
DEMONSTRATIO MATHEMATICA

Vol. XLVI No 1 2013

Kamil Demirci and Sevda Karakuş

FOUR-DIMENSIONAL MATRIX TRANSFORMATION

AND A-STATISTICAL FUZZY KOROVKIN

TYPE APPROXIMATION

Abstract. In this paper, we prove a fuzzy Korovkin-type approximation theorem
for fuzzy positive linear operators by using A-statistical convergence for four-dimensional
summability matrices. Also, we obtain rates of A-statistical convergence of a double
sequence of fuzzy positive linear operators for four-dimensional summability matrices.

1. Introduction

Anastassiou [3] first introduced the fuzzy analogue of the classical Ko-
rovkin theory (see also [1], [2], [4], [10]). Recently, some statistical fuzzy
approximation theorems have been obtain by using the concept of statistical
convergence (see, [5], [8]). In this paper, we prove a fuzzy Korovkin-type ap-
proximation theorem for fuzzy positive linear operators by using A-statistical
convergence for four-dimensional summability matrices. Then, we construct
an example such that our new approximation result works but its classi-
cal case does not work. Also we obtain rates of A-statistical convergence
of a double sequence of fuzzy positive linear operators for four-dimensional
summability matrices.

We now recall some basic definitions and notations used in the paper.
A fuzzy number is a function µ : R → [0, 1], which is normal, convex,

upper semi-continuous and the closure of the set supp(µ) is compact, where
supp(µ) := {x ∈ R : µ(x) > 0}. The set of all fuzzy numbers are denoted by
RF . Let

[µ]0 = {x ∈ R : µ(x) > 0} and [µ]r = {x ∈ R : µ(x) ≥ r} , (0 < r ≤ 1).

Then, it is well-known [11] that, for each r ∈ [0, 1], the set [µ]r is a closed
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and bounded interval of R. For any u, v ∈ RF and λ ∈ R, it is possible to
define uniquely the sum u⊕ v and the product λ⊙ u as follows:

[u⊕ v]r = [u]r + [v]r and [λ⊙ u]r = λ [u]r , (0 ≤ r ≤ 1).

Now denote the interval [u]r by
[

u
(r)
− , u

(r)
+

]

, where u
(r)
− ≤ u

(r)
+ and u

(r)
− , u

(r)
+ ∈

R for r ∈ [0, 1]. Then, for u, v ∈ RF , define

u � v ⇔ u
(r)
− ≤ v

(r)
− and u

(r)
+ ≤ v

(r)
+ for all 0 ≤ r ≤ 1.

Define also the following metric D : RF × RF → R+ by

D(u, v) = sup
r∈[0,1]

max
{∣

∣u
(r)
− − v

(r)
−

∣

∣,
∣

∣u
(r)
+ − v

(r)
+

∣

∣

}

.

Hence, (RF , D) is a complete metric space [18].
A double sequence x = {xm,n}, m, n ∈ N, is convergent in Pringsheim’s

sense if, for every ε > 0, there exists N = N(ε) ∈ N such that |xm,n − L| <
ε whenever m,n > N . Then, L is called the Pringsheim limit of x and
is denoted by P − limm,n xm,n = L (see [16]). In this case, we say that
x = {xm,n} is “P -convergent to L”. Also, if there exists a positive number
M such that |xm,n| ≤ M for all (m,n) ∈ N

2 = N × N, then x = {xm,n} is
said to be bounded. Note that in contrast to the case for single sequences,
a convergent double sequence need not to be bounded. A double sequence
x = {xm,n} is said to be non-increasing in Pringsheim’s sense if, for all
(m,n) ∈ N

2, xm+1,n+1 ≤ xm,n.
Now let A = [aj,k,m,n], j, k,m, n ∈ N, be a four-dimensional summability

matrix. For a given double sequence x = {xm,n}, the A-transform of x,
denoted by Ax := {(Ax)j,k}, is given by

(Ax)j,k =
∑

(m,n)∈N2

aj,k,m,nxm,n, j, k ∈ N,

provided the double series converges in Pringsheim’s sense for every (j, k) ∈
N
2. In summability theory, a two-dimensional matrix transformation is said

to be regular if it maps every convergent sequence into a convergent sequence
with the same limit. The well-known characterization for two dimensional
matrix transformations is known as Silverman–Toeplitz conditions (see, for
instance, [13]). In 1926, Robison [17] presented a four dimensional analog
of the regularity by considering an additional assumption of boundedness.
This assumption was made because a double P -convergent sequence is not
necessarily bounded. The definition and the characterization of regularity
for four dimensional matrices is known as Robison–Hamilton conditions, or
briefly, RH-regularity (see, [12], [17]).

Recall that a four dimensional matrix A = [aj,k,m,n] is said to be RH-
regular if it maps every bounded P -convergent sequence into a P -convergent
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sequence with the same P -limit. The Robison–Hamilton conditions state
that a four dimensional matrix A = [aj,k,m,n] is RH-regular if and only if

(i) P − lim
j,k

aj,k,m,n = 0 for each (m,n) ∈ N
2,

(ii) P − lim
j,k

∑

(m,n)∈N2 aj,k,m,n = 1,

(iii) P − lim
j,k

∑

m∈N |aj,k,m,n| = 0 for each n ∈ N,

(iv) P − lim
j,k

∑

n∈N |aj,k,m,n| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2 |aj,k,m,n| is P -convergent for each (j, k) ∈ N
2,

(vi) there exist finite positive integers A and B such that
∑

m,n>B |aj,k,m,n|
< A holds for every (j, k) ∈ N

2.

Now let A = [aj,k,m,n] be a non-negative RH-regular summability matrix,
and let K ⊂ N

2. Then, a double sequence {xm,n} of fuzzy numbers is said to
be A-statistically convergent to a fuzzy number L ∈ RF if, for every ε > 0,

P − lim
j,k

∑

(m,n)∈K(ε)

aj,k,m,n = 0,

where

K(ε) := {(m,n) ∈ N
2 : D(xm,n, L) ≥ ε}.

In this case we write st2(A) − lim
m,n

xm,n = L.

We should note that if we take A = C(1; 1) := [cj,k,m,n], the double
Cesáro matrix, defined by

cj,k,m,n =

{

1
jk
, if 1 ≤ m ≤ j and 1 ≤ n ≤ k,

0, otherwise,

then C(1; 1)-statistical convergence coincides with the notion of statistical
convergence for double sequence, which was introduced in [14], [15]. Fi-
nally, if we replace the matrix A by the identity matrix for four-dimensional
matrices, then A-statistical convergence reduces to the Pringsheim conver-
gence [16].

2. A-statistical fuzzy Korovkin type approximation

Let us choose the real numbers a; b; c; d so that a < b, c < d, and
U := [a; b] × [c; d]. Let C (U) denote the space of all real valued contin-
uous functions on U endowed with the supremum norm

‖f‖ = sup
(x,y)∈U

|f (x, y)| , (f ∈ C(U)) .

Assume that f : U → RF be a fuzzy number valued function. Then f is said
to be fuzzy continuous at x0 := (x0, y0) ∈ U whenever P − limm,n xm,n = x0,
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then P − limD(f(xm,n), f(x
0)) = 0. If it is fuzzy continuous at every point

(x, y) ∈ U , we say that f is fuzzy continuous on U . The set of all fuzzy
continuous functions on U is denoted by CF (U). Note that CF (U) is a
vector space. Now let L : CF (U) → CF (U) be an operator. Then L is said
to be fuzzy linear if, for every λ1, λ2 ∈ R having the same sing and for every
f1, f2 ∈ CF (U), and (x, y) ∈ U,

L(λ1 ⊙ f1 ⊕ λ2 ⊙ f2;x, y) = λ1 ⊙ L(f1;x, y)⊕ λ2 ⊙ L(f2;x, y)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear and,
the condition L(f ;x, y) � L(g;x, y) is satisfied for any f, g ∈ CF (U) and all
(x, y) ∈ U with f(x, y) � g(x, y). Also, if f, g : U → RF are fuzzy number
valued functions, then the distance between f and g is given by

D∗(f, g) = sup
(x,y)∈U

sup
r∈[0,1]

max
{∣

∣f
(r)
− − g

(r)
−

∣

∣,
∣

∣f
(r)
+ − g

(r)
+

∣

∣

}

(see for details, [1], [2], [3], [4], [9], [10]). Throughout the paper we use the
test functions given by

f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y, f3(x, y) = x2 + y2.

Theorem 2.1. Let A = [aj,k,m,n] be a non-negative RH-regular summabil-

ity matrix and let {Lm,n}(m,n)∈N2 be a double sequence of fuzzy positive linear

operators from CF (U) into itself. Assume that there exists a corresponding

sequence {
∼

Lm,n}(m,n)∈N2 of positive linear operators from C (U) into itself

with the property

(2.1) {Lm,n (f ;x, y)}(r)±
=

∼

Lm,n

(

f
(r)
± ;x, y

)

for all (x, y) ∈ U , r ∈ [0, 1], (m,n) ∈ N
2 and f ∈ CF (U). Assume further

that

(2.2) st2(A) − lim
m,n→∞

∥

∥

∼

Lm,n (fi)− fi
∥

∥ = 0 for each i = 0, 1, 2, 3.

Then, for all f ∈ CF (U), we have

st2(A) − lim
m,n→∞

D∗ (Lm,n (f) , f) = 0.

Proof. Let f ∈ CF (U), (x, y) ∈ U and r ∈ [0, 1]. By the hypothesis, since

f
(r)
± ∈ C (U), we can write, for every ε > 0, that there exists a number δ > 0

such that
∣

∣

∣
f
(r)
± (u, v)− f

(r)
± (x, y)

∣

∣

∣
< ε holds for every (u, v) ∈ U satisfying

|u− x| < δ and |v − y| < δ. Then we immediately get for all (u, v) ∈ U, that

∣

∣f
(r)
± (u, v)− f

(r)
± (x, y)

∣

∣ ≤ ε+
2M

(r)
±

δ2
{

(u− x)2 + (v − y)2
}

,
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where M
(r)
± :=

∥

∥f
(r)
±

∥

∥. Now, using the linearity and the positivity of the

operators
∼

Lm,n, we have, for each (m,n) ∈ N
2, that

∣

∣

∼

Lm,n

(

f
(r)
± ;x, y

)

− f
(r)
± (x, y)

∣

∣

≤
∼

Lm,n

(∣

∣f
(r)
± (u, v)−f

(r)
± (x, y)

∣

∣;x, y
)

+M
(r)
±

∣

∣

∼

Lm,n (f0;x, y)−f0 (x, y)
∣

∣

≤
∼

Lm,n

(

ε+
2M

(r)
±

δ2
{

(u−x)2+(v−y)2
}

;x, y

)

+M
(r)
±

∣

∣

∼

Lm,n (f0;x, y)−f0 (x, y)
∣

∣

≤ ε+
(

ε+M
(r)
±

)∣

∣

∼

Lm,n (f0;x, y)−f0 (x, y)
∣

∣+
2M

(r)
±

δ2

∼

Lm,n

(

(u−x)2+(v−y)2 ;x, y
)

≤ ε+
(

ε+M
(r)
±

)∣

∣

∼

Lm,n (f0;x, y)−f0 (x, y)
∣

∣+
2M

(r)
±

δ2
{∣

∣

∼

Lm,n (f3;x, y)−f3 (x, y)
∣

∣

+2|x|
∣

∣

∼

Lm,n (f1;x, y)−f1 (x, y)
∣

∣+2|y|
∣

∣

∼

Lm,n (f2;x, y)−f2 (x, y)
∣

∣

+
(

x2+ y2
) ∣

∣

∼

Lm,n (f0;x, y)− f0 (x, y)
∣

∣

}

≤ ε+

(

ε+M
(r)
± +

2M
(r)
±

δ2
(

x2+y2
)

)

∣

∣

∼

Lm,n (f0;x, y)− f0 (x, y)
∣

∣

+
4M

(r)
±

δ2
|x|

∣

∣

∼

Lm,n (f1;x, y)−f1 (x, y)
∣

∣+
4M

(r)
±

δ2
|y|

∣

∣

∼

Lm,n (f2;x, y)−f2 (x, y)
∣

∣

+
2M

(r)
±

δ2
∣

∣

∼

Lm,n (f3;x, y)− f3 (x, y)
∣

∣

≤ ε+K
(r)
± (ε)

{
∣

∣

∼

Lm,n (f0;x, y)−f0 (x, y)
∣

∣+
∣

∣

∼

Lm,n (f1;x, y)−f1 (x, y)
∣

∣

+
∣

∣

∼

Lm,n (f2;x, y)− f2 (x, y)
∣

∣+
∣

∣

∼

Lm,n (f3;x, y)− f3 (x, y)
∣

∣

}

where K
(r)
± (ε) := max

{

ε+M
(r)
± +

2M
(r)
±

δ2

(

A2+B2
)

,
4M

(r)
±

δ2
A,

4M
(r)
±

δ2
B,

2M
(r)
±

δ2

}

,

A := max {|a| , |b|}, B := max {|c| , |d|}. Also taking supremum over (x, y) ∈
U , the above inequality implies that

(2.3)
∥

∥

∼

Lm,n

(

f
(r)
±

)

− f
(r)
±

∥

∥

≤ ε+K
(r)
± (ε)

{∥

∥

∼

Lm,n (f0)− f0
∥

∥+
∥

∥

∼

Lm,n (f1)− f1
∥

∥

+
∥

∥

∼

Lm,n (f2)− f2
∥

∥+
∥

∥

∼

Lm,n (f3)− f3
∥

∥

}

.
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Now, it follows from (2.1) that

D∗ (Lm,n (f) , f) = sup
(x,y)∈U

D (Lm,n (f ;x, y) , f (x, y))

= sup
(x,y)∈U

sup
r∈[0,1]

max
{∣

∣

∼

Lm,n

(

f
(r)
− ;x, y

)

− f
(r)
− (x, y)

∣

∣,

∣

∣

∼

Lm,n

(

f
(r)
+ ;x, y

)

− f
(r)
+ (x, y)

∣

∣

}

= sup
r∈[0,1]

max
{∥

∥

∼

Lm,n

(

f
(r)
−

)

− f
(r)
−

∥

∥,
∥

∥

∼

Lm,n

(

f
(r)
+

)

− f
(r)
+

∥

∥

}

.

Combining the above equality with (2.3), we have

D∗ (Lm,n (f) , f) ≤ ε+K (ε)
{∥

∥

∼

Lm,n (f0)− f0
∥

∥+
∥

∥

∼

Lm,n (f1)− f1
∥

∥(2.4)

+
∥

∥

∼

Lm,n (f2)− f2
∥

∥+
∥

∥

∼

Lm,n (f3)− f3
∥

∥

}

where K (ε) := sup
r∈[0,1]

max
{

K
(r)
− (ε) ,K

(r)
+ (ε)

}

.

Now, for a given r > 0, choose ε > 0 such that 0 < ε < r, and also define
the following sets:

G : =
{

(m,n) ∈ N
2 : D∗ (Lm,n (f) , f) ≥ r

}

,

G0 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f0)− f0
∥

∥ ≥ r − ε

4K (ε)

}

,

G1 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f1)− f1
∥

∥ ≥ r − ε

4K (ε)

}

,

G2 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f2)− f2
∥

∥ ≥ r − ε

4K (ε)

}

,

G3 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f3)− f3
∥

∥ ≥ r − ε

4K (ε)

}

.

Then inequality (2.4) gives

G ⊂ G0 ∪G1 ∪G2 ∪G3

which guarantees that, for each (j, k) ∈ N
2

∑

(m,n)∈G

aj,k,m,n ≤
∑

(m,n)∈G0

aj,k,m,n +
∑

(m,n)∈G1

aj,k,m,n(2.5)

+
∑

(m,n)∈G2

aj,k,m,n +
∑

(m,n)∈G3

aj,k,m,n.

If we take the limit as j, k → ∞ on the both sides of inequality (2.5) and
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use the hypothesis (2.2), we immediately see that

lim
j,k

∑

(m,n)∈G

aj,k,m,n = 0

whence the result.

If A = I, the identity matrix, then we obtain the following new fuzzy
Korovkin theorem in Pringsheim’s sense.

Theorem 2.2. Let {Lm,n}(m,n)∈N2 be a double sequence of fuzzy positive

linear operators from CF (U) into itself. Assume that there exists a cor-

responding sequence {
∼

Lm,n}(m,n)∈N2 of positive linear operators from C (U)
into itself with the property (2.1). Assume further that

P − lim
m,n→∞

∥

∥

∼

Lm,n (fi)− fi
∥

∥ = 0 for each i = 0, 1, 2, 3.

Then, for all f ∈ CF (U), we have

P − lim
m,n→∞

D∗ (Lm,n (f) , f) = 0.

We will now show that our result Theorem 2.1 is stronger than its classical
(Theorem 2.2) version.

Example 2.3. Take A = C (1, 1) := [cj,k,m,n], the double Cesáro matrix,
and define the double sequence {um,n} by

um,n =

{√
mn, if m and n are square,

0, otherwise.

We observe that, st
(2)
C(1,1) − lim

m,n→∞
um,n = 0. But {um,n} is neither P -con-

vergent nor bounded. Then consider the fuzzy Bernstein-type polynomials
as follows:

(2.6) B(F)
m,n (f ;x, y) = (1 + um,n)⊙

m
⊕

s=0

⊙
n

⊕

t=0

(

m

s

)(

n

t

)

xsyt (1− x)m−s (1− y)n−t ⊙ f

(

s

m
,
t

n

)

,

where f ∈ CF (U), (x, y) ∈ U , (m,n) ∈ N
2. In this case, we write

{

B(F)
m,n (f ;x, y)

}(r)

±
=

∼

Bm,n

(

f
(r)
± ;x, y

)

= (1 + um,n)
m
∑

s=0

n
∑

t=0

(

m

s

)(

n

t

)

xsyt (1− x)m−s (1− y)n−t f
(r)
±

(

s

m
,
t

n

)

,
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where f
(r)
± ∈ C (U). Then, we get

∼

Bm,n (f0;x, y) = (1 + um,n) f0 (x, y),
∼

Bm,n (f1;x, y) = (1 + um,n) f1 (x, y),
∼

Bm,n (f2;x, y) = (1 + um,n) f2 (x, y),

∼

Bm,n (f3;x, y) = (1 + um,n)

(

f3 (x, y) +
x− x2

m
+

y − y2

n

)

.

So we conclude that

st2C(1,1) − lim
m,n→∞

∥

∥

∼

Bm,n (fi)− fi
∥

∥ = 0 for each i = 0, 1, 2, 3.

By Theorem 2.1, we obtain for all f ∈ CF (U), that

st2C(1,1) − lim
m,n→∞

D∗

(

B(F)
m,n (f) , f

)

= 0.

However, since the sequence {um,n} is not convergent (in the Pringsheim’s
sense), we conclude that Theorem 2.2 do not work for the operators
{

B
(F)
m,n (f ;x, y)

}

in (2.6) while our Theorem 2.1 still works.

3. A-statistical fuzzy rates

Various ways of defining rates of convergence in the A-statistical sense for
two-dimensional summability matrices were introduced in [7]. In a similar
way, we obtain fuzzy approximation theorems based on A-statistical rates
for four-dimensional summability matrices.

Definition 3.1. Let A = [aj,k,m,n] be a non-negative RH-regular summa-
bility matrix and let {αm,n} be a non-increasing double sequence of pos-
itive real numbers. A double sequence x = {xm,n} of fuzzy numbers is
A-statistically convergent to a fuzzy number L with the rate of o(αm,n) if
for every ε > 0,

P − lim
j,k→∞

1

αj,k

∑

(m,n)∈K(ε)

aj,k,m,n = 0,

where

K(ε) :=
{

(m,n) ∈ N
2 : D(xm,n, L) ≥ ε

}

.

In this case, we write

D(xm,n, L) = st2(A) − o(αm,n) as m,n → ∞.

Definition 3.2. Let A = [aj,k,m,n] and {αm,n} be the same as in Definition
3.1. Then, a double sequence x = {xm,n} of fuzzy numbers is A-statistically



A-statistical fuzzy Korovkin type approximation 45

convergent to a fuzzy number L with the rate of om,n(αm,n) if for every
ε > 0,

P − lim
j,k→∞

∑

(m,n)∈M(ε)

aj,k,m,n = 0,

where

M(ε) :=
{

(m,n) ∈ N
2 : D(xm,n, L) ≥ ε αm,n

}

.

In this case, we write

D(xm,n, L) = st2(A) − om,n(αm,n) as m,n → ∞.

Note that the rate of convergence given by Definition 3.1 is more con-
trolled by the entries of the summability matrices rather than the terms of
the sequence x = {xm,n}. However, according to the statistical rate given
by Definition 3.2, the rate is mainly controlled by the terms of the fuzzy
sequence x = {xm,n}.

Also, we can give the corresponding A-statistical rates of real sequence
{xm,n}.
Definition 3.3. [6] Let A = [aj,k,m,n] be a non-negative RH-regular
summability matrix and let {αm,n} be a non-increasing double sequence of
positive real numbers. A double sequence x = {xm,n} is A-statistically
convergent to a number L with the rate of o(αm,n) if for every ε > 0,

P − lim
j,k→∞

1

αj,k

∑

(m,n)∈K(ε)

aj,k,m,n = 0,

where

K(ε) :=
{

(m,n) ∈ N
2 : |xm,n − L| ≥ ε

}

.

In this case, we write

xm,n − L = st2(A) − o(αm,n) as m,n → ∞.

Definition 3.4. [6] Let A = [aj,k,m,n] and {αm,n} be the same as in Defi-
nition 3.3. Then, a double sequence x = {xm,n} is A-statistically convergent
to a number L with the rate of om,n(αm,n) if for every ε > 0,

P − lim
j,k→∞

∑

(m,n)∈M(ε)

aj,k,m,n = 0,

where

M(ε) :=
{

(m,n) ∈ N
2 : |xm,n − L| ≥ ε αm,n

}

.

In this case, we write

xm,n − L = st2(A) − om,n(αm,n) as m,n → ∞.

Then we have the following.
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Theorem 3.5. Let A = [aj,k,m,n] be a non-negative RH-regular summa-

bility matrix and let {Lm,n}(m,n)∈N2 be a double sequence of fuzzy positive

linear operators from CF (U) into itself. Assume that there exists a cor-

responding sequence {
∼

Lm,n}(m,n)∈N2 of positive linear operators from C (U)
into itself with the property (2.1). Assume further that {αi,m,n}(m,n)∈N2 ,

i = 0, 1, 2, 3 are non-ingreasing sequences of positive real numbers. If, for

each i = 0, 1, 2, 3

(3.1)
∥

∥

∼

Lm,n (fi)− fi
∥

∥ = st2(A) − o(αi,m,n) as m,n → ∞
then, for all f ∈ CF (U), we have

(3.2) D∗ (Lm,n (f) , f) = st2(A) − o(γm,n) as m,n → ∞
where γm,n := max

0≤i≤3
{αi,m,n} for every (m,n) ∈ N

2.

Proof. Let f ∈ CF (U), (x, y) ∈ U and r ∈ [0, 1]. Then, we immediately see
from Theorem 2.1’s proof that, for every ε > 0,

D∗ (Lm,n (f) , f) ≤ ε+K (ε)
{∥

∥

∼

Lm,n (f0)− f0
∥

∥+
∥

∥

∼

Lm,n (f1)− f1
∥

∥(3.3)

+
∥

∥

∼

Lm,n (f2)− f2
∥

∥+
∥

∥

∼

Lm,n (f3)− f3
∥

∥

}

where K (ε) := sup
r∈[0,1]

max
{

K
(r)
− (ε) ,K

(r)
+ (ε)

}

.

Now, for a given r > 0, choose ε > 0 such that 0 < ε < r, and also define
the following sets:

G : =
{

(m,n) ∈ N
2 : D∗ (Lm,n (f) , f) ≥ r

}

,

G0 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f0)− f0
∥

∥ ≥ r − ε

4K (ε)

}

,

G1 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f1)− f1
∥

∥ ≥ r − ε

4K (ε)

}

,

G2 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f2)− f2
∥

∥ ≥ r − ε

4K (ε)

}

,

G3 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f3)− f3
∥

∥ ≥ r − ε

4K (ε)

}

.

Then inequality (3.3) gives

G ⊂ G0 ∪G1 ∪G2 ∪G3

which guarantees that, for each (j, k) ∈ N
2

∑

(m,n)∈G

aj,k,m,n ≤
3

∑

i=0

(

∑

(m,n)∈Gi

aj,k,m,n

)

.
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Also, by the definition of (γm,n)(m,n)∈N2 , we have

(3.4)
1

γj,k

∑

(m,n)∈G

aj,k,m,n ≤
3

∑

i=0

(

1

αi,j,k

∑

(m,n)∈Gi

aj,k,m,n

)

.

If we take the limit as j, k → ∞ on both sides of inequality (3.4) and use
the hypothesis (3.1), we immediately see that

P − lim
j,k→∞

1

γj,k

∑

(m,n)∈G

aj,k,m,n,

which gives (3.2). So, the proof is completed.

We also give the next result.

Theorem 3.6. Let A = [aj,k,m,n], {αi,m,n}(m,n)∈N2 (i = 0, 1, 2, 3),

{γm,n}(m,n)∈N2 , {Lm,n}(m,n)∈N2 and {
∼

Lm,n}(m,n)∈N2 be the same as in The-

orem 3.5 with the property (2.1). If, for each i = 0, 1, 2, 3

(3.5)
∥

∥

∼

Lm,n (fi)− fi
∥

∥ = st2(A) − om,n(αi,m,n) as m,n → ∞
then, for all f ∈ CF (U), we have

(3.6) D∗ (Lm,n (f) , f) = st2(A) − om,n(γm,n) as m,n → ∞.

Proof. By (3.3), it is clear that, for any ε > 0,

(3.7) D∗ (Lm,n (f) , f)

≤ εγm,n +B (ε)
{∥

∥

∼

Lm,n (f0)− f0
∥

∥+
∥

∥

∼

Lm,n (f1)− f1
∥

∥

+
∥

∥

∼

Lm,n (f2)− f2
∥

∥+
∥

∥

∼

Lm,n (f3)− f3
∥

∥

}

holds for some B (ε) > 0. Now, as in the proof of Theorem 3.5, for a given
ε′ > 0, choosing ε > 0 such that ε < ε′. Now we define the following sets:

E : =
{

(m,n) ∈ N
2 : D∗ (Lm,n (f) , f) ≥ ε′γm,n

}

,

E0 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f0)− f0
∥

∥ ≥
(

ε′ − ε

4B (ε)

)

α0,m,n

}

,

E1 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f1)− f1
∥

∥ ≥
(

ε′ − ε

4B (ε)

)

α1,m,n

}

,

E2 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f2)− f2
∥

∥ ≥
(

ε′ − ε

4B (ε)

)

α2,m,n

}

,

E3 : =

{

(m,n) ∈ N
2 :

∥

∥

∼

Lm,n (f3)− f3
∥

∥ ≥
(

ε′ − ε

4B (ε)

)

α3,m,n

}

.
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In this case, we claim that

(3.8) E ⊂ E0 ∪E1 ∪ E2 ∪ E3.

Indeed, otherwise, there would be an element (m,n) ∈ E but (m,n) /∈
E0 ∪ E1 ∪ E2 ∪ E3. So, we get

(m,n) /∈ E0 ⇒
∥

∥

∼

Lm,n (f0)− f0
∥

∥ <

(

ε′ − ε

4B (ε)

)

α0,m,n,

(m,n) /∈ E1 ⇒
∥

∥

∼

Lm,n (f1)− f1
∥

∥ <

(

ε′ − ε

4B (ε)

)

α1,m,n,

(m,n) /∈ E2 ⇒
∥

∥

∼

Lm,n (f2)− f2
∥

∥ <

(

ε′ − ε

4B (ε)

)

α2,m,n,

(m,n) /∈ E3 ⇒
∥

∥

∼

Lm,n (f3)− f3
∥

∥ <

(

ε′ − ε

4B (ε)

)

α3,m,n.

By the definition of {γm,n}(m,n)∈N2 , we immediately see that

(3.9) B (ε)
3

∑

k=0

∥

∥

∼

Lm,n (fk)− fk
∥

∥ <
(

ε′ − ε
)

γm,n.

Since (m,n) ∈ E, we have D∗ (Lm,n (f) , f) ≥ ε′γm,n, and hence, by (3.7),

B (ε)
3

∑

k=0

∥

∥

∼

Lm,n (fk)− fk
∥

∥ ≥
(

ε′ − ε
)

γm,n,

which contradicts with (3.9). So, our claim (3.8) holds true. Now, it follows
from (3.8) that

(3.10)
∑

(m,n)∈E

aj,k,m,n ≤
3

∑

i=0

(

∑

(m,n)∈Ei

aj,k,m,n

)

.

Letting j, k → ∞ in (3.10) and using (3.5), we observe that

P − lim
j,k→∞

∑

(m,n)∈E

aj,k,m,n,

which means (3.6). The proof is completed.

Remark 3.7. If αi,m,n ≡ 1 for each i = 0, 1, 2, 3, then Theorem 3.6 reduced
to Theorem 2.1. Also, if A = I, the identity matrix, αi,m,n ≡ 1 for each
i = 0, 1, 2, 3, then Theorem 3.6 reduced to Theorem 2.2.
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