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THE NEMITSKIJ OPERATOR ON Lipk-TYPE
AND BV k-TYPE SPACES

Abstract. In this paper, we discuss and present various results about acting and
boundedness conditions of the autonomous Nemitskij operator on certain function spaces
related to the space of all real valued Lipschitz (of bounded variation, absolutely contin-
uous) functions defined on a compact interval of R. We obtain a result concerning the
integrability of products of the form ψ ◦ f · f ′ · f (k) and a generalized version of the chain
rule for functions a.e differentiable, in the sense of Lebesgue. As an application, we get
a generalization of a theorem due to V. I. Burenkov for the case of functions of bounded
Riesz-p-variation.

1. Introduction
Throughout this paper, we use the following notations: given two func-

tions g and f , the expression g ◦f stands for the composite function g(f(t)),
whenever it is well-defined; [a, b] denotes a compact interval in R (the field
of all real numbers). Given two sets A and B, AB denotes the set of all
functions from B to A; if, in particular, A is a linear space, AB denotes the
linear space of all functions from B to A. By λ we denote the Lebesgue
measure on R.

Let X be a subspace of R[a,b]. Given a function g : [a, b]× R −→ R, the
Nemitskij (superposition or substitution, see e.g., [2, 16]) operator

Sg : X −→ R[a,b],

generated by g, is defined as

Sg(f)(t) := g(t, f(t)), t ∈ [a, b].
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If the function g does not depend of the first variable; that is, g : R→ R,
the mapping

Sg(f)(t) := (g ◦ f)(t) = g
(
f(t)

)
, (t ∈ [a, b])

is known as the autonomous Nemitskij operator.
Given two normed spaces X,Y ⊂ R[a,b] and a function g : R→ R, a pri-

mary objective of research in nonlinear analysis is to investigate under what
conditions, on the generating function, the associated Nemitskij operator
maps X into Y. This problem is known as the Superposition Operator Prob-
lem; see, e.g., [2, 6]. Following [2], we will state the Superposition Operator
Problem as the following set-theoretic identity:

sop (X,Y) := {g : Sg(X) ⊂ Y}
and one writes just sop (X) if X = Y.

Recall that given two metric spaces (M, dM) and (N , dN ), a function
F :M→N is said to be Lipschitz continuous iff

L(F ) := sup

{
dN (F (x), F (y))

dM(x, y)
: x, y ∈M, x 6= y

}
<∞.

The class of all Lipschitz continuos functions inNM is denoted as Lip(M,N ).
Accordingly, a function F :M→N is said to be locally Lipschitz, and one
writes F ∈ Lip

loc
(M,N ), if it is Lipschitz continuous on every compact

subset ofM.
If M = [a, b], N = R (both equipped with the usual absolute value

metric) we will simply use the notation Lip [a, b]. This is a linear space and
the functional ‖f‖ := |f(a)|+ L(f) defines a norm with respect to which it
is a Banach space.

In the autonomous case, it has been proved that the space of all functions
that are locally Lipschitz on R is a set solution for the Superposition Opera-
tor Problem when X = C[a, b], C1[a, b], Lip[a, b] or AC[a, b]; see, e.g., [3], [15]
or [17].

Recently, J. Appell, Z. Jesús and O. Mejia, in [5], carried out the study
of the action of the autonomous Nemitskij operator in various spaces of
differentiable functions.

In this article, we present several results about acting and boundedness
conditions of autonomous Nemitskij operators on certain function spaces
of the kind that were considered in [5] but from a rather general point of
view. We prove a result about the integrability of products of the form
g◦f ·f ′ ·f (k) (k ∈ N) and a generalized version of the chain rule for functions
λ-a.e differentiable; as a consequence, we also obtain a generalization of
a theorem by V. I. Burenkov (on products of the form (g ◦ f) · f (k)) to the
case of functions of bounded Riesz p-variation (see Theorem 4.4 below).
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2. Some function spaces
For the reader’s convenience, in this section, we present a summary of

some results related to the notions of function of bounded variation, abso-
lutely continuous functions and the notion of function of bounded p-variation
in the sense of Riesz.

Given an interval [a, b] ⊂ R and a function f : [a, b] → R, if I = [c, d] ⊂
[a, b] we will use the following notations: f [I] := f(d) − f(c) and f2 [I] :=
f(d)−f(c)

d−c . By I[a, b] we will denote the family of all finite sequences {In :=
[an, bn]}n≥0 of non-overlapping closed intervals contained in [a, b] and such
that |In| := bn − an > 0, ∀n ≥ 0.

Definition 2.1. A function f : [a, b] −→ R is said to be of bounded
variation if the variation of f on [a, b] :

(2.1) V (f) = V (f ; [a, b]) := sup
{∑

|f [In]| : {In} ∈ I[a, b]
}
<∞.

The variation of f on [a, b] is denoted as V (f ; [a, b]), or simply by V (f), and
it is the supremum of the sums (2.1). The class of all functions of bounded
variation on [a, b] is denoted as BV [a, b] and it is a Banach space (algebra)
if equipped with the norm:

‖f‖BV [a,b] := |f(a)|+ V (f ; [a, b]).

The following result is well known:

Proposition 2.2. (C. Jordan [11]) A function f : [a, b] −→ R is of
bounded variation on [a, b] if and only if it is the difference of two monotone
functions.

In particular, every function in BV [a, b] has left limit f(x−) at every
point x ∈ [a, b) and right limit f(x+) at every point x ∈ (a, b]; also, by the
celebrated Lebesgue’s Theorem (see e.g. [13, Theorem 1.2.8]), every function
in BV [a, b] is λ-a.e. differentiable.

Recall that a function f : [a, b] ⊂ R→ R is said to be absolutely contin-
uous on [a, b] if, given ε > 0, there exists some δ > 0 such that∑

|f [In]| < ε,

whenever {In = [an, bn]} ∈ I[a, b] is such that
∑
|an − bn| < δ.

The class of all absolutely continuous functions on [a, b], which is actually
an algebra, is denoted as AC[a, b].

Definition 2.3. (Luzin N property) A real-valued function defined on
a finite interval I ⊂ R is said to satisfy the Luzin N property (or simply,
N property) if it carries sets of λ-measure zero into sets of λ-measure zero.
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It is easy to see that the property N is preserved under composition of
functions. The class of all continuous functions that satisfy the property N
on an interval [a, b] will be denoted by N [a, b]. The fact that N [a, b] is closed
under pointwise multiplication is proved in [7, Lemma 2].

The following result is well known (cf. [13, Chapter 7]).

Proposition 2.4. The following statements on a function f : [a, b] → R
are equivalent:

(a) f is absolutely continuous,
(b) f ∈ BV [a, b] ∩ C[a, b] and satisfies property N ,
(c) f is λ-a.e. differentiable on [a, b], f ′ ∈ L1[a, b] and

f(x) = f(a) +
x�

a

f ′(t)dt.

The equivalence (a)⇔(b) is known as the Banach–Zareckǐı theorem (see,
eg., [18]). The functional

‖f‖AC := |f(a)|+ ‖f ′‖L1

defines a norm on AC[a, b]; in fact, ‖f ′‖L1 = V (f ; [a, b]).
In 1910, F. Riesz introduced the concept of function of bounded p-

variation (1 < p <∞) as follows:

Definition 2.5. [19] Let 1 ≤ p <∞. A function f : [a, b] ⊂ R→ R is said
to be of bounded p-variation, in the sense of Riesz, if

V R
p (f) = V R

p (f ; [a, b]) := sup
{∑

|f2 [In]|p|In| : {In} ∈ I[a, b]
}
<∞.

The class of all functions of bounded p-variation on [a, b], in the sense of
Riesz, is denoted by RBVp[a, b].

It readily follows from the definitions that RBVp[a, b] ⊂ C[a, b] and that,
for all f, g ∈ RBVp[a, b],

V R
p (fg) ≤ ‖fp‖∞V R

p (g) + ‖gp‖∞V R
p (f);

in fact, the relation
||f ||p := |f(a)|+ (V R

p (f))
1
p ,

defines a norm in RBVp[a, b] respect to which it becomes a Banach algebra
(see e.g., [20]).

Notice that RBV1[a, b] = BV [a, b]; on the other hand, it is well known,
that for 1 < p < ∞, a function belongs to RBVp[a, b] if and only if, it is
absolutely continuous and its derivative (which exists λ-a.e. in [a, b]) belongs
to Lp[a, b]; in this case V R

p (f ; [a, b]) = ‖f ′‖pLp (this is the renowned Riesz’s
lemma, [19]). In particular, Lip[a, b] ⊂ RBVp[a, b]. On the other hand, if
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f ∈ RBVp[a, b] then a straightforward application of Jensen’s inequality
yields

(2.2) ‖f‖BV [a,b] = ‖f‖AC ≤ (1 + (b− a)
p−1
p )‖f‖RBVp[a,b].

Clearly, a continuously differentiable function is Lipschitz continuous and
any Lipschitz continuous function is absolutely continuous. In fact, the fol-
lowing chain of strict inclusions holds (see e.g., [1], [5]):

C1[a, b] ⊂ Lip[a, b] ⊂ RBV p[a, b] ⊂ AC[a, b] ⊂ BV [a, b] (p > 1).

3. Sg on Lipk-type spaces
In this section, we present several results about acting and boundedness

conditions of Nemitskij operators defined on certain function spaces related
to the spaces Lip [a, b] and BV [a, b]. Throughout this section, it will be
assumed that k is a positive integer and, as usual, the notation f (k) will
stand for the k-th derivative of a function f .

Since we are going to consider higher order derivatives of composite func-
tions, we begin this section by recalling a formula for the k-th derivative of
the composition of two functions. For a few small values of k, such a formula,
of course, is easy to deduce using the classical chain rule; thus for instance

(3.1) (g ◦ f)′′′(t) = g′′′(f(t))(f ′(t))3 + 3g′′(f(t))f ′(t)f ′′(t) + g′(f(t))f ′′′(t).

The formula, that we are going to present below, dates back to the year
1800, although it is now named after Francesco Faà di Bruno, which seems
to have rediscovered it around 1855 (see, e.g., [10]). It was, of course, es-
tablished assuming existence everywhere of the derivatives of the functions
involved and therefore it holds if the functions considered are k-times con-
tinuously differentiable.

Proposition 3.1. Let g and f be functions which posses derivatives up to
order k, everywhere on an interval I ⊂ R. Then

(3.2)
dk

dtk
g ◦ f(t) =

∑ k!

n1!n2! . . . nk!
g(i)(f(t))

k∏
j=1

(
f (j)(t)

j!

)nj
, for all t ∈ I,

where the sum is taken over all different solutions in nonnegative integers
n1, n2, . . . , nk of the equations (a) n1 + 2n2 + · · · + knk = k and (b) i =
n1 + n2 + · · ·+ nk.

Remark 3.2. Note that in the formula (3.2), the terms (summands) that
contain a k-th derivative either of g or f , as factors, correspond necessarily
to the cases in which i = k or nk 6= 0. Since knowing explicitly such terms
will be needed later on, we proceed now to compute them. Indeed, if i = k
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in formula (3.2) then, combining equations (a) and (b), we must have

n1 + 2n2 + · · ·+ knk = k = n1 + n2 + · · ·+ nk

which is possible if and only if n1 = k and n2 = n3 = · · · = nk = 0.
On the other hand, nk 6= 0 if and only if nk = 1 (cf. equation (a)) and

n1 = n2 = · · · = nk−1 = 0 (cf. equation (b)), and in this case i = 1.
We conclude that the summands that contain a k-th order derivative

either of g or f in (3.2) are just g(k)(f(t)) · (f ′(t))k and g′(f(t)) · f (k)(t)
(cf. (3.1)).

Since we are going to study the Superposition Operator Problem in the
setting of some general normed spaces contained in R[a,b], we introduce the
following notation:

Definition 3.3. Let P be any generic property of real valued functions
(injectivity, continuity, Lipschitz continuity etc.). By P[a, b] we will denote
the set of all functions in R[a,b] that satisfy property P; in short,

P[a, b] := {f ∈ R[a,b] : f ∈ P}.
Also, if k is a nonnegative integer, we will write Pk[a, b] to denote the

set
Pk[a, b] := {f ∈ R[a,b] : f ∈ Ck[a, b] and f (k) ∈ P[a, b]}.

Finally, if I ⊂ R is an interval, we denote as Ploc(I) the set

{f ∈ RR : f |
[a,b]
∈ P[a, b] for all [a, b] ⊂ I}.

Remark 3.4.

(a) We will use the traditional notation for any well known space such as
C[a, b], Lip[a, b], AC[a, b], etc, and their respective Pk-counterparts.

(b) From the definitions, it readily follows that if P[a, b] is a linear space
(resp. an algebra) and ‖ ‖P is a norm on it then Pk[a, b] is also a linear
space (resp. algebra) and

‖u‖ :=
k∑
i=0

|u(i)(a)|+ ‖u(k)‖P

defines a norm in Pk[a, b]. Moreover, if P[a, b] is a Banach space then
Pk[a, b] is also a Banach space.

Remark 3.5. It was shown by J. G. Darboux in 1875 ([8]) that derivative
functions satisfy the intermediate value property. Functions that satisfy the
intermediate value property are now called Darboux functions. Notice that
if P[a, b] ⊆ BV [a, b] then

Pk[a, b] = {f ∈ R[a,b] : f is k-times differentiable and f (k) ∈ P[a, b]};
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that is, the requirement that f (k) be continuous is superfluous because it
is satisfied automatically. Indeed, being a derivative, f (k) is a Darboux
function and therefore it can only has discontinuities of the second kind,
but this is not possible because any function of bounded variation can only
have discontinuities of the first kind (by Proposition 2.2). Thus f (k) must
be continuous on [a, b]. In particular Pk[a, b] ⊂ Ck[a, b].

Definition 3.6. We will say that a generic property P, of real valued
functions, is s-invariant if the composition (whenever it is well defined) of
two functions that satisfy property P also satisfies property P.

It is easy to check that the Luzin N property and Lipschitz continuity are
s-invariants; on the other hand, it is well known that bounded variation and
absolutely continuity are not s-invariant (see e.g., [13] and examples later
on).

Definition 3.7. A space Pk[a, b] will be called a Lipk-type space if P[a, b]
satisfies the following properties:

(p1) C1[a, b] ⊂ P[a, b],
(p2) P is s-invariant, and
(p3) P[a, b] is an algebra.

Remark 3.8. Notice that if P[a, b] is one of the spaces N [a, b], C1[a, b]
(see comments after Definition 2.3) or Lip[a, b] then Pk[a, b] is a Lipk-type
space.

Definition 3.9. Let a, b ∈ R be fixed. For any given pair of real num-
bers α, β with α < β, we will denote by fαβab the linear diffeomorphism
fαβab : [a, b]→ [α, β] defined as

fαβab (x) := mαβ
ab (x− a) + α,

where mαβ
ab :=

β − α
b− a

.

Notice that if α < β then, for all [c, d] ⊂ R,

(3.3) (fαβcd )−1 = f cdαβ and f cdαβ ◦ f
αβ
ab = f cdab .

Now, we are ready to present a space solution for the Superposition
Operator Problem when the spaces considered are of Lipk-type.

Theorem 3.10. Let P be any generic property of functions in R[a,b]. As-
sume that Pk[a, b] is a Lipk-type space. Then, g ∈ sop(Pk[a, b]) if and only
if g ∈ Pk

loc
(R).
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Proof. Suppose, in the first place, that g ∈ Pk
loc
(R).

If f ∈ Pk[a, b] then g ◦ f ∈ Ck[a, b], and property (p1) implies that each
derivative g(j) ∈ Pk

loc
(R) and f (j) j = 1, 2, . . . , k − 1 is in P[a, b]. On

the other hand, by definition g(k) ∈ Ploc(R) and f (k) ∈ P[a, b]. Hence, by
properties (p2), (p3) and formula (3.2) (g ◦ f)(k) ∈ P[a, b] and therefore
g ◦ f ∈ Pk[a, b].

Conversely, assume that Sg : Pk[a, b] → Pk[a, b]. We have to show that
for all [α, β] ⊂ R: g ∈ Ck[α, β] and gk ∈ P[α, β].

Suppose α < β. Since fαβab ∈ P
k[a, b], the hypothesis implies that

Sg(f
αβ
ab ) ∈ P

k[a, b]. Hence Sg(f
αβ
ab ) ∈ C

k[a, b] and [Sg(f
αβ
ab )]

(k) ∈ P[a, b].
Thus, g = (g ◦ fαβab ) ◦ [f

αβ
ab ]
−1 ∈ Ck[α, β]. On the other hand,

[Sg(f
αβ
ab )]

(k) ∈ P[a, b] =⇒ (g ◦ fαβab )
(k) ∈ P[a, b]

=⇒ mαβ
ab (g

′ ◦ fαβab )
(k−1) ∈ P[a, b]

=⇒ [mαβ
ab ]

2(g(2) ◦ fαβab )
(k−2) ∈ P[a, b]

...
=⇒ [mαβ

ab ]
k(g(k) ◦ fαβab ) ∈ P[a, b].

Since mαβ
ab 6= 0, we must have g(k) ◦ fαβab ∈ P[a, b]. Therefore g

(k)|
[α,β]

=

(g(k) ◦ fαβab ) ◦ f
ab
αβ ∈ P[α, β] and consequently g ∈ Pk[α, β].

4. Sg in BV k-type spaces

The fact that the property of a function, in R[a,b], of being of bounded
variation or absolutely continuous is not s-invariant, entails necessarily that
in the cases in which P[a, b] = BV [a, b], AC[a, b] or RBVp[a, b] the study
of the action of the Nemitskij operator on Pk[a, b] requires an approach
fundamentally distinct to the one we performed in the Lipk-type spaces case.
The first part of this section is devoted to discuss several aspects concerning
the composition of functions in the referred spaces and its connection with
the Superposition Operator Problem. As it will turn out in these cases, the
intrinsic properties of the inner function (in the composition) will show to
play a fundamental role, thus we begin by making a remark that involves
the so called linear composition operator with symbol ϕ, Cϕ. We recall that
if D and E are given sets, X is a linear subspace of RE and ϕ is a map from
D to E, the operator Cϕ : X → RD is defined by

Cϕ(f) := f ◦ ϕ.
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Remark 4.1.

(a) It readily follows from a result due to M. Josephy (see [12, Theorem 3])
that given a map ϕ : [a, b]→ [c, d], the operator Cϕ maps BV [c, d] into
BV [a, b] if and only if there is a positive integer n such that ϕ−1[α, β]
can be expressed as a union of n subintervals of [a, b], for all [α, β] ⊆
[c, d]. The referred subintervals may be open or closed at either end
and singletons are also allowed as degenerate closed intervals. The class
of all functions that satisfy this property is denoted by BV (n; [a, b]).
Josephy’s result and the fact that both continuity and the Luzin N
property are s-invariants imply that if ϕ ∈ BV (n; [a, b]) ∩AC[a, b] then
Cϕ maps AC[c, d] into AC[a, b]. The converse of this proposition is also
true (see [9]).

(b) By the Fundamental Theorem of Algebra and Rolle’s Theorem, if f
is a polynomial of degree n, then for all [a, b] ⊂ R, f ∈ AC[a, b] ∩
BV (n; [a, b]); also, every monotone absolutely continuous function ϕ ∈
R[a,b] is in BV (n; [a, b]) for some n ∈ N. Indeed, in this case we have that
Cϕ maps AC[ϕ([a, b])] into AC[a, b] (see [14, page 97]) and the desired
conclusion follows then from the mentioned result given in [9].

For convenience, now we state the next result as a single proposition. Its
proof is based on three separate results of M. Josephy [12] (see also [4]), N.
Merentes [15] and N. Merentes and S. Rivas [17].

Proposition 4.2. Suppose P[a, b] = BV [a, b], AC[a, b] or RBVp[a, b].
Then g ∈ sop(P[a, b]) if and only if g ∈ Lip

loc
(R).

In what follows we will observe some instances of a very remarkable
phenomenon that often occurs in non-linear functional analysis: given two
functions, say g and f, that satisfy a certain generic property P which is not
s-invariant, the multiplication of g ◦ f by a derivative (f (k), k ∈ N) of f
improves the properties of the composition, whenever that derivative satisfies
also property P. Thus, the fact that the spaces Pk[a, b] are contained in the
space Ck[a, b] will allow us to rely on these kind of tools to deal with the
Superposition Operator Problem in these cases. To begin with, we state a
result due to V. I. Burenkov for the case P [a, b] = BV [a, b], for the proof the
reader is referred to [7, Theorem 5].

Theorem 4.3. (Burenkov) Suppose that f has a derivative f (k) of or-
der k everywhere on [a, b]. If f (k) ∈ BV [a, b] and if g ∈ BV [c, d], c :=
min[a,b] f, d := max[a,b] f, then the function g ◦ f · f (k) is also of bounded
variation on [a, b]; moreover,

(4.1) ‖g ◦ f · f (k)‖[a,b] ≤ (k + 1)‖g‖[c,d] ‖f (k)‖[a,b],
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where ‖ · ‖[a,b] is the norm1 on BV [a, b] defined as

‖f‖[a,b] := sup
[a,b]
|f(x)|+ V (f ; [a, b]).

In the case of absolutely continuous functions, we observe that not even
the fact that the inner function is smooth enough ensures that the com-
position g ◦ f is absolutely continuous. For instance, if g(u) := u

1
4 and

f is defined as f(0) := 0 and for x > 0, f(x) := x7(sin 1
x2

+ 2), then
f ∈ C2[0, 1], g ∈ AC[f([0.1])], but g ◦ f is not even of bounded variation.
Notice, however, that the function h(x) := g(f(x)) f ′(x) is absolutely contin-
uous on [0, 1]. Thus, in this case, multiplication by an absolutely continuous
derivative of the inner function improves the properties of the composition
g◦f . In fact, as pointed out by V. I. Burenkov in ( [7]), we have the following
corollary of Theorem 4.3.

Proposition 4.4. If f has an absolutely continuous kth-derivative f (k)(x)
on [a, b] and if g ∈ ACloc(R), then the function g ◦ f · f (k) is also absolutely
continuous on [a, b] and inequality (4.1) holds.

Proof. By Theorem [7, Theorem 4], the function g ◦ f · f (k) ∈ C[a, b] ∩
BV [a, b]. The result follows by the Banach–Zareckǐı Theorem, due to the
fact that the N [a, b] is an algebra (see Remark 3.8).

Now we turn our attention to the RBVp (p ≥ 1) case. By the Riesz’s
Lemma, similar considerations as those discussed above about compositions
apply also in this case. Now, we will be particularly interested in determining
whether a product of the form g ◦ f · f ′ (or |g|p ◦ f · f ′) is integrable. Notice
that it is not enough that g be integrable and f be absolutely continuous to
guarantee that the product g ◦ f · f ′ be integrable; for instance, let g(0) :=
f(0) := 0 and for x > 0 let g(x) := 1/

√
x and f(x) := x6

(
sin 1

x3
+ 2
)
,

then f ∈ AC[0, 1], g is integrable in f([0, 1]), but g ◦ f · f ′ is not integrable
in [0, 1]. In that respect, the following proposition is known (see, e.g., [14,
Theorem 3.54]):

Proposition 4.5. (Change of variables) Let g : [c, d]→ R be an integrable
function and let f : [a, b]→ [c, d] be a function differentiable λ-a.e. in [a, b].
Then g ◦ f · f ′ is integrable and

f(β)�

f(α)

g(t) dt =
β�

α

g(f(x))f ′(x) dx

1 Notice that ‖f‖BV [a,b] ≤ ‖f‖[a,b] ≤ 2‖f‖BV [a,b].
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holds for all α, β ∈ [a, b] if and only if the function G ◦ f ∈ AC[a, b], where

(4.2) G(z) :=
z�

c

g(t) dt, z ∈ [c, d].

Of course, the condition “G ◦ f ∈ AC[a, b]" brings us back to the same
situations discussed above. However, also in this case, it turns out that mul-
tiplication by a derivative of f , which is in BV , improves the (integrability)
properties of a product of the form g ◦ f · f ′, whenever g is an integrable
function. Indeed, now we present a proposition which is, somehow, a version
of Theorem 4.3 when the outer function in the composition is an integrable
function.

Theorem 4.6. Suppose that g ∈ L1,loc(R) and that f (k) ∈ BV [a, b]. Then
g ◦ f · f ′ · f (k) ∈ L1[a, b]; moreover,

‖g ◦ f · f ′ · f (k)‖L1[a,b] ≤ k‖f
(k)‖[a,b] ‖g‖L1(f([a,b])).(4.3)

Proof. By Remark 3.5, f (k) is continuous on [a,b], so, we can express the
set S = {x ∈ (a, b) : f (k)(x) 6= 0} as a countable union of component in-
tervals, say S = ∪Ni=1 (ai, bi), where ai < bi and N ∈ N or N = ∞.
Now, since f (k) 6= 0 on S, given i ∈ {1, . . . , N} there is a nonnegative
integer mi ≤ k such that [ai, bi] can be decomposed into mi intervals,
[a1i , b

1
i ], [a

2
i , b

2
i ], . . . , [a

mi
i , bmii ], on which f is monotone (this follows from

finitely many successive applications of Rolle’s theorem).
By Remark 4.1, the monotonicity of f on [aji , b

j
i ] implies that if G is the

function defined by (4.2) then G ◦ f ∈ AC[a, b]; consequently, g ◦ f · f ′ is
integrable on this interval (so, a fortiori, measurable on each [aji , b

j
i ]) and,

since f ′ does not change sign on [aji , b
j
i ], we must have

bji�

aji

∣∣g(f(t))∣∣ ∣∣f ′(t)∣∣ dt = ±
bji�

aji

∣∣g(f(t))∣∣ f ′(t) dt =
�

〈f(aji ),f(b
j
i )〉

∣∣g(x)∣∣ dx
where the notation 〈α, β〉 stands for [α, β] if α < β or [β, α] otherwise.

Notice that from the last considerations, it readily follows that g◦f ·f ′·f (k)
is a measurable function on [a, b].

Now, since
∣∣f (k)∣∣ is continuous, the (generalized) mean value theorem for

integrals implies that, on each [aji , b
j
i ], there is a point cji such that

bji�

aji

∣∣g(f(t)) f ′(t)∣∣ ∣∣f (k)(t)∣∣ dt = ∣∣f (k)(cji )∣∣ �

〈f(aji ),f(b
j
i )〉

∣∣g(x)∣∣ dx.
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Now we just need to examine two cases:
(a) If f (k)(x) 6= 0, on all of [a, b] then N = 1, and

b�

a

∣∣g(f(t)) f ′(t) f (k)(t)∣∣ dt = m1∑
j=1

∣∣f (k)(cj1)∣∣ �

〈f(aj1),f(b
j
1)〉

∣∣g(x)∣∣ dx
≤ k‖f (k)‖∞ ‖g‖L1(f([a,b])).

(b) If f (k)(x) = 0, anywhere on [a, b] then, for all i ∈ {1, . . . , N}, either
f (k)(ai) = 0 or f (k)(bi) = 0; say f (k)(ai) = 0. Then

b�

a

∣∣g(f(t)) f ′(t) f (k)(t)∣∣ dt = N∑
i=1

mi∑
j=1

∣∣f (k)(cji )∣∣ �

〈f(aji ),f(b
j
i )〉

∣∣g(x)∣∣ dx
=

N∑
i=1

mi∑
j=1

∣∣f (k)(cji )− f (k)(ai)∣∣ �

〈f(aji ),f(b
j
i )〉

∣∣g(x)∣∣ dx
≤ ‖g‖L1(f([a,b]))

N∑
i=1

V
(
f (k); [ai, bi]

)
≤ ‖g‖L1(f([a,b])) V

(
f (k); [a, b]

)
.

We conclude that
b�

a

∣∣g(f(t)) f ′(t) f (k)(t)∣∣ dt ≤ (k‖f (k)‖∞ + V
(
f (k); [a, b]

)
‖g‖L1(f([a,b]))

≤ k‖f (k)‖[a,b] ‖g‖L1(f([a,b])),

and the proof is complete.

At this point, let us recall the following fact (see, e.g., [14, Theorem
3.44]):

Suppose that g, f are functions defined on intervals and that g ◦ f is well
defined. If g, f and g ◦ f are λ-a.e differentiable functions and g satisfy the
property N then,

(g ◦ f)′(x) = g′(f(x))f ′(x) for λ-a.e. x,(4.4)

where g′(f(x))f ′(x) is interpreted to be zero whenever f (k)(x) = 0.

Thus, although the required (sufficient) conditions are rather mild, one
still needs to be careful, since, the composition of λ-a.e differentiable func-
tions need not be λ-a.e differentiable (see e.g. [7, §4]). Now, we present
a result that somehow shows the extent to which multiplication by an ab-
solutely continuous derivative of the inner function improves the differentia-
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bility properties of the composition g ◦ f, whenever g ∈ AC[a, b]. This fact
might have some interest in itself.

Lemma 4.7. Suppose g ∈ AC(R) and let fk ∈ AC[a, b]. Then for λ-a.e.
x ∈ [a, b]:

(4.5) (g ◦ f · f (k))′(x) = g′(f(x))f ′(x)f (k)(x) + g(f(x)) f (k+1)(x),

where g′(f(x))f ′(x) is interpreted to be zero whenever f ′(x) = 0 (even if g
is not differentiable at f(x)).

Proof. By Proposition 4.4, g ◦ f · fk ∈ AC[a, b].
Let S,N, {(ai, bi)}Ni=1 and {(a

j
i , b

j
i )}

mi
j=1 be as in the proof of Theorem 4.6.

Then, the monotonicity of f on [aji , b
j
i ] implies that g ◦ f |

(a
j
i
,b
j
i
)
∈ AC[aji , b

j
i ]

and hence (4.4) and (4.5) holds for λ-a.e. x in S. The desired conclusion
follows if we define (g ◦ f · f (k))′(x) ≡ 0 on the set [a, b] \ S.

Now, we present a version of Theorem 4.3 in the RBVp case.

Theorem 4.8. Let 1<p<∞. If f (k) ∈ RBVp[a, b] and if g ∈ RBVp,loc(R),
then the function g ◦ f · f (k) is in RBVp[a, b]; moreover, there are constants
M1 and M2, that depend on g, such that

(4.6) V R
p (g ◦ f · f (k); [a, b])

≤M1

(
‖|f ′|p−1|f (k)|p−1‖∞ ‖f (k)‖RBVp[a,b]

)
+M2‖f (k+1)‖pLp[a,b].

Proof. By Riesz Lemma f (k) ∈ AC[a, b], f (k+1) ∈ Lp[a, b], g ∈ AC(R) and
g′ ∈ Lp,loc(R). Thus, by Theorem 4.3, g ◦ f · f (k) ∈ AC[a, b] and, by Lemma
4.7, for λ-a.e. x ∈ [a, b] :

(4.7)
∣∣∣∣ ddx [g(f(x)) f (k)(x)]

∣∣∣∣p
=
∣∣g′(f(x))f ′(x)f (k)(x) + g(f(x)) f (k+1)(x)

∣∣p
≤ 2p

(∣∣g′(f(x))f ′(x)f (k)(x)∣∣p+ ∣∣g(f(x)) f (k+1)(x)
∣∣p)

≤ 2p
(∣∣|g′|p(f(x)) f ′(x)f (k)(x))∣∣·∥∥|f ′|p−1 |f (k)|p−1∥∥∞

+ ‖|g|p ◦ f‖∞ |f (k+1)|p(x)
)
.

Hence, by Theorem 4.6, d
dx [g(f(x)) f

(k)(x)] belongs to Lp[a, b] and another
application of Riesz Lemma implies that g ◦ f · f (k) ∈ RBVp[a, b]. Finally,
from estimates (4.7), (4.3) and the fact that ‖f (k)‖BV [a,b] = ‖f (k)‖AC[a,b] we
have
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∥∥∥∥p
Lp[a,b]

≤ 2p
(
‖|f ′|p−1|f (k)|p−1‖∞ 2k ‖f (k)‖AC[a,b] ‖(g′)‖

p
Lp[a,b]

+ ‖|g|p ◦ f‖∞ ‖f (k+1)‖pLp[a,b]
)

which, by vitue of (2.2), yields (4.6).

Our next proposition shows that a result similar to Theorem 3.10 is pos-
sible for the spaces BV [a, b], RBVp[a, b] or AC[a, b]; in this case, condition
(p2) of Definition 3.7 needs to be replaced by the following condition:

(p2’) For g ∈ P
loc
(R) and f ∈ Pk[a, b]: the function g ◦ f · f (j) ∈ P[a, b],

j = 1, . . . , k.

Thus, to be consistent with Definition 3.7, any space P k[a, b] that satisfies
properties (p1), (p2’) and (p3) shall be called a BV k-type space.

Theorem 4.9. Let Pk[a, b] be a BV k-type space and let g ∈ RR. Then
g ∈ sop(Pk[a, b]) if and only if g ∈ Pk

loc
(R).

Proof. Suppose that g ∈ Pk
loc
(R).

If f ∈ Pk[a, b], then g ◦ f ∈ Ck[a, b] and since each derivative g(j), f (j),
j = 1, 2, . . . , k − 1, is of class C1, it is Lipschitz continuous and hence every
summand of (3.2) of the form

ci g
(i)(f(t))

k−1∏
j=1

(
f (j)(t)

j!

)nj
, i = 1, . . . k − 1,

is in P[a, b] (by Proposition 4.2).
To complete the proof of the sufficiency of the condition it remains only

to verify that each summand of (3.2) that contains a kth-order derivative is
also in P[a, b]. Now, by definition g(k) ∈ P[a, b] and f (k) ∈ P[a, b]. Hence,
by property (p2’) and the fact that P[a, b] is an algebra, both summands
g(k) ◦ f · (f ′)k and g′ ◦ f · f (k) are in P[a, b]. Thus, by Remark 3.2, every
summand in formula (3.2) for (g ◦ f)(k) is in P[a, b] and therefore g ◦ f ∈
Pk[a, b].

To prove the necessity of the condition suppose that α < β. Then,
proceeding as in the proof of Theorem 3.10, one has

g(k) ◦ fαβab · (m
αβ
ab )

k = (Sg ◦ fαβab )
(k) ∈ P[a, b]

to conclude, since mαβ
ab 6= 0, that g(k) ◦ fαβab ∈ P[a, b]. The assertion then

follows by noticing that g(k)|
[α,β]

= (g(k) ◦ fαβab ) ◦ f
ab
αβ ∈ P[α, β].
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Corollary 4.10. Let P[a, b] be as in the statement of Theorem 4.9. If
g ∈ Pk

loc
(R) then the operator Sg : P[a, b] → P[a, b] is bounded with respect

to norm ‖f‖k,[a,b] :=
∑k

i=1 ‖f (j)‖∞ + ‖f‖P[a,b].
Proof. Indeed, this follows by a straightforward application of Theorem 4.9
and the norm estimate (4.1) (for the cases BV and AC), or inequality (4.6),
and formula (3.2).
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