Kamil Demirci and Sevda Karakuş

FOUR-DIMENSIONAL MATRIX TRANSFORMATION AND A-STATISTICAL FUZZY KOROVKIN TYPE APPROXIMATION

Abstract. In this paper, we prove a fuzzy Korovkin-type approximation theorem for fuzzy positive linear operators by using A-statistical convergence for four-dimensional summability matrices. Also, we obtain rates of A-statistical convergence of a double sequence of fuzzy positive linear operators for four-dimensional summability matrices.

1. Introduction

Anastassiou [3] first introduced the fuzzy analogue of the classical Korovkin theory (see also [1], [2], [4], [10]). Recently, some statistical fuzzy approximation theorems have been obtain by using the concept of statistical convergence (see, [5], [8]). In this paper, we prove a fuzzy Korovkin-type approximation theorem for fuzzy positive linear operators by using A-statistical convergence for four-dimensional summability matrices. Then, we construct an example such that our new approximation result works but its classical case does not work. Also we obtain rates of A-statistical convergence of a double sequence of fuzzy positive linear operators for four-dimensional summability matrices.

We now recall some basic definitions and notations used in the paper.

A fuzzy number is a function $\mu : \mathbb{R} \to [0,1]$, which is normal, convex, upper semi-continuous and the closure of the set $supp(\mu)$ is compact, where $supp(\mu) := \{x \in \mathbb{R} : \mu(x) > 0\}$. The set of all fuzzy numbers are denoted by $\mathbb{R}_{\mathcal{F}}$. Let

$$[\mu]^0 = \overline{\{x \in \mathbb{R} : \mu(x) > 0\}}$$
 and $[\mu]^r = \{x \in \mathbb{R} : \mu(x) \ge r\}$, $(0 < r \le 1)$.
Then, it is well-known [11] that, for each $r \in [0, 1]$, the set $[\mu]^r$ is a closed

²⁰⁰⁰ Mathematics Subject Classification: 26E50, 41A25, 41A36, 40G15.

Key words and phrases: A-statistical convergence for double sequences, fuzzy positive linear operators, fuzzy Korovkin theory, rates of A-statistical convergence for double sequences, regularity for double sequences.

and bounded interval of \mathbb{R} . For any $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, it is possible to define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ as follows:

$$[u \oplus v]^r = [u]^r + [v]^r$$
 and $[\lambda \odot u]^r = \lambda [u]^r$, $(0 \le r \le 1)$.

Now denote the interval $[u]^r$ by $[u_-^{(r)}, u_+^{(r)}]$, where $u_-^{(r)} \leq u_+^{(r)}$ and $u_-^{(r)}, u_+^{(r)} \in \mathbb{R}$ for $r \in [0, 1]$. Then, for $u, v \in \mathbb{R}_{\mathcal{F}}$, define

$$u \leq v \Leftrightarrow u_{-}^{(r)} \leq v_{-}^{(r)} \text{ and } u_{+}^{(r)} \leq v_{+}^{(r)} \text{ for all } 0 \leq r \leq 1.$$

Define also the following metric $D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \to \mathbb{R}_+$ by

$$D(u,v) = \sup_{r \in [0,1]} \max \bigl\{ \bigl| u_-^{(r)} - v_-^{(r)} \bigr|, \bigl| u_+^{(r)} - v_+^{(r)} \bigr| \bigr\}.$$

Hence, $(\mathbb{R}_{\mathcal{F}}, D)$ is a complete metric space [18].

A double sequence $x = \{x_{m,n}\}, m, n \in \mathbb{N}$, is convergent in Pringsheim's sense if, for every $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$ such that $|x_{m,n} - L| < \varepsilon$ whenever m, n > N. Then, L is called the Pringsheim limit of x and is denoted by $P - \lim_{m,n} x_{m,n} = L$ (see [16]). In this case, we say that $x = \{x_{m,n}\}$ is "P-convergent to L". Also, if there exists a positive number M such that $|x_{m,n}| \leq M$ for all $(m,n) \in \mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$, then $x = \{x_{m,n}\}$ is said to be bounded. Note that in contrast to the case for single sequences, a convergent double sequence need not to be bounded. A double sequence $x = \{x_{m,n}\}$ is said to be non-increasing in Pringsheim's sense if, for all $(m,n) \in \mathbb{N}^2$, $x_{m+1,n+1} \leq x_{m,n}$.

Now let $A = [a_{j,k,m,n}], \ j,k,m,n \in \mathbb{N}$, be a four-dimensional summability matrix. For a given double sequence $x = \{x_{m,n}\}$, the A-transform of x, denoted by $Ax := \{(Ax)_{j,k}\}$, is given by

$$(Ax)_{j,k} = \sum_{(m,n)\in\mathbb{N}^2} a_{j,k,m,n} x_{m,n}, \quad j,k \in \mathbb{N},$$

provided the double series converges in Pringsheim's sense for every $(j,k) \in \mathbb{N}^2$. In summability theory, a two-dimensional matrix transformation is said to be regular if it maps every convergent sequence into a convergent sequence with the same limit. The well-known characterization for two dimensional matrix transformations is known as Silverman–Toeplitz conditions (see, for instance, [13]). In 1926, Robison [17] presented a four dimensional analog of the regularity by considering an additional assumption of boundedness. This assumption was made because a double P-convergent sequence is not necessarily bounded. The definition and the characterization of regularity for four dimensional matrices is known as Robison–Hamilton conditions, or briefly, RH-regularity (see, [12], [17]).

Recall that a four dimensional matrix $A = [a_{j,k,m,n}]$ is said to be RHregular if it maps every bounded P-convergent sequence into a P-convergent

sequence with the same P-limit. The Robison-Hamilton conditions state that a four dimensional matrix $A = [a_{j,k,m,n}]$ is RH-regular if and only if

(i)
$$P - \lim_{j,k} a_{j,k,m,n} = 0$$
 for each $(m,n) \in \mathbb{N}^2$,
(ii) $P - \lim_{j,k} \sum_{(m,n) \in \mathbb{N}^2} a_{j,k,m,n} = 1$,

(ii)
$$P - \lim_{i,k} \sum_{(m,n) \in \mathbb{N}^2} a_{j,k,m,n} = 1$$

(iii)
$$P - \lim_{j,k} \sum_{m \in \mathbb{N}} |a_{j,k,m,n}| = 0$$
 for each $n \in \mathbb{N}$,

(iv)
$$P - \lim_{j,k} \sum_{n \in \mathbb{N}} |a_{j,k,m,n}| = 0$$
 for each $m \in \mathbb{N}$,

- (v) $\sum_{(m,n)\in\mathbb{N}^2} |a_{j,k,m,n}|$ is P-convergent for each $(j,k)\in\mathbb{N}^2$,
- (vi) there exist finite positive integers A and B such that $\sum_{m,n>B} |a_{j,k,m,n}|$ $< A \text{ holds for every } (j, k) \in \mathbb{N}^2.$

Now let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix, and let $K \subset \mathbb{N}^2$. Then, a double sequence $\{x_{m,n}\}$ of fuzzy numbers is said to be A-statistically convergent to a fuzzy number $L \in \mathbb{R}_{\mathcal{F}}$ if, for every $\varepsilon > 0$,

$$P - \lim_{j,k} \sum_{(m,n) \in K(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$K(\varepsilon) := \{(m, n) \in \mathbb{N}^2 : D(x_{m,n}, L) \ge \varepsilon\}.$$

In this case we write $st_{(A)}^2 - \lim_{m,n} x_{m,n} = L$.

We should note that if we take $A = C(1;1) := [c_{j,k,m,n}]$, the double Cesáro matrix, defined by

$$c_{j,k,m,n} = \begin{cases} \frac{1}{jk}, & \text{if } 1 \le m \le j \text{ and } 1 \le n \le k, \\ 0, & \text{otherwise,} \end{cases}$$

then C(1;1)-statistical convergence coincides with the notion of statistical convergence for double sequence, which was introduced in [14], [15]. Finally, if we replace the matrix A by the identity matrix for four-dimensional matrices, then A-statistical convergence reduces to the Pringsheim convergence [16].

2. A-statistical fuzzy Korovkin type approximation

Let us choose the real numbers a;b;c;d so that a < b,c < d, and $U := [a;b] \times [c;d]$. Let C(U) denote the space of all real valued continuous functions on U endowed with the supremum norm

$$||f|| = \sup_{(x,y)\in U} |f(x,y)|, (f \in C(U)).$$

Assume that $f: U \to \mathbb{R}_{\mathcal{F}}$ be a fuzzy number valued function. Then f is said to be fuzzy continuous at $x^0 := (x_0, y_0) \in U$ whenever $P - \lim_{m,n} x_{m,n} = x^0$, then $P - \lim D(f(x_{m,n}), f(x^0)) = 0$. If it is fuzzy continuous at every point $(x,y) \in U$, we say that f is fuzzy continuous on U. The set of all fuzzy continuous functions on U is denoted by $C_{\mathcal{F}}(U)$. Note that $C_{\mathcal{F}}(U)$ is a vector space. Now let $L: C_{\mathcal{F}}(U) \to C_{\mathcal{F}}(U)$ be an operator. Then L is said to be fuzzy linear if, for every $\lambda_1, \lambda_2 \in \mathbb{R}$ having the same sing and for every $f_1, f_2 \in C_{\mathcal{F}}(U)$, and $(x,y) \in U$,

$$L(\lambda_1 \odot f_1 \oplus \lambda_2 \odot f_2; x, y) = \lambda_1 \odot L(f_1; x, y) \oplus \lambda_2 \odot L(f_2; x, y)$$

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear and, the condition $L(f;x,y) \leq L(g;x,y)$ is satisfied for any $f,g \in C_{\mathcal{F}}(U)$ and all $(x,y) \in U$ with $f(x,y) \leq g(x,y)$. Also, if $f,g:U \to \mathbb{R}_{\mathcal{F}}$ are fuzzy number valued functions, then the distance between f and g is given by

$$D^*(f,g) = \sup_{(x,y) \in U} \sup_{r \in [0,1]} \max \left\{ \left| f_-^{(r)} - g_-^{(r)} \right|, \left| f_+^{(r)} - g_+^{(r)} \right| \right\}$$

(see for details, [1], [2], [3], [4], [9], [10]). Throughout the paper we use the test functions given by

$$f_0(x,y) = 1$$
, $f_1(x,y) = x$, $f_2(x,y) = y$, $f_3(x,y) = x^2 + y^2$.

THEOREM 2.1. Let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix and let $\{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ be a double sequence of fuzzy positive linear operators from $C_{\mathcal{F}}(U)$ into itself. Assume that there exists a corresponding sequence $\{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ of positive linear operators from C(U) into itself with the property

(2.1)
$$\{L_{m,n}(f;x,y)\}_{\pm}^{(r)} = \tilde{L}_{m,n}(f_{\pm}^{(r)};x,y)$$

for all $(x,y) \in U$, $r \in [0,1]$, $(m,n) \in \mathbb{N}^2$ and $f \in C_{\mathcal{F}}(U)$. Assume further that

(2.2)
$$st_{(A)}^{2} - \lim_{m, n \to \infty} \|\widetilde{L}_{m,n}(f_{i}) - f_{i}\| = 0 \text{ for each } i = 0, 1, 2, 3.$$

Then, for all $f \in C_{\mathcal{F}}(U)$, we have

$$st_{(A)}^{2} - \lim_{m,n\to\infty} D^{*}\left(L_{m,n}\left(f\right),f\right) = 0.$$

Proof. Let $f \in C_{\mathcal{F}}(U)$, $(x,y) \in U$ and $r \in [0,1]$. By the hypothesis, since $f_{\pm}^{(r)} \in C(U)$, we can write, for every $\varepsilon > 0$, that there exists a number $\delta > 0$ such that $\left| f_{\pm}^{(r)}(u,v) - f_{\pm}^{(r)}(x,y) \right| < \varepsilon$ holds for every $(u,v) \in U$ satisfying $|u-x| < \delta$ and $|v-y| < \delta$. Then we immediately get for all $(u,v) \in U$, that

$$\left| f_{\pm}^{(r)}(u,v) - f_{\pm}^{(r)}(x,y) \right| \le \varepsilon + \frac{2M_{\pm}^{(r)}}{\delta^2} \left\{ (u-x)^2 + (v-y)^2 \right\},$$

where $M_{\pm}^{(r)} := \|f_{\pm}^{(r)}\|$. Now, using the linearity and the positivity of the operators $\widetilde{L}_{m,n}$, we have, for each $(m,n) \in \mathbb{N}^2$, that

$$\begin{split} & |\widetilde{L}_{m,n}(f_{\pm}^{(r)};x,y) - f_{\pm}^{(r)}(x,y)| \\ & \leq \widetilde{L}_{m,n}(|f_{\pm}^{(r)}(u,v) - f_{\pm}^{(r)}(x,y)|;x,y) + M_{\pm}^{(r)}|\widetilde{L}_{m,n}(f_0;x,y) - f_0(x,y)| \\ & \leq \widetilde{L}_{m,n}\left(\varepsilon + \frac{2M_{\pm}^{(r)}}{\delta^2}\left\{(u-x)^2 + (v-y)^2\right\};x,y\right) + M_{\pm}^{(r)}|\widetilde{L}_{m,n}(f_0;x,y) - f_0(x,y)| \\ & \leq \varepsilon + \left(\varepsilon + M_{\pm}^{(r)}\right)|\widetilde{L}_{m,n}(f_0;x,y) - f_0(x,y)| + \frac{2M_{\pm}^{(r)}}{\delta^2}\widetilde{L}_{m,n}((u-x)^2 + (v-y)^2;x,y) \\ & \leq \varepsilon + \left(\varepsilon + M_{\pm}^{(r)}\right)|\widetilde{L}_{m,n}(f_0;x,y) - f_0(x,y)| + \frac{2M_{\pm}^{(r)}}{\delta^2}\left\{|\widetilde{L}_{m,n}(f_3;x,y) - f_3(x,y)| + 2|x||\widetilde{L}_{m,n}(f_1;x,y) - f_1(x,y)| + 2|y||\widetilde{L}_{m,n}(f_2;x,y) - f_2(x,y)| + (x^2 + y^2)|\widetilde{L}_{m,n}(f_0;x,y) - f_0(x,y)|\right\} \\ & \leq \varepsilon + \left(\varepsilon + M_{\pm}^{(r)} + \frac{2M_{\pm}^{(r)}}{\delta^2}(x^2 + y^2)\right)|\widetilde{L}_{m,n}(f_0;x,y) - f_0(x,y)| + \frac{4M_{\pm}^{(r)}}{\delta^2}|x||\widetilde{L}_{m,n}(f_1;x,y) - f_1(x,y)| + \frac{4M_{\pm}^{(r)}}{\delta^2}|x||\widetilde{L}_{m,n}(f_3;x,y) - f_3(x,y)| \\ & \leq \varepsilon + K_{\pm}^{(r)}(\varepsilon)\left\{|\widetilde{L}_{m,n}(f_0;x,y) - f_0(x,y)| + |\widetilde{L}_{m,n}(f_1;x,y) - f_1(x,y)| + |\widetilde{L}_{m,n}(f_2;x,y) - f_2(x,y)| + |\widetilde{L}_{m,n}(f_3;x,y) - f_3(x,y)|\right\} \\ & \text{where } K_{\pm}^{(r)}(\varepsilon) := \max\left\{\varepsilon + M_{\pm}^{(r)} + \frac{2M_{\pm}^{(r)}}{\delta^2}(A^2 + B^2), \frac{4M_{\pm}^{(r)}}{\delta^2}A, \frac{4M_{\pm}^{(r)}}{\delta^2}B, \frac{2M_{\pm}^{(r)}}{\delta^2}\right\}, \\ A := \max\{|a|,|b|\}, B := \max\{|c|,|d|\}. \text{ Also taking supremum over } (x,y) \in U, \text{ the above inequality implies that} \end{cases}$$

(2.3)
$$\|\widetilde{L}_{m,n}(f_{\pm}^{(r)}) - f_{\pm}^{(r)}\|$$

$$\leq \varepsilon + K_{\pm}^{(r)}(\varepsilon) \{ \|\widetilde{L}_{m,n}(f_{0}) - f_{0}\| + \|\widetilde{L}_{m,n}(f_{1}) - f_{1}\|$$

$$+ \|\widetilde{L}_{m,n}(f_{2}) - f_{2}\| + \|\widetilde{L}_{m,n}(f_{3}) - f_{3}\| \}.$$

Now, it follows from (2.1) that

$$\begin{split} D^*\left(L_{m,n}\left(f\right),f\right) &= \sup_{(x,y)\in U} D\left(L_{m,n}\left(f;x,y\right),f\left(x,y\right)\right) \\ &= \sup_{(x,y)\in U} \sup_{r\in[0,1]} \max\left\{\left|\widetilde{L}_{m,n}\left(f_{-}^{(r)};x,y\right) - f_{-}^{(r)}\left(x,y\right)\right|, \right. \\ &\left.\left|\widetilde{L}_{m,n}\left(f_{+}^{(r)};x,y\right) - f_{+}^{(r)}\left(x,y\right)\right|\right\} \\ &= \sup_{r\in[0,1]} \max\left\{\left\|\widetilde{L}_{m,n}\left(f_{-}^{(r)}\right) - f_{-}^{(r)}\right\|, \left\|\widetilde{L}_{m,n}\left(f_{+}^{(r)}\right) - f_{+}^{(r)}\right\|\right\}. \end{split}$$

Combining the above equality with (2.3), we have

(2.4)
$$D^{*}(L_{m,n}(f), f) \leq \varepsilon + K(\varepsilon) \left\{ \| \widetilde{L}_{m,n}(f_{0}) - f_{0} \| + \| \widetilde{L}_{m,n}(f_{1}) - f_{1} \| + \| \widetilde{L}_{m,n}(f_{2}) - f_{2} \| + \| \widetilde{L}_{m,n}(f_{3}) - f_{3} \| \right\}$$

where
$$K\left(\varepsilon\right):=\sup_{r\in\left[0,1\right]}\max\left\{ K_{-}^{\left(r\right)}\left(\varepsilon\right),K_{+}^{\left(r\right)}\left(\varepsilon\right)\right\} .$$

Now, for a given r > 0, choose $\varepsilon > 0$ such that $0 < \varepsilon < r$, and also define the following sets:

$$G := \left\{ (m, n) \in \mathbb{N}^{2} : D^{*} \left(L_{m, n} \left(f \right), f \right) \geq r \right\},$$

$$G_{0} := \left\{ (m, n) \in \mathbb{N}^{2} : \left\| \widetilde{L}_{m, n} \left(f_{0} \right) - f_{0} \right\| \geq \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\},$$

$$G_{1} := \left\{ (m, n) \in \mathbb{N}^{2} : \left\| \widetilde{L}_{m, n} \left(f_{1} \right) - f_{1} \right\| \geq \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\},$$

$$G_{2} := \left\{ (m, n) \in \mathbb{N}^{2} : \left\| \widetilde{L}_{m, n} \left(f_{2} \right) - f_{2} \right\| \geq \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\},$$

$$G_{3} := \left\{ (m, n) \in \mathbb{N}^{2} : \left\| \widetilde{L}_{m, n} \left(f_{3} \right) - f_{3} \right\| \geq \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\}.$$

Then inequality (2.4) gives

$$G \subset G_0 \cup G_1 \cup G_2 \cup G_3$$

which guarantees that, for each $(j, k) \in \mathbb{N}^2$

(2.5)
$$\sum_{(m,n)\in G} a_{j,k,m,n} \le \sum_{(m,n)\in G_0} a_{j,k,m,n} + \sum_{(m,n)\in G_1} a_{j,k,m,n}$$
$$+ \sum_{(m,n)\in G_2} a_{j,k,m,n} + \sum_{(m,n)\in G_3} a_{j,k,m,n}.$$

If we take the limit as $j, k \to \infty$ on the both sides of inequality (2.5) and

use the hypothesis (2.2), we immediately see that

$$\lim_{j,k} \sum_{(m,n)\in G} a_{j,k,m,n} = 0$$

whence the result. \blacksquare

If A = I, the identity matrix, then we obtain the following new fuzzy Korovkin theorem in Pringsheim's sense.

THEOREM 2.2. Let $\{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ be a double sequence of fuzzy positive linear operators from $C_{\mathcal{F}}(U)$ into itself. Assume that there exists a corresponding sequence $\{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ of positive linear operators from C(U) into itself with the property (2.1). Assume further that

$$P - \lim_{m,n\to\infty} ||\widetilde{L}_{m,n}(f_i) - f_i|| = 0 \text{ for each } i = 0, 1, 2, 3.$$

Then, for all $f \in C_{\mathcal{F}}(U)$, we have

$$P - \lim_{m,n \to \infty} D^* \left(L_{m,n} \left(f \right), f \right) = 0.$$

We will now show that our result Theorem 2.1 is stronger than its classical (Theorem 2.2) version.

EXAMPLE 2.3. Take $A = C(1,1) := [c_{j,k,m,n}]$, the double Cesáro matrix, and define the double sequence $\{u_{m,n}\}$ by

$$u_{m,n} = \begin{cases} \sqrt{mn}, & \text{if } m \text{ and } n \text{ are square,} \\ 0, & \text{otherwise.} \end{cases}$$

We observe that, $st_{C(1,1)}^{(2)} - \lim_{m,n\to\infty} u_{m,n} = 0$. But $\{u_{m,n}\}$ is neither P-convergent nor bounded. Then consider the fuzzy Bernstein-type polynomials as follows:

$$(2.6) B_{m,n}^{(\mathcal{F})}(f;x,y) = (1+u_{m,n}) \odot \bigoplus_{s=0}^{m}$$

$$\odot \bigoplus_{t=0}^{n} {m \choose s} {n \choose t} x^{s} y^{t} (1-x)^{m-s} (1-y)^{n-t} \odot f\left(\frac{s}{m}, \frac{t}{n}\right),$$

where $f \in C_{\mathcal{F}}(U)$, $(x,y) \in U$, $(m,n) \in \mathbb{N}^2$. In this case, we write

$$\begin{aligned}
&\{B_{m,n}^{(\mathcal{F})}(f;x,y)\}_{\pm}^{(r)} = \widetilde{B}_{m,n}(f_{\pm}^{(r)};x,y) \\
&= (1+u_{m,n}) \sum_{s=0}^{m} \sum_{t=0}^{n} {m \choose s} {n \choose t} x^{s} y^{t} (1-x)^{m-s} (1-y)^{n-t} f_{\pm}^{(r)} \left(\frac{s}{m}, \frac{t}{n}\right),
\end{aligned}$$

where
$$f_{\pm}^{(r)} \in C(U)$$
. Then, we get
$$\tilde{B}_{m,n}(f_0; x, y) = (1 + u_{m,n}) f_0(x, y),$$

$$\tilde{B}_{m,n}(f_1; x, y) = (1 + u_{m,n}) f_1(x, y),$$

$$\tilde{B}_{m,n}(f_2; x, y) = (1 + u_{m,n}) f_2(x, y),$$

$$\tilde{B}_{m,n}(f_3; x, y) = (1 + u_{m,n}) \left(f_3(x, y) + \frac{x - x^2}{m} + \frac{y - y^2}{n} \right).$$

So we conclude that

$$st_{C(1,1)}^{2} - \lim_{n \to \infty} \|\widetilde{B}_{m,n}(f_{i}) - f_{i}\| = 0 \text{ for each } i = 0, 1, 2, 3.$$

By Theorem 2.1, we obtain for all $f \in C_{\mathcal{F}}(U)$, that

$$st_{C(1,1)}^{2} - \lim_{m,n\to\infty} D^{*}\left(B_{m,n}^{(\mathcal{F})}\left(f\right),f\right) = 0.$$

However, since the sequence $\{u_{m,n}\}$ is not convergent (in the Pringsheim's sense), we conclude that Theorem 2.2 do not work for the operators $\{B_{m,n}^{(\mathcal{F})}(f;x,y)\}$ in (2.6) while our Theorem 2.1 still works.

3. A-statistical fuzzy rates

Various ways of defining rates of convergence in the A-statistical sense for two-dimensional summability matrices were introduced in [7]. In a similar way, we obtain fuzzy approximation theorems based on A-statistical rates for four-dimensional summability matrices.

DEFINITION 3.1. Let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix and let $\{\alpha_{m,n}\}$ be a non-increasing double sequence of positive real numbers. A double sequence $x = \{x_{m,n}\}$ of fuzzy numbers is A-statistically convergent to a fuzzy number L with the rate of $o(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \frac{1}{\alpha_{j,k}} \sum_{(m,n) \in K(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$K(\varepsilon) := \{(m,n) \in \mathbb{N}^2 : D(x_{m,n}, L) \ge \varepsilon\}.$$

In this case, we write

$$D(x_{m,n},L) = st_{(A)}^2 - o(\alpha_{m,n})$$
 as $m, n \to \infty$.

DEFINITION 3.2. Let $A = [a_{j,k,m,n}]$ and $\{\alpha_{m,n}\}$ be the same as in Definition 3.1. Then, a double sequence $x = \{x_{m,n}\}$ of fuzzy numbers is A-statistically

convergent to a fuzzy number L with the rate of $o_{m,n}(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \sum_{(m,n) \in M(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$M(\varepsilon) := \{(m, n) \in \mathbb{N}^2 : D(x_{m,n}, L) \ge \varepsilon \ \alpha_{m,n} \}.$$

In this case, we write

$$D(x_{m,n}, L) = st_{(A)}^2 - o_{m,n}(\alpha_{m,n})$$
 as $m, n \to \infty$.

Note that the rate of convergence given by Definition 3.1 is more controlled by the entries of the summability matrices rather than the terms of the sequence $x = \{x_{m,n}\}$. However, according to the statistical rate given by Definition 3.2, the rate is mainly controlled by the terms of the fuzzy sequence $x = \{x_{m,n}\}$.

Also, we can give the corresponding A-statistical rates of real sequence $\{x_{m,n}\}.$

DEFINITION 3.3. [6] Let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix and let $\{\alpha_{m,n}\}$ be a non-increasing double sequence of positive real numbers. A double sequence $x = \{x_{m,n}\}$ is A-statistically convergent to a number L with the rate of $o(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \frac{1}{\alpha_{j,k}} \sum_{(m,n) \in K(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$K(\varepsilon) := \{(m, n) \in \mathbb{N}^2 : |x_{m,n} - L| \ge \varepsilon\}.$$

In this case, we write

$$x_{m,n} - L = st_{(A)}^2 - o(\alpha_{m,n})$$
 as $m, n \to \infty$.

DEFINITION 3.4. [6] Let $A = [a_{j,k,m,n}]$ and $\{\alpha_{m,n}\}$ be the same as in Definition 3.3. Then, a double sequence $x = \{x_{m,n}\}$ is A-statistically convergent to a number L with the rate of $o_{m,n}(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \sum_{(m,n) \in M(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$M(\varepsilon) := \{(m,n) \in \mathbb{N}^2 : |x_{m,n} - L| \ge \varepsilon \ \alpha_{m,n} \}.$$

In this case, we write

$$x_{m,n} - L = st_{(A)}^2 - o_{m,n}(\alpha_{m,n})$$
 as $m, n \to \infty$.

Then we have the following.

THEOREM 3.5. Let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix and let $\{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ be a double sequence of fuzzy positive linear operators from $C_{\mathcal{F}}(U)$ into itself. Assume that there exists a corresponding sequence $\{\widetilde{L}_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ of positive linear operators from C(U) into itself with the property (2.1). Assume further that $\{\alpha_{i,m,n}\}_{(m,n)\in\mathbb{N}^2}$, i=0,1,2,3 are non-ingreasing sequences of positive real numbers. If, for each i=0,1,2,3

(3.1)
$$\|\widetilde{L}_{m,n}(f_i) - f_i\| = st_{(A)}^2 - o(\alpha_{i,m,n}) \quad as \quad m, n \to \infty$$
then, for all $f \in C_{\mathcal{F}}(U)$, we have

(3.2)
$$D^* (L_{m,n} (f), f) = st_{(A)}^2 - o(\gamma_{m,n}) \text{ as } m, n \to \infty$$

where $\gamma_{m,n} := \max_{0 < i < 3} \{\alpha_{i,m,n}\}$ for every $(m,n) \in \mathbb{N}^2$.

Proof. Let $f \in C_{\mathcal{F}}(U)$, $(x,y) \in U$ and $r \in [0,1]$. Then, we immediately see from Theorem 2.1's proof that, for every $\varepsilon > 0$,

(3.3)
$$D^*(L_{m,n}(f), f) \le \varepsilon + K(\varepsilon) \{ \| \widetilde{L}_{m,n}(f_0) - f_0 \| + \| \widetilde{L}_{m,n}(f_1) - f_1 \| + \| \widetilde{L}_{m,n}(f_2) - f_2 \| + \| \widetilde{L}_{m,n}(f_3) - f_3 \| \}$$

where $K(\varepsilon) := \sup_{r \in [0,1]} \max \{K_{-}^{(r)}(\varepsilon), K_{+}^{(r)}(\varepsilon)\}.$

Now, for a given r > 0, choose $\varepsilon > 0$ such that $0 < \varepsilon < r$, and also define the following sets:

$$G := \left\{ (m,n) \in \mathbb{N}^2 : D^* \left(L_{m,n} \left(f \right), f \right) \ge r \right\},$$

$$G_0 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_0 \right) - f_0 \right\| \ge \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\},$$

$$G_1 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_1 \right) - f_1 \right\| \ge \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\},$$

$$G_2 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_2 \right) - f_2 \right\| \ge \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\},$$

$$G_3 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_3 \right) - f_3 \right\| \ge \frac{r - \varepsilon}{4K \left(\varepsilon \right)} \right\}.$$

Then inequality (3.3) gives

$$G \subset G_0 \cup G_1 \cup G_2 \cup G_3$$

which guarantees that, for each $(j, k) \in \mathbb{N}^2$

$$\sum_{(m,n)\in G} a_{j,k,m,n} \le \sum_{i=0}^{3} \left(\sum_{(m,n)\in G_i} a_{j,k,m,n} \right).$$

Also, by the definition of $(\gamma_{m,n})_{(m,n)\in\mathbb{N}^2}$, we have

(3.4)
$$\frac{1}{\gamma_{j,k}} \sum_{(m,n)\in G} a_{j,k,m,n} \le \sum_{i=0}^{3} \left(\frac{1}{\alpha_{i,j,k}} \sum_{(m,n)\in G_i} a_{j,k,m,n} \right).$$

If we take the limit as $j, k \to \infty$ on both sides of inequality (3.4) and use the hypothesis (3.1), we immediately see that

$$P - \lim_{j,k \to \infty} \frac{1}{\gamma_{j,k}} \sum_{(m,n) \in G} a_{j,k,m,n},$$

which gives (3.2). So, the proof is completed. \blacksquare

We also give the next result.

THEOREM 3.6. Let $A = [a_{j,k,m,n}]$, $\{\alpha_{i,m,n}\}_{(m,n)\in\mathbb{N}^2}$ (i = 0, 1, 2, 3), $\{\gamma_{m,n}\}_{(m,n)\in\mathbb{N}^2}$, $\{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ and $\{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}$ be the same as in Theorem 3.5 with the property (2.1). If, for each i = 0, 1, 2, 3

(3.5)
$$\|\tilde{L}_{m,n}(f_i) - f_i\| = st_{(A)}^2 - o_{m,n}(\alpha_{i,m,n}) \text{ as } m, n \to \infty$$

then, for all $f \in C_{\mathcal{F}}(U)$, we have

(3.6)
$$D^*(L_{m,n}(f), f) = st_{(A)}^2 - o_{m,n}(\gamma_{m,n}) \text{ as } m, n \to \infty.$$

Proof. By (3.3), it is clear that, for any $\varepsilon > 0$,

(3.7)
$$D^{*}(L_{m,n}(f), f) \leq \varepsilon \gamma_{m,n} + B(\varepsilon) \left\{ \|\widetilde{L}_{m,n}(f_{0}) - f_{0}\| + \|\widetilde{L}_{m,n}(f_{1}) - f_{1}\| + \|\widetilde{L}_{m,n}(f_{2}) - f_{2}\| + \|\widetilde{L}_{m,n}(f_{3}) - f_{3}\| \right\}$$

holds for some $B(\varepsilon) > 0$. Now, as in the proof of Theorem 3.5, for a given $\varepsilon' > 0$, choosing $\varepsilon > 0$ such that $\varepsilon < \varepsilon'$. Now we define the following sets:

$$E := \left\{ (m,n) \in \mathbb{N}^2 : D^* \left(L_{m,n} \left(f \right), f \right) \ge \varepsilon' \gamma_{m,n} \right\},$$

$$E_0 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_0 \right) - f_0 \right\| \ge \left(\frac{\varepsilon' - \varepsilon}{4B \left(\varepsilon \right)} \right) \alpha_{0,m,n} \right\},$$

$$E_1 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_1 \right) - f_1 \right\| \ge \left(\frac{\varepsilon' - \varepsilon}{4B \left(\varepsilon \right)} \right) \alpha_{1,m,n} \right\},$$

$$E_2 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_2 \right) - f_2 \right\| \ge \left(\frac{\varepsilon' - \varepsilon}{4B \left(\varepsilon \right)} \right) \alpha_{2,m,n} \right\},$$

$$E_3 := \left\{ (m,n) \in \mathbb{N}^2 : \left\| \widetilde{L}_{m,n} \left(f_3 \right) - f_3 \right\| \ge \left(\frac{\varepsilon' - \varepsilon}{4B \left(\varepsilon \right)} \right) \alpha_{3,m,n} \right\}.$$

In this case, we claim that

$$(3.8) E \subset E_0 \cup E_1 \cup E_2 \cup E_3.$$

Indeed, otherwise, there would be an element $(m, n) \in E$ but $(m, n) \notin E_0 \cup E_1 \cup E_2 \cup E_3$. So, we get

$$(m,n) \notin E_{0} \Rightarrow \|\widetilde{L}_{m,n}(f_{0}) - f_{0}\| < \left(\frac{\varepsilon' - \varepsilon}{4B(\varepsilon)}\right) \alpha_{0,m,n},$$

$$(m,n) \notin E_{1} \Rightarrow \|\widetilde{L}_{m,n}(f_{1}) - f_{1}\| < \left(\frac{\varepsilon' - \varepsilon}{4B(\varepsilon)}\right) \alpha_{1,m,n},$$

$$(m,n) \notin E_{2} \Rightarrow \|\widetilde{L}_{m,n}(f_{2}) - f_{2}\| < \left(\frac{\varepsilon' - \varepsilon}{4B(\varepsilon)}\right) \alpha_{2,m,n},$$

$$(m,n) \notin E_{3} \Rightarrow \|\widetilde{L}_{m,n}(f_{3}) - f_{3}\| < \left(\frac{\varepsilon' - \varepsilon}{4B(\varepsilon)}\right) \alpha_{3,m,n}.$$

By the definition of $\{\gamma_{m,n}\}_{(m,n)\in\mathbb{N}^2}$, we immediately see that

(3.9)
$$B\left(\varepsilon\right)\sum_{k=0}^{3}\left\|\widetilde{L}_{m,n}\left(f_{k}\right)-f_{k}\right\|<\left(\varepsilon'-\varepsilon\right)\gamma_{m,n}.$$

Since $(m,n) \in E$, we have $D^*(L_{m,n}(f),f) \geq \varepsilon' \gamma_{m,n}$, and hence, by (3.7),

$$B\left(\varepsilon\right)\sum_{k=0}^{3}\left\|\widetilde{L}_{m,n}\left(f_{k}\right)-f_{k}\right\|\geq\left(\varepsilon'-\varepsilon\right)\gamma_{m,n},$$

which contradicts with (3.9). So, our claim (3.8) holds true. Now, it follows from (3.8) that

(3.10)
$$\sum_{(m,n)\in E} a_{j,k,m,n} \le \sum_{i=0}^{3} \left(\sum_{(m,n)\in E_i} a_{j,k,m,n} \right).$$

Letting $j, k \to \infty$ in (3.10) and using (3.5), we observe that

$$P - \lim_{j,k \to \infty} \sum_{(m,n) \in E} a_{j,k,m,n},$$

which means (3.6). The proof is completed. \blacksquare

REMARK 3.7. If $\alpha_{i,m,n} \equiv 1$ for each i = 0, 1, 2, 3, then Theorem 3.6 reduced to Theorem 2.1. Also, if A = I, the identity matrix, $\alpha_{i,m,n} \equiv 1$ for each i = 0, 1, 2, 3, then Theorem 3.6 reduced to Theorem 2.2.

References

 G. A. Anastassiou, Fuzzy approximation by fuzzy convolution type operators, Comput. Math. Appl. 48 (2004), 1369–1386.

- [2] G. A. Anastassiou, High-order fuzzy approximation by fuzzy wavelet type and neural network operators, Comput. Math. Appl. 48 (2004), 1387–1401.
- [3] G. A. Anastassiou, On basic fuzzy Korovkin theory, Stud. Univ. Babeş-Bolyai Math. 50 (2005), 3-10.
- [4] G. A. Anastassiou, Fuzzy random Korovkin theory and inequalities, Math. Inequal. Appl. 10 (2007), 63–94.
- [5] G. A. Anastassiou, O. Duman, Statistical fuzzy approximation by fuzzy positive linear operators, Comput. Math. Appl. 55 (2008), 573–580.
- [6] F. Dirik, K. Demirci, Four-dimensional matrix transformation and rate of A-statistical convergence of continuous functions, Comput. Math. Appl. 59 (2010), 2976–2981.
- [7] O. Duman, M. K. Khan, C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (2003), 689–699.
- [8] O. Duman, G. A. Anastassiou, On statistical fuzzy trigonometric Korovkin theory, J. Comput. Anal. Appl. 10 (2008), 333–344.
- [9] O. Duman, Fuzzy approximation based on statistical rates, Publ. Math. Debrecen 76 (4) (2010), 453–464.
- [10] S. G. Gal, Approximation theory in fuzzy setting, in: Handbook of Analytic-Computational Methods in Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2000, 617–666.
- [11] R. J. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986), 31–43.
- [12] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2 (1936), 29-60.
- [13] G. H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
- [14] Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231.
- [15] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (2004), 82–89.
- [16] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [17] G. M. Robison, Divergent double sequences and series, Amer. Math. Soc. Transl. 28 (1926), 50–73.
- [18] C. X. Wu, M. Ma, Embedding problem of fuzzy number space I, Fuzzy Sets and Systems 44 (1991), 33–38.

SINOP UNIVERSITY, FACULTY OF ARTS AND SCIENCES

DEPARTMENT OF MATHEMATICS

57000, SINOP, TURKEY

E-mail: kamild@sinop.edu.tr (Kamil Demirci), skarakus@sinop.edu.tr (Sevda Karakuş)

Received January 7, 2011.