤ KM∗(τ), for all τ ∈ [0,∞) and for some K ∈ (0,∞).
Then M∗ ∈ ∆q for some q ∈ (1,∞) and M satisfies the condition (4.11)

for i(M) = q
q−1 ∈ (1,∞).

Lemma 4.4. (Compactness) Let M and W be such as in Theorem 4.1. Let
vε ∈ LM (Ω;R3) be a sequence such that

(4.13) sup
ε∈(0,1)

J1
ε (vε) ≤ d < +∞.

Then there exists d̄ > 0 such that:

(i)

(4.14) sup
ε∈(0,1)

‖vε‖W 1,M (Ω;R3) ≤ d̄ < +∞

and the sequence vε is relatively weakly compact;
(ii) the set of cluster points of the sequence vε in the weak topology σ(V, V ∗)

is a non-empty subset of V.

Proof. We divide the proof into Steps 4.1–4.6, where in Steps 4.2–4.5, we
assume additionally M∗ ∈ ∆glob

2 .

Step 4.1. By (4.13) and (4.5) for J1
ε , vε ∈ V , for all ε > 0. Denote uε =

vε + u0,ε. We claim that

(4.15)
�

Ω

M

(∣∣∣∣(Dαuε

∣∣∣D3uε
ε

)∣∣∣∣)dx ≤ C1 + C1((‖f‖LM∗ (Ω;R3)

+ (‖g+‖LM∗ (S+;R3) + ‖g−‖LM∗ (S−;R3))‖Tr ‖L)‖Duε‖LM (Ω;R3×3)),

for some C1 ∈ (0,+∞) and for all ε ∈ (0, 1). Here ‖Tr ‖L := N+ + N−,
where N+ (resp., N−) denotes the operator norm of the linear trace operator
Tr : W 1,M (Ω;R3)→ LM (S+;R3) (resp., Tr : W 1,M (Ω;R3)→ LM (S−;R3)).

For this, by the coercivity condition (2.1) together with (4.13), we infer
that
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(4.16)
1

C

( �

Ω

M(|(Dαuε|
D3uε
ε

)|)dx− |Ω|
)

≤ d+

∣∣∣∣ �
Ω

(f, uε) dx

∣∣∣∣+

∣∣∣∣ �
S+

(g+, uε) dH2

∣∣∣∣+

∣∣∣∣ �
S−

(g−, uε) dH2

∣∣∣∣
= d+

∣∣∣∣ �
Ω

(f, uε) dx

∣∣∣∣+

∣∣∣∣ �
S+

(g+,Tr(uε)) dH2

∣∣∣∣+

∣∣∣∣ �
S−

(g−,Tr(uε)) dH2

∣∣∣∣.
By the generalized Hölder inequality (see, e.g., [31, Theorems 13.13, 13.11],
[24, 34]), we deduce that

(4.17)
1

C

( �

Ω

M(|(Dαuε|
D3uε
ε

)|)dx− |Ω|
)

≤ d+ 2‖f‖LM∗ (Ω;R3)‖uε‖LM (Ω;R3)

+ 2(‖g+‖LM∗ (S+;R3)‖Tr(uε)‖LM (S+;R3)

+ ‖g−‖LM∗ (S−;R3)‖Tr(uε)‖LM (S−;R3))

≤ d+ 2‖f‖LM∗ (Ω;R3)‖uε‖LM (Ω;R3) + 2(‖g+‖LM∗ (S+;R3)

+ ‖g−‖LM∗ (S−;R3))‖Tr ‖L(‖uε‖LM (Ω;R3)

+ ‖Duε‖LM (Ω;R3×3)).

By the W 1,M
Γ -generalization (see [23, Theorem 5, Theorem 7] together

with [11, Theorem 3.9], [19, Lemma 4.14], [18, Proposition 2.1]) for the
Poincaré–Sobolev-type inequality (see [30, Theorem 3.6.4]), there exists C̃ ∈
(0,∞) such that

‖uε‖LM (Ω;R3) ≤ C̃
(
‖Duε‖LM (Ω;R3×3) +

�

Γ

|uε|dH2

)
(4.18)

= C̃

(
‖Duε‖LM (Ω;R3×3) +

�

Γ

|u0,ε|dH2

)
≤ C̃(‖Duε‖LM (Ω;R3×3) +H2(Γ) sup

x∈Ω
|x|) <∞,

for all ε ∈ (0, 1).
Then (4.17)–(4.18) imply (4.15).

Step 4.2. By the additional assumption M∗ ∈ ∆glob
2 , we may apply

Lemma 4.3, and so M satisfies the condition (4.11) for some i(M) ∈ (1,∞).
We claim that

‖Duε‖LM (Ω;R3×3) ≤ C2 <∞, (∀ε ∈ (0, 1)),(4.19)

‖uε‖LM (Ω;R3) ≤ C3 <∞, (∀ε ∈ (0, 1)),(4.20)
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�

Ω

M(|(Dαuε|
D3uε
ε

)|)dx ≤ C4 <∞, (∀ε ∈ (0, 1)),(4.21)

for some C2, C3, C4.
For this, by (4.15), we infer that

(4.22)
1

1 + ‖Duε‖LM (Ω;R3×3)

�

Ω

M(|Duε|)dx ≤ C5 <∞, (∀ε ∈ (0, 1)),

for some C5.
Consider the case when ‖Duε‖LM (Ω;R3×3)/2 ≥ a(M)−1 > 0, where a(M)

∈ (0,∞) in (4.11). Since

0 <
‖Duε‖LM (Ω;R3×3)

2
< ‖Duε‖LM (Ω;R3×3),

by the definition of the Luxemburg norm and by (4.11), we deduce that

1 <
�

Ω

M

(
|Duε|

‖Duε‖LM (Ω;R3×3)/2

)
dx(4.23)

≤
(

2

‖Duε‖LM (Ω;R3×3)

)i(M) �

Ω

M(|Duε|)dx, (∀ε ∈ (0, 1)).

Therefore, (4.22) and (4.23) imply that

(4.24) A(‖Duε‖LM (Ω;R3×3)) ≤ C5 <∞

whenever ‖Duε‖LM (Ω;R3×3) ≥ 2 a(M)−1. Here

A(s) :=
si(M)

2i(M)(1 + s)
.

Since i(M) > 1, A(s)→ +∞ as s→ +∞, and so there exists C6 ∈ (0,∞)
such that A(s) > C5 (∀s > C6). Hence, (4.24) implies the claim (4.19):
‖Duε‖LM (Ω;R3×3) ≤ C2 := min{C6, 2 a(M)−1}, (∀ε ∈ (0, 1)). By (4.18) and
(4.15), we deduce the claims (4.20) and (4.21).

Step 4.3. Obviously,

C7 := sup
ε∈(0,1)

‖u0,ε‖W 1,M (Ω;R3) < +∞.

Therefore, (4.19)–(4.20) imply (4.14):

(4.25) sup
ε∈(0,1)

‖vε‖W 1,M (Ω;R3) ≤ d̄ := C2 + C3 + C7 <∞.

Step 4.4. We claim that

(4.26) lim
ε→0
‖D3uε‖LM (Ω;R3) = 0.
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For this, by the convexity of M and M(0) = 0,

M(t) = M

(
ε−1t

ε−1

)
≤ 1

ε−1
M(ε−1t), (∀ε ∈ (0, 1)).

Since |(zα|ε−1z3)| ≥ ε−1|z3|, we deduce, by (4.21) that

0 ≤
�

Ω

M(|D3uε|)dx ≤ ε
�

Ω

M(ε−1|D3uε|)dx

≤ ε
�

Ω

M(|(Dαuε|ε−1D3uε)|)dx ≤ ε · C4 <∞, (∀ε ∈ (0, 1)).

Hence

(4.27) lim
ε→0

�

Ω

M(|D3uε|)dx = 0.

It is known (see, e.g., [24], [31]) that (4.27) implies (4.26) as M ∈ ∆2.
Step 4.5. It is known (see, e.g., [20, Theorems 1.1, 3.3]) thatW 1,M(Ω;R3)

is a separable reflexive Banach space as M,M∗ ∈ ∆2. By the reflexivity and
separability of the closed subspace V = W 1,M

Γ (Ω;R3) of W 1,M (Ω;R3), the
Alaoglu–Bourbaki theorem together with [22, Theorem V.7.6] imply that any
closed ball of V equipped with the weak topology is compact and metrizable.
Therefore, (4.14) implies the existence of some cluster point of the sequence
vε in the weak topology of V .

Now, let v be a cluster point in the weak topology σ(V, V ∗). Analogously,
(4.19)–(4.20) imply that there exist u ∈ W 1,M (Ω;R3) and a subsequence
(not relabeled) of the sequence uε such that uε converges weakly to u in
W 1,M (Ω;R3). Then it is easy to check by the representation (1.1) that vε =
uε−u0,ε converges weakly to u−u0,0 inW 1,M (Ω;R3). Therefore, u−u0,0 = v
andD3uε converges toD3u in the weak topology σ(LM (Ω;R3), LM

∗
(Ω;R3)).

By (4.26) and the generalized Hölder inequality [31, Theorems 13.13, 13.11],
for every y ∈ LM∗(Ω;R3), we deduce that∣∣∣∣ �

Ω

(y,D3u)dx

∣∣∣∣ = lim
ε→0

∣∣∣∣ �
Ω

(y,D3uε)dx

∣∣∣∣
≤ lim

ε→0
2‖y‖LM∗ (Ω;R3)‖D3uε‖LM (Ω;R3) = 0.

Therefore,
	
Ω(y,D3u)dx = 0, for every y ∈ LM∗(Ω;R3), and so D3u = 0 a.e.

Since D3u0,0 = 0, D3v = 0 follows, and so v ∈ V.
Step 4.6. Now consider the general assumption M,M∗ ∈ ∆2. By [24,

(4.5) in p. 24], there exists some Orlicz N -function N1 ∈ ∆glob
2 such that

N1(τ) = M∗(τ), (∀τ ≥ τ0),
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for some τ0 ∈ (0,∞). Let M1 := N∗1 . By known results of the theory of N -
functions and Orlicz spaces [24, 31, 33], we deduce the following assertions:
(M∗)∗ = M , M∗1 = (N∗1 )∗ = N1 ∈ ∆glob

2 , LM∗ = LN1 and LM = L(M∗)∗
∼=

(LM∗)
∗ = (LN1)∗ ∼= LN∗1 with equivalent norms, LM = LN∗1 = LM1 and

M1 = N∗1 ∈ ∆2 and (LM )∗ = (LM1)∗ ∼= LM∗ = LM∗1 with equivalent norms.
So, M1 ∈ ∆2, M∗1 ∈ ∆glob

2 , W 1,M
0 (Ω;R3) = W 1,M1

0 (Ω;R3), W 1,M (Ω;R3)
= W 1,M1(Ω;R3) with equivalent norms.

Furthermore, we deduce that the continuous function W : R3×3 → R
satisfying the conditions (2.1) with respect to M , satisfies the conditions
(2.1) with respect to M1:

1

C ′
(M1(|F |)− 1) ≤W (F ) ≤ C ′(1 +M1(|F |)), (∀F ∈ R3×3),

for some C ′ ∈ (0,∞).
Therefore, we can apply the results of Steps 4.1–4.5 with respect to M1

in place of M . Then by the above assertions for relations between M,M∗

andM1,M
∗
1 , we deduce all assertions of Lemma 4.4 with respect toM under

the general assumption M,M∗ ∈ ∆2.

Corollary 4.5. If v ∈ LM (Ω;R3), but v /∈ V then J1
∞(v) = +∞.

Proof. This follows from Lemma 4.4 by the same argument as in [25, Proof
of Corollary 4, p. 555]

Lemma 4.6. (The lower bound) For all v ∈ V with v̄ from the isomorphism
(4.7), we have that

J1
∞(v) ≥

�

ω

QW0(eα +Dαv) dxα −
�

ω

(F , u0,0 + v)dxα.

Proof. Fix v ∈ V. UsingD3v = 0, we infer that C := supε∈(0,1) Jε(v+u0,ε) <

+∞. Then, by the definition of Γ-convergence (4.9), J1
∞(v) ≤ C < +∞. By

(4.9), there exists a sequence vε ∈ V such that vε → v in LM (Ω;R3)-norm
and J1

ε (vε)→ J1
∞(v).

Then, by Lemma 4.4, there exists some subsequence (not relabeled) such
that vε converges to v in the weak topology σ(V, V ∗). Hence, it is easy
to check by the representation (1.1) and the isomorphism (4.7) and by the
Fubini theorem that

(4.28)
�

Ω

(f, u0,ε + vε) dx+
�

S+

(g+, u0,ε + vε)dH2

+
�

S−

(g−, u0,ε + vε)dH2 →
�

ω

(F , u0,0 + v̄)dxα

where F is from (2.7).



598 W. Laskowski, H. T. Nguyen

Define uε := vε + u0,ε. By (2.4) and (2.8), we infer that
�

Ω

W (Dαuε|ε−1D3uε)dx ≥
�

Ω

W0(Dαuε)dx(4.29)

≥
�

Ω

QW0(Dαuε)dx.

Define Z : R3×3 → R by

Z(zα|z3) := QW0(zα).

By the same arguments as in [25, p. 556] and in [25, Proof of Proposition 1,
p. 554], we deduce that Z is quasiconvex (i.e., Z = QZ) and W0, Z satisfy
the conditions (cf. (2.1)):

(4.30)

1

C
(M(|F̄ |)− 1) ≤W0(F̄ ) ≤ C(1 +M(|F̄ |)),

− 1

C
≤ Z(F ) ≤ C(1 +M(|F |)),

for all F̄ ∈ R3×2 and all F ∈ R3×3 and for some C ∈ (0,∞). Define
G : W 1,M (Ω;R3)→ R by

(4.31) G(u) :=
�

Ω

Z(Du) dx =
�

Ω

QW0(Dαu) dx.

Then by the W 1,M -generalization [13, Theorem 3.1] of the Acerbi–Fusco
weak lower semi-continuity W 1,p-theorem [1], G is sequentially weakly lower
semi-continuous onW 1,M (Ω;R3). Since uε converges weakly to u := v+u0,0

in W 1,M (Ω;R3), (4.29) implies that

(4.32) lim inf
ε→0

�

Ω

W (Dαuε|ε−1D3uε)dx ≥ lim inf
ε→0

G(uε) ≥ G(u)

=
�

Ω

QW0(eα +Dαv)dx =
�

ω

QW0(eα +Dαv̄)dxα.

Hence, by (4.32) and (4.28), the statement of Lemma 4.6 follows.

Lemma 4.7. (The upper bound) For all v ∈ V with v̄ from the isomorphism
(4.7), we have that

J1
∞(v) ≤

�

ω

QW0(eα +Dαv) dxα −
�

ω

(F , u0,0 + v)dxα.

Proof. We divide the proof into Steps 4.7–4.11.
Step 4.7. Let v̄ ∈ W 1,M

0 (ω;R3) from the isomorphism (4.7) for v ∈ V
and set ū := v̄ + u0,0. We claim that

(4.33) J1
∞(v) ≤ G1(v̄), (∀v ∈ V)
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where G1 : W 1,M
0 (ω;R)→ R is defined by

G1(v̄) :=
�

ω

W0(eα +Dαv) dxα −
�

ω

(F , u0,0 + v) dxα(4.34)

=
�

ω

W0(Dαū) dxα −
�

ω

(F , u0,0 + v̄) dxα.

For this, for every w ∈W 1,M
0 (ω;R3), define

vε(x) := v̄(xα) + εx3w(xα).

It is easy to check that vε → v in W 1,M (Ω;R3)-norm.
Under the conditions (2.1), the continuous function W generates the

continuous superposition operator ΛW : LM (Ω;R3×3)→ L1(Ω;R) defined by
ΛW (ũ)(x) := W (ũ(x)) (see, e.g., [3, Theorem 3], [32, Theorem 3.2]). Hence
the functional ũ 7→

	
Ω ΛW (ũ)dx is continuous on LM (Ω;R3×3). Therefore,

�

Ω

W (eα +Dαvε|e3 +
D3vε
ε

)dx =
�

Ω

W (Dα(ū+ εx3w)|e3 + w)dx→
�

Ω

W (Dαū|e3 + w)dx =
�

ω

W (Dαū|e3 + w)dxα.

Hence as in (4.28), we deduce that

J1
ε (vε)→

�

ω

W (Dαū|e3 + w)dxα −
�

ω

(F , u0,0 + v̄)dxα.

By (4.9) we infer that

J1
∞(v) ≤ inf

w∈W 1,M
0 (ω;R3)

�

ω

W (Dαū|e3 + w)dxα −
�

ω

(F , u0,0 + v̄)dxα.

Analogously, we deduce that the functional ũ 7→
	
ω ΛW (ũ)dxα is LM (ω;R3×3)

-norm-continuous. It is known (see [11, Lemma 2.1], [2]) that the set
C∞0 (ω;R3) ⊂ W 1,M

0 (ω;R3) is LM (ω;R3)-norm-dense in LM (ω;R3). Hence,
we infer that

(4.35) inf
w∈W 1,M

0 (ω;R3)

�

ω

W (Dαū|e3 + w)dxα

= inf
w∈C∞0 (ω;R3)

�

ω

W (Dαū|e3 + w)dxα

= inf
w∈LM (ω;R3)

�

ω

W (Dαū|e3 + w)dxα.

Since W is continuous function, the function g : ω × R3 → R, defined
by g(x, z) := W (Dαū(x)|e3 + z), is a Carathéodory function. This means
that there exists ω0 ⊂ ω such that L2(ω \ ω0) = 0 and g(x, ·) is continuous
for any x ∈ ω0 and g(·, z) is measurable for any z ∈ R3. Fix δ ∈ (0,∞).



600 W. Laskowski, H. T. Nguyen

The set Mδ := {(x, z) ∈ ω0 × R3 : g(x, z) ≤ W0(Dαū(x)) + δ} belongs to
AL2(ω0) × B(R3) (where AL2(ω0) is the σ-algebra of Lebesgue-measurable
subsets of ω0 and B(R3) is the σ-algebra of Borel subsets of R3). Observe
that Mδ(x) := {z ∈ Mδ : (x, z) ∈ Mδ} 6= ∅. By the Measurable Selection
Theorem (see, e.g. [7, 17]), there exists a measurable function wδ such that
wδ(x) ∈Mδ(x) (x ∈ ω0). Hence,

W (Dαū(x)|e3 + wδ(x)) ≤ δ +W0(Dαū(x)),

for almost every x ∈ ω. By the coercivity condition (2.1), we infer that
wδ ∈ LM (ω;R3). Therefore,

inf
w∈LM (ω;R3)

�

ω

W (Dαū|e3 + w)dxα ≤
�

ω

W (Dαū|e3 + wδ)dxα

≤
�

ω

W0(Dαū)dxα + δ|ω| (∀δ ∈ (0,+∞)).

So

(4.36) inf
w∈LM (ω;R3)

�

ω

W (Dαū|e3 + w)dxα ≤
�

ω

W0(Dαū)dxα.

By (4.7), (4.35) and (4.36), we infer (4.33).
Step 4.8. Define G̃1 : LM (Ω;R3)→ R∪{∞} by G̃1(v) = G1(v̄) if v ∈ V

and v̄ ∈ W 1,M
0 (ω;R3) from the isomorphism (4.7), G̃1(v) = +∞ otherwise.

Then by Corollary 4.5, (4.33) implies

(4.37) J1
∞(v) ≤ G̃1(v), (∀v ∈ LM (Ω;R3)).

Let Π(G̃1) denote the lower semicontinuous envelope of G̃1 on LM (Ω;R3).
Since J1

∞ is lower semicontinuous on LM (Ω;R3) as the Γ-limit in (4.9) (see,
e.g., [6, Remark 7.3/(i)]), (4.37) implies

(4.38) J1
∞(v) ≤ Π(G̃1)(v).

Step 4.9. By theW 1,M
0 (ω;R3)-generalization of Dacorogna’sW 1,p

0 (ω;R3)-
relaxation theorem [9, Theorem 9.1] in the case M ∈ ∆2, we deduce, under
the condition (4.30) for W0, that the sequential weak lower semicontinuous
envelope Π(G1) of G1 on W 1,M

0 (ω;R3) is calculated by

(4.39) Π(G1)(v̄) =
�

ω

QW0(eα +Dαv) dxα −
�

ω

(F , u0,0 + v)dxα.

Step 4.10. We claim that G1 is coercive in the sense:

(4.40) G1(v̄)→ +∞ as ‖v̄‖
W 1,M

0 (ω;R3)
→ +∞.

For this, observe that λ =
	
ΩM

∗(|f(xα, x3)|)dx <∞ as f ∈ LM∗(Ω;R3)
andM∗ ∈ ∆2 (see [24, 34]). By the Fubini theorem and the Jensen inequality
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[24, p. 62], we infer that

∞ > λ =
�

ω

(�

I

M∗(|f(xα, x3)|) dx3

)
dxα ≥

�

ω

M∗
(�

I

|f(xα, x3)| dx3

)
dxα.

Hence,
	
I |f(·, x3)|dx3 ∈ LM

∗
(ω;R3) that implies F ∈ LM∗(ω;R3).

Assume that G1(v̄) ≤ d1 <∞. By (4.30) for W0 and by the generalized
Hölder inequality [31, Theorems 13.13, 13.11], we deduce that

1

C

�

ω

(M(|eα +Dαv̄|)− 1)dxα ≤ d1 +

∣∣∣∣ �
ω

(F , u0,0 + v̄)dxα

∣∣∣∣
≤ d1 + 2‖F‖LM∗ (ω;R3)‖u0,0‖LM (ω;R3) + 2‖F‖LM∗ (ω;R3)‖v̄‖LM (ω;R3).

Observe that the Poincaré-type inequality of [19, Corollary 5.8] implies
that ‖v̄‖LM (ω;R3) ≤ C̃‖Dαv̄‖LM (ω;R3×2) (v̄ ∈W 1,M

0 (ω;R3)).
The convexity ofM implies thatM(|eα+Dαv̄|) ≥ 2M(1

2 |Dαv̄|)−M(
√

2).
First, we assume additionally M∗ ∈ ∆glob

2 . Then we may apply Lemma
4.3, and so M satisfies the condition (4.11), for some i(M) ∈ (1,∞). By the
arguments analogous to the arguments from (4.17) up to (4.25) and the end
of Step 4.2 in the proof of Lemma 4.4, we infer that

(4.41) ‖v̄‖
W 1,M

0 (ω;R3)
≤ h(d1) <∞ whenever G1(v̄) ≤ d1 <∞,

for some function h : (0,∞)→ (0,∞). This is equivalent to (4.40).
Now consider the general assumptionM,M∗ ∈ ∆2. LetM1 be the Orlicz

N -function defined in Step 4.6 such that M1 ∈ ∆2 and M∗1 ∈ ∆glob
2 . By all

arguments and assertions obtained in Step 4.6 for relations between M,M∗

and M1,M
∗
1 , we can apply the coerciveness property (4.40) proved before

with respect to M1 in place of M , and then we deduce the coerciveness
property (4.40) with respect to M under the general assumption M,M∗ ∈
∆2.

Step 4.11. SinceW 1,M
0 (ω;R3) is a reflexive separable Banach space and

G1 satisfies (4.40), then (see, e.g., [14, Proposition 3.16])

Π(G1)(v̄) = min{ lim inf G1(v̄ε) :

a sequence v̄ε converges weakly to v̄ in W 1,M
0 (ω;R3)}.

Then, using the isomorphism (4.7) and the representation (1.1), further ar-
guments which are analogous to the arguments in [25, Proof of Lemma 5,
pages 555–556] imply that

(4.42) Π(G̃1)(v) = Π(G1)(v̄), (v ∈ V).

Hence, (4.38)–(4.39) and (4.42) imply the upper bound in Lemma 4.7.
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Proof of Theorem 4.1. The assertions of Theorem 4.1 follow from Corol-
lary 4.5 for the case v /∈ V and from Lemmas 4.6 and 4.7 for the case v ∈ V.
Proof of Corollary 4.2. Observe that vε := uε − u0,ε belongs to V . By
(4.10),

(4.43) Jε(uε) = J1
ε (vε) ≤ inf

v∈V
J1
ε (v) + γ(ε).

It is easy to check that

J1
ε (0) = Jε(u0,ε) =

�

Ω

W (eα|e3)dx+

+

(
−

�

Ω

(f, u0,ε)dx−
�

S+

(g+, u0,ε)dH2 +
�

S−

(g−, u0,ε)dH2

)
≤ C < +∞,

for some C and for all ε ∈ (0, 1). Hence, (4.43) implies that supε∈(0,1) J
1
ε (vε)

< +∞. Therefore, by Lemma 4.4, the sequence vε is relatively weakly
compact and the set of cluster points of the sequence vε in the weak topology
σ(V, V ∗) is a non-empty subset of V.

By (4.43) and (4.5),

(4.44) J1
ε (vε) ≤ inf

v∈V
J1
ε (v) + γ(ε) = inf

v∈LM (Ω;R3)
J1
ε (v) + γ(ε).

Fix ṽ ∈ LM (Ω;R3). By Theorem 4.1 and (4.9), there exists a sequence
ṽε ∈ LM (Ω;R3) such that ṽε → ṽ in LM (Ω;R3)-norm and J1

ε (ṽε)→ J1
∞(ṽ).

Therefore, applying Theorem 4.1, (4.9), (4.44) and the assumption γ(ε)→ 0
as ε→ 0, we infer that

J0(v∗ + u0,0) = J1
∞(v∗) ≤ lim inf

ε→0
J1
ε (vε) ≤ lim inf

ε→0
(J1
ε (ṽε) + γ(ε))

= J1
∞(ṽ) = J0(ṽ + u0,0).

Using the isomorphism (4.7) and the representation (1.1), we re-write
the statements obtained above for vε and v∗. By this way, we deduce all
statements of Corollary 4.2.

Acknowledgement. The authors are grateful for the various construc-
tive remarks and useful suggestions of the referee, which influenced the shape
of the revised versions.

Let us inform that we have recently obtained results in the setting of the
Orlicz–Sobolev space W 1,M that extend other known results for thin films
in the caseM(t) = |t|p for some p ∈ (1,∞). In particular, our results extend
results obtained by G. Friesecke, R. D. James and S. Müller in 2002 [16]
for rigid thin films, and by G. Bouchitté, I. Fonseca and M. L. Mascarenhas
in 2004 [5] for thin films with bending moment. Their proofs require other
techniques and we will discuss these issues in our forthcoming papers.



Energy of thin films in the setting of Orlicz–Sobolev spaces 603

References

[1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch.
Ration. Mech. Anal. 86 (1984), 125–145.

[2] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, 2 ed., Academic Press, New York,
2003.

[3] J. Appell, H. T. Nguyêñ, P. P. Zabrejko, Multivalued superposition operators in ideal
spaces of vector functions II , Indag. Math. (N.S.) 2 (1991), 397–409.

[4] H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV
Spaces: Applications to PDEs and Optimization, SIAM, Philadelphia, 2006.

[5] G. Bouchitté, I. Fonseca, M. L. Mascarenhas, Bending moment in membrane theory ,
J. Elasticity 73 (2004), 75–99.

[6] A. Braides, A. Defranceschi, Homogenization of Multiple Integrals, Oxford University
Press, Oxford, 1998.

[7] C. Castaing, M. Valadier, Convex Analysis and Measurable Mulifunctions, Lecture
Notes in Math., vol. 580, Springer, Berlin, 1977.

[8] P. G. Ciarlet, Theory of Plates, Mathematical Elasticity , Elsevier, Amsterdam, 1997.
[9] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 2008

(2nd revised edition).
[10] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
[11] T. K. Donaldson, N. S. Trudinger, Orlicz–Sobolev spaces and imbedding theorems,

J. Funct. Anal. 8 (1971), 52–75.
[12] A. Fiorenza, M. Krbec, Indices of Orlicz spaces and some applications, Comment.

Math. Univ. Carolinae 38 (1997), 433–451.
[13] M. Focardi, Semicontinuity of vectorial functionals in Orlicz–Sobolev spaces, Rend.

Istit. Mat. Univ. Trieste 29 (1997), 141–161.
[14] I. Fonseca, G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces,

Springer, New York, 2007.
[15] A. Fougères, Théoremès de trace et de prolongement dans les espaces de Sobolev et

Sobolev-Orlicz , C. R. Acad. Sci. Paris SÃľr. A-B 274 (1972), A181–A184.
[16] G. Friesecke, R. D. James, S. Müller, A theorem on geometric rigidity and the deriva-

tion of nonlinear plate theory from three dimensional elasticity , Comm. Pure Appl.
Math. 55 (2002), 1461–1506.

[17] A. Fryszkowski, Fixed Point Theory for Decomposable Sets, Kluwer, Dordrecht, 2004.
[18] M. García-Huidobro, V. K. Le, R. Manásevich, K. Schmitt, On principal eigenvalues

for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting , NoDEA
Nonlinear Differential Equations Appl. 6 (1999), 207–225.

[19] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly
(or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.

[20] H. Hudzik, The problems of separability, duality, reflexivity and of comparison for
generalized Orlicz–Sobolev spaces W k

M (Ω), Comment. Math. Prace Mat. 21 (1980),
315–324.

[21] A. Kamińska, B. Turett, Type and cotype in Musielak–Orlicz spaces, in: Geometry of
Banach Spaces, London Mathematical Society Lecture Note Series 158, Cambridge
University Press (1991), pp. 165–180.

[22] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
[23] V. S. Klimov, On imbedding theorems for anisotropic classes of functions, Mathe-

matics of the USSR-Sbornik 55 (1986), 195–205.



604 W. Laskowski, H. T. Nguyen
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