
DEMONSTRATIO MATHEMATICA
Vol. XLVI No 3 2013

M. A. Pathan, O. A. Daman

LAPLACE TRANSFORMS OF THE LOGARITHMIC
FUNCTIONS AND THEIR APPLICATIONS

Abstract. This paper deals with theorems and formulas using the technique of
Laplace and Steiltjes transforms expressed in terms of interesting alternative logarith-
mic and related integral representations. The advantage of the proposed technique is
illustrated by logarithms of integrals of importance in certain physical and statistical
problems.

1. Introduction
The aim of this paper is to obtain some theorems and formulas for the

evaluation of finite and infinite integrals for logarithmic and related func-
tions using technique of Laplace transform. Basic properties of Laplace and
Steiltjes transforms and Parseval type relations are explicitly used in combi-
nation with rules and theorems of operational calculus. Some of the integrals
obtained here are related to stochastic calculus [6] and common mathemati-
cal objects, such as the logarithmic potential [3], logarithmic growth [2] and
Whittaker functions [2, 3, 4, 6, 7] which are of importance in certain physical
and statistical applications, in particular in energies, entropies [3, 5, 7 (22)],
intermediate moment problem [2] and quantum electrodynamics. The ad-
vantage of the proposed technique is illustrated by the explicit computation
of a number of different types of logarithmic integrals.

We recall here the definition of the Laplace transform

(1) L {f (t)} = L[f(t); s] =
∞�

0

e−stf (t) dt.

Closely related to the Laplace transform is the generalized Stieltjes trans-
form
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(2) Sρ{f(t)} =
∞�

0

f(t)dt

(a+ t)ρ
= G(a, ρ)

which, for ρ = 1, gives the Stieltjes transform

(3) S{f(t)} =
∞�

0

f(t)dt

(a+ t)
= G(a).

After a change of integration variable, (2) is transfomed into

(4)
1�

0

f(−a lnx)

x(1− lnx)ρ
dx = aρ−1G(a, ρ).

Special cases of (2) and (4), when f(t) = tλ−1e−t, are generalizations of
gamma function given by Kobayashi [7]

(5) Γρ(λ, a) =
1�

0

(− lnx)λ−1(a− lnx)−ρdx, R(λ) > 0.

Kobayashi [7] applied this generalized gamma function integral in diffraction
theory.

2. Theorems
In this section, we state and prove some theorems in the study of integral

transforms, and briefly discuss some apparent, known and new special cases
of these theorems. We will apply systematically the rules and theorems of
the operational calculus assuming the existence of the Laplace transforms
of the functions involved and the permissibility of performed mathematical
operations.

Theorem 1. If

(6) L{f(t)} = ϕ(s)

and

(7) L{h(t)} = g(s)

then
1�

0

(
− lnx

s

)n
g

(
− lnx

s

)
f

(
− lnx

s

)
dx

= s
∞�

s

ϕ(t)hn(t− s)dt(8)

= s
∞�

0

ϕ(s+ x)hn(x)dx(9)
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∞�

0

L[{hn(t− a)H(t− a)}; s]ds = Γ(n+ 1)
∞�

0

hn(t)

(t+ a)n+1
dt(10)

and
1�

0

φ(− lnx
u )

(au− lnx)
dx =

∞�

u

L[φ(t− a)H(t− a);x]dx(11)

provided that, f(t) ∈ L2(0,∞), e−sttng(t) ∈ L2(0,∞), h(t) ∈ L2(0,∞) and
hn(t) denotes the nth differential coefficient of h(t) such that h′(0) = h′′(0) =
· · · = hn−1(0) = 0. H(t) is the Heaviside’s unit function and integrals in (8)
to (11) are convergent.

Proof. Consider the Laplace transform

(12) L{f(t)} = L[f(t); s] =
∞�

0

e−stf(t)dt = ϕ(s).

Recall a well known property of the Laplace transform [4, p. 129] that is, if

(13) L{h(t)} = g(s)

then

(14) L{hn(t)} = sng(s), h′(0) = h′′(0) = · · · = hn−1(0) = 0

and

(15) L{hn(t− a)H(t− a)} = e−assng(s),

where H(t) is a Heaviside’s unit function. To prove (8) and (9), we use
(12) and (15) in the Parseval theorem and then, by changing the integration
variable x = e−st, we find

1�

0

(
− lnx

s

)n
g

(
− lnx

s

)
f

(
− lnx

s

)
dx(16)

= s
∞�

s

ϕ(t)hn(t− s)dt = s
∞�

0

ϕ(s+ x)hn(x)dx,

where a is replaced by s. Now, we integrate both sides of (15) and use (14)
to obtain

(17)
∞�

0

L{hn(t− a)H(t− a)}ds

=
∞�

0

e−assn
∞�

0

e−sthn(t)dtds =
∞�

0

hn(t)

[
∞�

0

sne−as−stds

]
dt.
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By evaluating the integral on the right hand side of (17), we obtain a Parseval
relation for (13). Thus

(18)
∞�

0

L{hn(t− a)}H(t− a)}dt = Γ(n+ 1)
∞�

0

hn(t)

(t+ a)n+1
dt.

For n = 0, (18) gives
	∞
0 L{h(t− a)H(t− a)}dt =

	∞
0

h(t)
(t+a)dt. For n = 0 and

a = 0, (18) gives a known result [5, p. 110 (2.4)]

(19)
∞�

0

L{h(t)}ds =
∞�

0

h(t)

t
dt.

Now, set h(t) = e−utφ(t) and n = 0 in (19) and use shift property

(20) L{h(t)} = L{e−utφ(t)} =
∞�

0

e−ut−stφ(t)dt = L[φ(t);u+ s],

to get another Parseval-type relation

(21)
∞�

u

L[φ(t− a)H(t− a);x]dx = L

[
φ(t)

a+ t
;u

]
,

by making the change of variable u + s = x. On changing the integration
variable x = e−ut, we get (11). For a = 0, (21) gives a known result [5,
p. 110 (2.8)]

(22)
∞�

u

L[φ(t);x]dx = L

[
φ(t)

t
;u

]
.

If we take h(t) = tλe−at and use [4, p. 129]

(23) L{tnf(t)} = (−1)n
dn

dsn
F (s), n = 1, 2, ...

and binomial theorem in Theorem 1, we obtain

Theorem 2. If L[f(t); s] = F (s) then

(24)
1�

0

x
a
s (lnx)n f

(
− lnx

s

)
dx = sn+1 d

n

dsn
F (s+ a)

and

(25)
1�

0

(
− lnx

s

)n(
a− lnx

s

)−λ−1
f

(
− lnx

s

)
dx

= s
n∑
r=0

(−1)n−ran−r

Γ(λ− r + 1)

(
n

r

)
φ(a; s)
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where

(26) φ(a; s) =
∞�

0

xλ−re−axF (s+ x)dx

provided that Laplace transform of |f(t)| exists, λ > n− 1,R(s+ a) > 0 and
the integrals in (25) and (26) are convergent.

In the simplest case f(t) = 1 and F (s) =
1

s
, we have immediately from

(25) and [4, p. 294 (6)]

(27)
1�

0

(
− lnx

s

)n(
a− lnx

s

)−λ−1
dx

= e
as
a

n∑
r=0

(−1)n−ran−(λ+r+1)/2

s(λ−r−1)/2

(
n

r

)
Wk,m(as),

where k = (r−λ−1)/2, m = (λ−r)/2 andWk,m(x) is Whittaker function [4].
Evidently, if we set f(t) = 1 in (24), we get

(28)
1�

0

xa/s(lnx)ndx = (−1)nn!

(
s+ a

s

)−n−1
.

Another example is

L[f(t)] = L

[
1

1 + e−t

]
=

1

2

[
ψ

(
s+ 1

s

)
− ψ

(
s

2

)]
, R(s) > 0

which leads to

(29)
1�

0

xa/s(lnx)n

1 + x1/s
=
sn+1

2n+1

[
ψ(n)

(
a+ s+ 1

2

)
− ψ(n)

(
a+ s

2

)]
,

n = 1, 2, . . . , R(s) > 0, where ψ(ζ) is a psi-function and ψ(n)(ζ) means the
nth derivatives of psi-function [4]. On the other hand, the special cases of
(24) and (25), for n = 0 and a = 0, yield known results [1, p. 241, equations
(23), (26) and (28)].

Theorem 3. Let α > 0, β > 0, then

(30)
1�

0

f(− lnx
α+β )√

ln(1/x)
dx =

√
πα(α+ β)L[g(θ, t);α]

where

(31) g(θ, t) =
t�

0

e−βθf(θ)

π
√
θ(t− θ)

dθ.
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Proof. Let g(θ, t) be defined by (31). Then

L[g(θ, t);α] =
∞�

0

e−αt
[ t�
0

e−βθf(θ)

π
√
θ(t− θ)

dθ

]
dt

=
∞�

0

e−βθ

π
√
θ
f(θ)

[
∞�

θ

e−αt√
t− θ

dt

]
dθ

=
1

π

∞�

0

e−(α+β)θ√
θ

f(θ)

[
∞�

0

e−αs√
s
ds

]
dθ

where in the inner integral, we have changed the variable of integration by
setting t− θ = s. It follows from

(32)
∞�

0

e−τt√
t
dt =

√
π

τ
, R(τ) > 0

that L[g(θ, t);α] = 1√
πα

	∞
0

e−(α+β)θ
√
θ

f(θ)dθ. The uniqueness of Laplace trans-
forms and the substitution e−(α+β)θ = x implies the required result.

It will be shown that, if we set f(θ) = 1 in the integral (31) and use
(32), then Theorem 3 reduces to the following P. Levy’s Arc-Sine Law for
occupation time of (0,∞) [6, p. 273, Art 4.11].

Let α > 0, β > 0. Then

(33) L[h(θ, t);α] =
1√

α(α+ β)

where

(34) h(θ, t) =
1

π

t�

0

e−βθ√
θ(t− θ)

dθ.

Assuming the existence of the Laplace transforms of f(t), we consider

L{f(t)} = F (s)

and then using the rules of Laplace transform

L{f(t+ a)} = eas[F (s)−
a�

0

e−suf(u)du], a ≥ 0

and

(35) L{e−btf(t+ a)} = ea(s+b)[F (s+ b)−
a�

0

e−(s+b)uf(u)du],

we get the following theorem.



Laplace transforms of the logarithmic functions and their applications 539

Theorem 4. If L{f(t)} = F (s), then

(36)
1�

0

e(b lnx)/sf

(
a− lnx

s

)
dx = sea(s+b)

[
F (s+ b)−

a�

0

e−(s+b)uf(u)du

]
provided that a ≥ 0,R(s) > 0, Laplace transform of |f(t)| exist and integrals
in (36) are convergent.

Equation (36) is a generalization of the result [1, p. 239 (10)] which
follows for b = 0.

Theorem 5. If
Sρ{g(t)} = G(a; ρ)

then

(37)
1�

0

xas−1g(−a lnx)

(1− lnx)ρ
dx = e−saρ−1G(a; ρ).

Proof. The above theorem can be proved easily if the definition integral (2)
is applied in the form

Sρ{e−stg(t)} =
∞�

0

e−stg(t)

(a+ t)ρ
dt

which, after a change of integration variable and mere integration by parts
together with (36), leads to

1�

0

xas−1g(−a lnx)

(1− lnx)ρ
dx = aρ−1[(e−s − 1)G(a; ρ) + s

∞�

0

e−stG(a; ρ)dt]

= aρ−1[(e−s − 1)G(a; ρ) +G(a; ρ)].

Particularly, for s = 0, (37) reduces to [1, p. 250, equation 81(b)].

3. Applications
A number of applications of the formulas for the evaluation of finite

and infinite logarithmic integrals, using the operational calculus technique
of Section 2, can be given. We list some of them.

As an example of (36), we take f(t) = 1/
√
t so that L{1/

√
t} =

√
π
s =

F (s) and (36) gives

(38)
1�

0

e(b lnx)/s
dx√

a− lnx/s
= se(s+b)

[√
π

s+ b
(1− erf

√
a(s+ b))

]
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where erfξ is the error function [4]. For b = 0, (38) becomes a known result
[1, p. 240 (14)].

Put α = as and β = b/s in (36) and use 1 − erf
√
α = erfc

√
α, where

α > 0, to get

(39)
1�

0

eβ lnx dx√
α− lnx

= eα(1+β)
√

π

1 + β
erfc

√
α(1 + β)

because erfξ then becomes the complementary error function erfcξ (see [4]).
In the second case, we start with f(t) = ln t and we use (36) to get

(40)
1�

0

e(b lnx)/s ln

(
a− lnx

s

)
dx =

sea(s+b)

s+ b

[
e−a(s+b) ln a− Ei(−as− ab)

]
,

where τ is the Euler’s constant [4] and Ei(ξ) is the exponential integral [4].
Using the Stieltjes transform Sρ{e−t} = eaΓ(1 − ρ, a), R(ρ) > 0 where

Γ(∗.∗) is an incomplete gamma function in Theorem 5, we get
1�

0

xas+a−1dx

(1− lnx)ρ
= aρ−1Sρ{e−t(s+1)}(41)

= [a(s+ 1)]ρ−1ea(s+1)Γ(1− ρ, a(s+ 1)), a > 0, ρ > 0.

For s = 0, we get

(42)
1�

0

xa−1dx

(1− lnx)ρ
= aρ−1eaΓ(1− ρ, a), a > 0, ρ > 0

which is a correct form of the result [1, p. 252, 97(b)]. (42) becomes a known
result [1, p. 252, 97(a)] when ρ = 1.

Next, we will turn our attention to the case when g(t) =
√
te−st in (37).

Thus, we have from [8, p. 233 (14.30)]

(43)
1�

0

ln(x−1/s)dx

(as− lnx)
=
√
πaeasΓ(−1

2
, as).

Formulas (41) to (42) show that a more general case can be considered by
using g(t) = tλ−1e−st in Theorem 5. By defining a generalization of gamma
function (see Kobayashi [7])

(44) Γρ,s(λ, a) =
∞�

0

tλ−1e−st(t+ a)−ρdt, R(λ),R(s) > 0

and changing the integration variable, we have

(45) Γρ,s(λ, a) = s−λ
1�

0

(
a− lnx

s

)−ρ
(− lnx)λ−1dx, R(λ),R(s) > 0
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which, for s = 1, reduces to the known generalization of gamma function
(5) given by Kobayashi [7]. Note that Γρ,1(λ, a) = Γρ(λ, a). In view of the
result [4, p. 294 (6)], it is more natural to work with (37) and (45) to obtain

(46) Γρ,s(λ, a) = Γ(λ)(sa)(ρ−λ−1)/2eas/2Wk,m(a, s),

where k = 1−λ−ρ
2 , m = λ−ρ

2 and R(λ) > 0. Thus, we have provided an
integral representation for Γρ,s(λ, a) in terms of Whittaker functions.

We now use Theorem 2 and result (24) to obtain a generalization of the
result of Apelbalt [1, p. 238, (4)] involving the nth derivatives of psi-func-
tion

(47)
1�

0

xb/s(lnx)n

1− xa/s
dx = −

(
s

a

)n+1

ϕ(n)

(
s+ b

a

)
.

For b = 0, (47) gives a corrected form of the result [1, p. 238 (4)]

(48)
1�

0

(lnx)n

1− xα
dx = − 1

(α)n+1
ϕ(n)

(
1

α

)
where

α = a/s.

To prove (47), notice that for n = 1, 2, . . . ,

(49) L{f(t)} = L

{
tn

1− e−at

}
= (−a)−n−1ϕ(n)

(
s

a

)
= F (s)

which is a well-known result (see [4] and [1, p. 238 (3)]). From the opera-
tional relations (24) and (49), result (47) follows.
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