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FOUR-DIMENSIONAL MATRIX TRANSFORMATION
AND A-STATISTICAL FUZZY KOROVKIN
TYPE APPROXIMATION

Abstract. In this paper, we prove a fuzzy Korovkin-type approximation theorem
for fuzzy positive linear operators by using A-statistical convergence for four-dimensional
summability matrices. Also, we obtain rates of A-statistical convergence of a double
sequence of fuzzy positive linear operators for four-dimensional summability matrices.

1. Introduction

Anastassiou 3] first introduced the fuzzy analogue of the classical Ko-
rovkin theory (see also [1], [2], [4], [10]). Recently, some statistical fuzzy
approximation theorems have been obtain by using the concept of statistical
convergence (see, [5], [8]). In this paper, we prove a fuzzy Korovkin-type ap-
proximation theorem for fuzzy positive linear operators by using A-statistical
convergence for four-dimensional summability matrices. Then, we construct
an example such that our new approximation result works but its classi-
cal case does not work. Also we obtain rates of A-statistical convergence
of a double sequence of fuzzy positive linear operators for four-dimensional
summability matrices.

We now recall some basic definitions and notations used in the paper.

A fuzzy number is a function g : R — [0, 1], which is normal, convex,
upper semi-continuous and the closure of the set supp(u) is compact, where
supp(p) :={xz € R: pu(z) > 0}. The set of all fuzzy numbers are denoted by
Rx. Let

W ={z eR:pu(x) >0} and [u]" ={zeR:pulx)>r}, (0<r<1).
Then, it is well-known [11] that, for each r € [0,1], the set [u]" is a closed
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and bounded interval of R. For any u,v € Rr and A € R, it is possible to
define uniquely the sum u @ v and the product A ® u as follows:
[udv]" =[ul"+ " and AOu]" =A[u]", (0<r<1).
Now denote the interval [u]" by [u(f) ) uS:)] , where u™ < uS:) and u(f),ugf) €
R for r € [0, 1]. Then, for u,v € Rr, define
ujv<:>u(_r) Sv(_T) anduE:) §v$) forall 0 <r <1.

Define also the following metric D : R x Rx — R by

D) = sup max{fu — o], Jul) o]},

rel0,1]

Hence, (Rx, D) is a complete metric space [18].

A double sequence x = {zy, n}, m,n € N, is convergent in Pringsheim’s
sense if, for every ¢ > 0, there exists N = N(¢) € N such that |z, , — L| <
¢ whenever m,n > N. Then, L is called the Pringsheim limit of x and
is denoted by P — limy, p mn, = L (see [16]). In this case, we say that
z = {xmn} is “P-convergent to L”. Also, if there exists a positive number
M such that |2, ,| < M for all (m,n) € N> = N x N, then # = {x,,,,} is
said to be bounded. Note that in contrast to the case for single sequences,
a convergent double sequence need not to be bounded. A double sequence
x = {&mn} is said to be non-increasing in Pringsheim’s sense if, for all
(m,n) € N27 Tmtintl < T

Now let A = [aj kmn], j,k, m,n €N, be a four-dimensional summability
matrix. For a given double sequence z = {zp,,}, the A-transform of z,
denoted by Ax := {(Ax);}, is given by

(Ax)jr = Z @ kmnTmn, J,k €N,
(m,n)EN?

provided the double series converges in Pringsheim’s sense for every (j,k) €
N2. In summability theory, a two-dimensional matrix transformation is said
to be regular if it maps every convergent sequence into a convergent sequence
with the same limit. The well-known characterization for two dimensional
matrix transformations is known as Silverman-Toeplitz conditions (see, for
instance, [13]). In 1926, Robison [17]| presented a four dimensional analog
of the regularity by considering an additional assumption of boundedness.
This assumption was made because a double P-convergent sequence is not
necessarily bounded. The definition and the characterization of regularity
for four dimensional matrices is known as Robison—Hamilton conditions, or
briefly, RH-regularity (see, [12], [17]).

Recall that a four dimensional matrix A = [a;k m,,] is said to be RH-
regular if it maps every bounded P-convergent sequence into a P-convergent
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sequence with the same P-limit. The Robison-Hamilton conditions state
that a four dimensional matrix A = [a; k. m | is RH-regular if and only if

(i) P— limajkmn =0 for each (m,n) € N2,

—hmzmn en? @ koman = 1,

(i@ - hm Y men 1@ kmn| = 0 for each n € N,

(v Z(mn en2 |@j kmn| 18 P-convergent for each (j, k) € N2,
(vi) there exist finite positive integers A and B such that }-, . o g |ajkmmnl
< A holds for every (j, k) € N2,

Now let A = [a; k,m n] be a non-negative RH-regular summability matrix,
and let K C N2. Then, a double sequence {x, ,,} of fuzzy numbers is said to
be A-statistically convergent to a fuzzy number L € Rz if, for every ¢ > 0,

P —1i ; =0
im > e =0,
(m,n)eK(e)

i) P
) P
(iv) P _hmzneNkamn’ = 0 for each m € N,
)
)

where
K(e) :={(m,n) € N*: D(xpn, L) > ¢}
In this case we write st?,, — lima,, , = L.
(4) m,n ’

We should note that if we take A = C(1;1) := [¢jk,mn], the double
Ceséaro matrix, defined by

jik,if1§m§jand1gn§k;,
Cik = .
St 0, otherwise,

then C(1;1)-statistical convergence coincides with the notion of statistical
convergence for double sequence, which was introduced in [14], [15]. Fi-
nally, if we replace the matrix A by the identity matrix for four-dimensional
matrices, then A-statistical convergence reduces to the Pringsheim conver-
gence [16].

2. A-statistical fuzzy Korovkin type approximation

Let us choose the real numbers a;b;c;d so that a < b,¢ < d, and
U := [a;b] X [e;d]. Let C(U) denote the space of all real valued contin-
uous functions on U endowed with the supremum norm

1l = sup | @), (f € CU)).

(z,y)eU
Assume that f : U — Rx be a fuzzy number valued function. Then f is said
to be fuzzy continuous at 2° := (z0,yo) € U whenever P —limy, 5, Tmp = 20,
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then P — lim D(f(xmn), f(z°)) = 0. If it is fuzzy continuous at every point
(z,y) € U, we say that f is fuzzy continuous on U. The set of all fuzzy
continuous functions on U is denoted by Cr(U). Note that Cr(U) is a
vector space. Now let L : Cr(U) — Cx(U) be an operator. Then L is said
to be fuzzy linear if, for every Aj, A2 € R having the same sing and for every

f17f2 S C]:(U)a and ("L‘?y) € U,
LMO i@ fasz,y) =M O L(fi;2,9) ® A2 © L(fo;2,y)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear and,
the condition L(f;x,y) = L(g;x,y) is satisfied for any f,g € Cx(U) and all
(z,y) € U with f(z,y) < g(z,y). Also, if f,g: U — Rz are fuzzy number
valued functions, then the distance between f and g is given by

D*(f,g) = sup sup max{|f" — g}, |17 - ¢}
(z,y)€U re(0,1]
(see for details, [1], [2], [3], [4], [9], [10]). Throughout the paper we use the
test functions given by
folz,y) =1, fi(z,y) ==, folz,y) =y, falz,y) =2+ ¢

THEOREM 2.1. Let A = [a;mn] be a non-negative RH -regular summabil-
ity matriz and let {Lm,n}(m n)EN? be a double sequence of fuzzy positive linear

operators from Cr (U) into itself. Assume that there exists a corresponding

sequence { Lmn}(mnyen2 of positive linear operators from C (U) into itself
with the property

(2.1) {Linn (£} = Linn (£ 2.)
for all (z,y) € U, r € [0,1], (m,n) € N> and f € Cr (U). Assume further
that

(2.2) sty — Um_ || Lyn (i) = fi| =0 for cachi=0,1,2,3.

m,n— 00

Then, for all f € Cx (U), we have
stiyy— lim D*(Lyn (f), f) = 0.

™m,n—00

Proof. Let f € Cr (U), (x,y) € U and r € [0,1]. By the hypothesis, since
fiT) € C (U), we can write, for every € > 0, that there exists a number § > 0
such that ‘fj(;) (u,v) — fj(;) (:c,y)‘ < ¢ holds for every (u,v) € U satisfying
|lu — x| < 0 and |v — y| < J. Then we immediately get for all (u,v) € U, that

oM "
A7 (o) = £ @y)| < e+ 5 {w=a) + (= 9)°},
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where Mir) = H fﬂ(:T)H' Now, using the linearity and the positivity of the

operators Ly, », we have, for each (m,n) € N2, that

‘Nmn(fj: 3 Ly y) f()(.l' y)‘

~

< Lo (|£ (,0)= 17 (@, 9) |2, 9) + M| L (fos 2, 9)—fo (2, )]

2

(r)
oM "
< m,n<e+ = {<u—x>2+(v—y>2};x,y>+Mi>|Lm,n<fo;x,y>—fo<x,y>!

(r)

M)~

5 L ((u=2)*+(0-1) s 2,9)
. Mj(f’

< et (e+MY7) | Linn (fos 2, y)—fo (%y)H (L (fri,m)= s (a.9)]

SE—F(&"‘M(T))‘ mn(vaxy) fo(a?,y)HQ

+ 202l | Lo (13 2 9)— i (2, 9)| +2|yHLm,n (fos 2, 9)— fa (2, )|
+ (@2 +12) | Lonn (Fo3 2,) — fo (2, 9)|}

(r)
M ~
<g+<a+MQ+ 5 (x2+y2)>\Lm,n (fosz,y) = fo (z,9)]

j(;“) ~ am o~
|x|‘Lm,n (fl,xuy)_fl (1"7y)|+ 52 |?/|‘Lm,n (f27x7y)_f2 (1:73/)‘

+

2M()
T3 i | Lo (f3:2,) — fa (2,9)]

<€+KT) @) {|Zonm (fos 2. 9)— Fo (@, 9)| + | Lo (fr5 2, 9)— 1 (2, 1)

| Lo (Fo3 2, 9) — Fo (2, 9)| + | B (f32,9) — f3 (2, )|}

(r) (r) (r)
where K(ir) (€) := max €—|—M¥) QMi (A%+B?%), 4]\;[; A, 41?? B, 2]\;[2i }7

A :=max{|al, b}, B := max{|c|, ]d|} Also taking supremum over (x,y) €
U, the above inequality implies that
23) || Zua (£7) = 1
<e+ Kﬁf (e {HLmn (fo) = fol| + || Lmm (f1) = f1|
+ || L (f2) = fo|| + || L (f3) = f3]| }-
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Now, it follows from (2.1) that
D* (Lm,n (f) af) = sup D (Lm,n (fa xay) 7f (l‘,y))

(z,y)eU

= sup sup maXHLmn(f(T) y) = 17 (z,9)],
(z,y)eUre0,1]

Lo (f52,9) = 137 (@)}

= sup max{||Zna(f) = 1Y | Lonn (£7) = £}
rel0,1]

Combining the above equality with (2.3), we have

(24) D" (Lin (), ) < e+ K () { || Lonn (F0) = fo| + | Zonn (f1) = £1]]
+ | Lo (F2) = fol| + || T (F5) — f5[|}

where K () := sup max{K(f) () ,KJ(:) (e)}.
rel0,1]
Now, for a given r > 0, choose € > 0 such that 0 < € < r, and also define
the following sets:

G:={(m,n) eN*: D* (Lynn (f), f) >},

Go: = {mm) € 8 | B () 0l 2 575}

Gy := {(m n) €N2: | Lonn (1) — fu]| > 47;(_(;},

Go: = {(m, n) € N2 : || Lo (f2) — fof| > 4"”[(_(; }

Gy — {(m,n) €N || Lo () = ]| 4}‘(;}.
Then inequality (2.4) gives

GCGyUG UG UGS
which guarantees that, for each (j, k) € N?

(25) Z aj,k,m,né Z aj,k,m,n+ Z Qg k,mn

(m,n)eG (m,n)eGo (m,n)eG1
+ Z aj7k7m7n + Z a/j7k7m7n‘
(m,n)eGa (m,n)eG3

If we take the limit as j,k — oo on the both sides of inequality (2.5) and
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use the hypothesis (2.2), we immediately see that
hm Z Gj kmmn =
3ok (m,n)eG

whence the result. m

If A = I, the identity matrix, then we obtain the following new fuzzy
Korovkin theorem in Pringsheim’s sense.

THEOREM 2.2. Let {Ly,, n} ene be a double sequence of fuzzy positive
linear operators from Cr (U) znto itself. Assume that there exists a cor-
responding sequence {Lyn}mnyenz of positive linear operators from C (U)
into itself with the property (2.1). Assume further that

P~ tim |[Lpn(fi) = fil| =0 for cachi=0,1,2,3.

m,n— o0

Then, for all f € Cr (U), we have
P— lim D*(Lpy,(f),f)=0.

m,n—00

We will now show that our result Theorem 2.1 is stronger than its classical
(Theorem 2.2) version.

EXAMPLE 2.3. Take A = C (1,1) := [¢} km,n], the double Cesaro matrix,
and define the double sequence {uy, n} by

vmn, if m and n are square,
Um,n = .
’ 0, otherwise.

(2)
We observe that, StC’(l 1 mlrlzgl Um,n = 0. But {wn,,} is neither P-con-

vergent nor bounded. Then consider the fuzzy Bernstein-type polynomials
as follows:

(26)  BY)(Fi,y) = (1+ umn) © €D
s=0

) @@ @” (1=2)" (=g o f <% %>

where f € Cr (U), (z,y) € U, (m,n) € N. In this case, we write
(B (fi,9)} ) =

B
= (14 umpn) Z " <7Z> 2yt (1—2)™ ™ (1 =yt ) <i, E>,
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where f(T) € C(U). Then, we get

B, n (foix,y) = (14 umpn) fo(z,y),
ffm,n<f y) = (L+ tma) fi (2,9),
ém,n<f2,xy> (1+ ) fo (2,7),
) e

So we conclude that

3t20(1,1) — m}rilr_r)loo“Bmyn (fi) — sz =0 for eachi=0,1,2,3.
By Theorem 2.1, we obtain for all f € Cx (U), that

sté) — Jim D*(B(J?L (f),f) =0.

n—o0

However, since the sequence {uy, »} is not convergent (in the Pringsheim’s
sense), we conclude that Theorem 2.2 do not work for the operators

{B(f) (fiz,y) } in (2.6) while our Theorem 2.1 still works.

3. A-statistical fuzzy rates

Various ways of defining rates of convergence in the A-statistical sense for
two-dimensional summability matrices were introduced in [7]. In a similar
way, we obtain fuzzy approximation theorems based on A-statistical rates
for four-dimensional summability matrices.

DEFINITION 3.1. Let A = [a; m | be a non-negative RH-regular summa-
bility matrix and let {a,,,} be a non-increasing double sequence of pos-
itive real numbers. A double sequence z = {zy,,} of fuzzy numbers is
A-statistically convergent to a fuzzy number L with the rate of o(aumy) if
for every € > 0,

1
P— lim — . -0
jhoroo A 2 ik =0,
™ (mn)eK(e)
where
K(e) = {(m, n) € N? . D(xmm, L) > 5}.
In this case, we write

D('Im,ny L) = St%A) - O(O‘m,n) as m,n — o0.

DEFINITION 3.2. Let A = [a; ; m,n) and {am, »} be the same as in Definition
3.1. Then, a double sequence x = {zp, 5, } of fuzzy numbers is A-statistically
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convergent to a fuzzy number L with the rate of oy, n(amy) if for every
e >0,

P — lim j =0
k00 Z Aj.k,m,n )
(m,n)eM(e)
where
M(e) := {(m,n) e N?: D(xmn, L) > ¢ amm}.
In this case, we write
D(xpmm, L) = st%A) — omn(Qmp) as m,n — oo.

Note that the rate of convergence given by Definition 3.1 is more con-
trolled by the entries of the summability matrices rather than the terms of
the sequence x = {zy,,}. However, according to the statistical rate given
by Definition 3.2, the rate is mainly controlled by the terms of the fuzzy
sequence = {Zp n}.

Also, we can give the corresponding A-statistical rates of real sequence

{Zmn}-

DEFINITION 3.3. [6] Let A = [ajkmn] be a non-negative RH-regular
summability matrix and let {a, »} be a non-increasing double sequence of
positive real numbers. A double sequence z = {zy,,} is A-statistically
convergent to a number L with the rate of o(ayy, ) if for every e > 0,

1
P— lim — Z aj kmmn =0,

PO T, ek (e)
where
K(g) :== {(m,n) € N’ |zp,,, — L| > €}.
In this case, we write
T — L = st%A) —o(amp) as m,n — oo.
DEFINITION 3.4. (6] Let A = [a; k,m,n] and {a,»} be the same as in Defi-

nition 3.3. Then, a double sequence = = {x,,,,} is A-statistically convergent
to a number L with the rate of oy, (am ) if for every € > 0,

P — lim Z @ kmn =0,

j,k—00
SR (m,n)eM(e)

where

M(e) :={(m,n) € N2 |2pmn — L] > € Qo }-
In this case, we write

Tmm — L = st?A) — omn(Qmp) as m,n — oo.

Then we have the following.
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THEOREM 3.5. Let A = [a;kmn] be a non-negative RH -reqular summa-
bility matriz and let {me}(m n)EN2 be a double sequence of fuzzy positive

linear operators from Cx (U) into itself. Assume that there exists a cor-
responding sequence { L n}(mnyenz of positive linear operators from C (U)
into itself with the property (2.1). Assume further that {azmn} (mon)EN2>

1 =0,1,2,3 are non-ingreasing sequences of positive real numbers. If, for
eachi=0,1,2,3

(3.1) HZm,n (fi) — le = st?A) —o(imm) as m,n — oo
then, for all f € Cr (U), we have

(3.2) D* (L (f), f) :st%A)—o('ymn) as m,n — oo
where Y n 1= 012a<X3 {aimn} for every (m,n) € N2,

Proof. Let f € Cr (U), (z,y) € U and r € [0, 1]. Then, we immediately see
from Theorem 2.1’s proof that, for every e >0,

+ HLm,n f2 - f2H + HLm,n (f3) - f3H}
where K (g) := sup maX{K(_r) () ,KJ(:) (e)}.
rel0,1]
Now, for a given r > 0, choose € > 0 such that 0 < £ < r, and also define
the following sets:

G

(m,n) € N*: D* (Linn (f), f) > r}7

( an)ENQ:Hzmn fO fO

Gy :

(m,n) € N?: HZW (f1) = Al =

(m,n) € N?: HZM (f2) = fo| =

3
I

Gs:

Q
_
I
L A A A A

(m,n) € N+ || Lo n (f5) = fs]| > 4
) gives

GCGyUG UG UGS
which guarantees that, for each (j, k) € N?

3
Z aj kmmn < Z( Z aj,k:,m,n)-

(m,n)eG =0 (m,n)eqG;

Then inequality (3.
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Also, by the definition of (Wm,n)(m n)enz: We have

(3.4) > ajkmn<z< > ay,kmn)

’Y’ (m,n)eG (m,n)eG;

Qi gk

If we take the limit as j,k — oo on both sides of inequality (3.4) and use
the hypothesis (3.1), we immediately see that

which gives (3.2). So, the proof is completed. m
We also give the next result.
THEOREM 3.6. Let A = [ajkmnl, {ai7m7n}(m n)EN2 (1=0,1,2,3),

{’7m7n}(m’n)€N2 , {Lmvn}(m,n)GNQ and {Lmn}(mnyen be the same as in The-
orem 3.5 with the property (2.1). If, for each i =0,1,2,3

(3.5) H mn (fi) f,H = st — omn(Qimn) as m,n — oo
then, for all f € Cr (U), we hcwe
(3.6) D* (Lyy (f), f) = st%A) — omn(Ymn) as m,n — oo.

Proof. By (3.3), it is clear that, for any € > 0,
(3.7) D" (Lmn(f),f)
<€7mn+B {HLmn fO fOH‘i‘HLm,n(fl)_fIH

Lo (£2) = Sl + | Lo (1) = ]}

holds for some B (g) > 0. Now, as in the proof of Theorem 3.5, for a given
g’ > 0, choosing € > 0 such that ¢ < &/. Now we define the following sets:

E::{(m,n)ENQ:D*(L n (), ) = vmm},
Bo:— {<m,n> €N ¢ |[Loun (fo) — fol| (ﬁ) am}

Bri= { ) €8 T () = ] = (555 ) @ma
By = {mn) € [T (72 - ol = (555 ) @2mn
By = { ) €N L () = il > (555 ) camn
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In this case, we claim that

(3.8) E C EyU E1 U EsU Ejs.

Indeed, otherwise, there would be an element (m,n) € E but (m,n) ¢
EyU FE1UE>U Es. So, we get

(m.n) ¢ Eo = || (fo) — fol| < ( /

)
() ¢ B = [ E (1) = £l < (55725 )
)

(m,n) @é Ey = Hzm,n (f2 fQH <—

By the definition of {~,, n} we immediately see that

(m,n)eN2>
(3.9) B(e) Z\\Zm,n (i) = fill < (&' =€) Ymn-
k=0

Since (m,n) € E, we have D* (Ly,p (f) . f) > €'Ymn, and hence, by (3.7),

3 ~
£) ZHLm,n (fx) — fk:H > (5, - 5) TYm,n,
k=0

which contradicts with (3.9). So, our claim (3.8) holds true. Now, it follows

from (3.8) that

3
(3.10) > aj,k,m,n32< > “%’fvmv")

(m,n)eE =0 (m,n)€E;
Letting j,k — oo in (3. 10) and using (3.5), we observe that
— 1
J, k:linoo Z Qj.km,mn>
(m,n)eE
which means (3.6). The proof is completed. =

REMARK 3.7. If aj p n, = 1 for each i = 0,1, 2,3, then Theorem 3.6 reduced
to Theorem 2.1. Also, if A = I, the identity matrix, a;m,m,, = 1 for each
1=0,1,2,3, then Theorem 3.6 reduced to Theorem 2.2.
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