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ON EXPONENTIAL DECAY FOR LINEAR

POROUS-THERMO-ELASTICITY SYSTEM

Abstract. We study the problem of exponential decaying for solutions of porous-
thermoelasticity system, when time t → ∞. For sufficiently small values of the parameter
of intensity of elasticity-porosity interactions the exponential decaying is established.

In the considerations we apply the idea of compact decoupling for the system of equa-
tions. The exponential decaying property is proved first for the corresponding decoupled
system, which is simpler to handle, then the property is derived for the original system.

1. Introduction

In this paper we continue research, which we have begun in [7], on de-
caying of solutions as t→ ∞ for the thermoelasticity system of viscoporous
media.

We consider the following system:

∂2t u = ∆eu+ b∇φ−M∇θ in Ω×R+,

∂2t φ = a∆φ− bdivu− γφ− r∂tφ+M1θ in Ω×R+,

∂tθ = d∆θ −Mdiv∂tu−M1∂tφ in Ω×R+,

u = 0, φ = 0, θ = 0 on ∂Ω×R+,

u(0) = u0, ∂tu(0) = u1, φ(0) = φ0, ∂tφ(0) = φ1, θ(0) = θ0 in Ω.

(1.1)

In the above we denoted: Ω ⊂ Rn, n = 2, 3, is open bounded set, the
regularity of ∂Ω will be precised later, ∆e = µ∆I + (µ + λ)∇div is Lame
operator, R+ := (0,∞) and coefficents a, b, d, r,M,M1, r, µ > 0 (more precise
constraints on coefficents will be introduced later).

Interpretation of u, φ, θ and mechanical justification of (1.1) is given in [4]
and was recalled in [8]. We recall that u ∈ Rn is the displacement vector for
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media occupying domain Ω, φ denotes the change of volume fraction relative
to equilibrium configuration, θ is the temperature.

In the deep papers [2], [11] the speed of energy decay for thermoelastic
system is studied (φ is excluded from system (1.1)). Some theorems proved
in these papers will be recalled in Section 3 of our paper.

Methods developed in our paper allow us only to establish the exponential
decaying of energy of solution of (1.1). In the paper [2] the possibility of
exponential as well as polynomial speed of decay of energy was shown.

The system (1.1) in one dimensional case was studied in [12] and it was
proved that when r > 0, the exponential decay takes place, and when r = 0
this effect does not occur. It is known, that for thermoelasticity system
(without φ) for n = 1 the energy decays exponentially (see references in [7]).
These facts mean that the interaction between φ and θ works against the
damping – therefore the problem stated in this paper is interesting.

To the authors knowledge there are no papers concerning the speed of
decaying of energy of thermoelastic system with boundary conditions other
than Dirichlet conditions (see [2], [11] and literature cited therein). Because
the methods we use in this paper rely on the results of [11], we consider the
Dirichlet boundary conditions as well. The problem with other boundary
conditions remains completely open.

By ∆ we shall denote the Laplace operator with domain H2(Ω)∩H1
0 (Ω),

and the range space L2(Ω). Let P := ∇
(
∆−1

)
div, where the operator

div is considered as acting: div : L2(Ω)
n
→ H−1(Ω). From [15] we know

that P is the orthogonal projection operator in
(
L2(Ω)

)n
onto the subspace{

∇ψ : ψ ∈ H1
0 (Ω)

}
; the proof that this subspace is closed in

(
L2(Ω)

)n
is

done in [5].

The decoupled system corresponding to system (1.1) will have the fol-
lowing form:

∂2t u = ∆eu+ b∇φ−
M2

d
P∂tu in Ω×R+,

∂2t φ = a∆φ− bdivu− γφ− r∂tφ in Ω×R+,

∂tθ = d∆θ −Mdiv∂tu−M1∂tφ in Ω×R+.

(1.2)

Initial and boundary conditons are of the same form as in the sys-
tem (1.1).

The motivation for introducing the decoupled system (1.2) as a pertur-
bation of (1.1) is the same as in the context of the classical system of ther-
moelasticity [10], [11], [15]. We drop the term M1θ in the second equation
in (1.1) because θ as a solution of parabolic equation has a good regularity
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properties. Then, keeping the leading terms in the third equation, we get:

∆θ =
M

d
div∂tu, in R+ × Ω,

θ = 0 on R+ × ∂Ω.

Because of the structure of P described above, this means that ∇θ = M
d
P∂tu.

By replacing ∇θ in the first equation in (1.1) by M
d
P∂tu we obtain the first

equation in (1.2).

In Section 4 we show that for appropriate domains Ω and the parameter
b > 0 sufficiently small, the energy of solutions of (1.2) decays with exponen-
tial speed when t → ∞. The proof will be based on a concept of expansion
of the solution of (1.2) into a series of functions (independent of b) multiplied
by powers of b.

Besides this, we show that solutions of system (1.2) are described by the
c0-semigroup, and we prove the estimation for ||divu(·)||L2(∂Ω×[0,t]), t > 0.
The latter result will be necessary in Section 5 for proving the compactness of
S(t) − S(t), t ∈ [0, T ], T > 0, where S(·), S(·) are c0-semigroups connected
with systems (1.1), (1.2). These results from Sections 4, 5 will be used
in Section 6 for deriving the main result of the paper - about exponential
stabilization of solutions of (1.1), provided b > 0 is sufficiently small.

2. Assumptions on coefficients, basic spaces and recalling main re-
sults from [8]

Let us denote

ǫij(u) :=
1

2
(∂jui + ∂iuj),

σij(u) := λ

n∑

l=1

ǫll(u)δij + 2µǫij(u), i, j ∈ {1, . . . , n},

σ(u) : ǫ(v) :=

n∑

i,j=1

σij(u)ǫij(v).

We remind that (∆eu)i =
∑

j=1 ∂jσij(u), i ∈ {1, . . . , n}.

Assumption 2.1. We require λ + µ > 0, (λ + µ)γ > b2 when n = 2 and
3λ+ 2µ > 0, (3λ+ 2µ)γ > 3b2 when n = 3.

It was proved in [7] that

Proposition 2.2. If b, γ, ν, λ satisfy Assumption 2.1 then there exist con-
stants c1, c2 > 0 such that
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σ(u) : ǫ(u) ≥ c1

n∑

i,j=1

ǫ2ij(u),

σ(u) : ǫ(u) + 2bφdivu+ γφ2 ≥ c2

(
φ2 +

n∑

i,j=1

ǫ2ij(u)
)
.

We define spaces V = H1
0 (Ω)

n×H1
0 (Ω), H = V ×

(
L2(Ω)

)n+1
×L2(Ω).

It was proved in [7] that

Proposition 2.3. The bilinear form
〈(

u1

φ1

)
,

(
u2

φ2

)〉

V

:=
�

Ω

[
σ(u1) : ǫ(u2) + a∇φ1 · ∇φ2 + γφ1φ2+

+bφ1divv2 + bφ2divu1
]

is the scalar product in V and V is the Hilbert space.

Let ξi :=
(
ui, φi, vi, ψi, θi

)T
∈ H, i = 1, 2. The bilinear form

(
ξ1, ξ2

)
:=

〈(
u1

φ1

)
,

(
u2

φ2

)〉

V

+
�

Ω

[
v1 · v2 + ψ1ψ2 + θ1θ2

]

is the inner product in H and H is the Hilbert space.
The norm generated by this scalar product will be denoted by || · ||.

We shall also use the dense subspace X ⊂ H, X :=
(
H2(Ω) ∩H1

0 (Ω)
)n

×(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω)
n
×H1

0 (Ω)×
(
H2(Ω) ∩H1

0 (Ω)
)
.

We rewrite (1.1) as the ordinary differential equation in H:

dξ

dt
= Lξ, t > 0

ξ(0) = ξ0,

(2.1)

where ξ = (u, φ, v, ψ, θ) ∈ H, v ≡ ∂tu, ψ ≡ ∂tφ, ξ0 = (u0, φ0, u1, φ1, θ0) ∈ H,
and

L :=




0 , 0 , I , 0 , 0

0 , 0 , 0 , I , 0

∆e , b∇ , 0 , 0 , −M∇

−bdiv , (a∆− γI) , 0 , −rI , M1I

0 , 0 , −Mdiv , −M1I , d∆



,

with domain X. We see that L : X → H.
It was proved in [8] (Theorem 2.7):

Theorem 2.4. Let the coefficients satisfy Assumption 2.1, ∂Ω has regular-
ity of class C2.
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Then on H the operator L generates the c0-semigroup of contractions
S(t), t ≥ 0. Moreover, when (u(t), φ(t), v(t), ψ(t), θ(t))T := S(t)ξ0 then
v(t) = ∂tu(t), ψ(t) = ∂tφ(t), t > 0, and (u(t), φ(t), θ(t)), t ≥ 0 for ξ0 ∈ X

is the unique strong solution of (1.1), and for ξ0 ∈ H is the unique weak
solution of (1.1).

We recall from [8] that S(t)ξ0 ∈ H when ξ0 ∈ H, S(t)ξ0 ∈ X when
ξ0 ∈ X, S(t)ξ0 ∈ D(Lk) when ξ0 ∈ D(Lk), k ∈ N , t > 0.

For strong and weak solutions their energy is given by the formula
(see [8]):

E(t) :=
1

2
||S(t)ξ0||2 ≡

1

2
|| (u(t), φ(t), ∂tu(t), ∂tφ(t), θ(t)) ||

2.

Because of contractivity property of the semigroup S we have E(t2) ≤ E(t1)
when 0 ≤ t1 ≤ t2.

3. Some necessary facts proved in papers of Lebeau–Zuazua [11]
and Burq–Lebeau [2]

The problem of speed of vanishing of energy when t→ ∞ for the system

∂2t u = ∆eu− α∇θ in Ω×R+,

∂tθ = ∆θ − βdiv∂tu in Ω×R+,

u = 0, θ = 0 on ∂Ω×R+,

u(0) = u0, ∂tu(0) = u1, θ(0) = θ0 in Ω,

(3.1)

was analyzed in papers [2], [11]. The coefficients µ, λ of operator ∆e in (3.1)
must satisfy conditions µ > 0, λ + 2µ > 0, λ 6= −µ, and the coefficients
α, β > 0.

It is easily seen that µ, λ satisfying the Assumption 2.1 will also satisfy
the above assumptions.

The decoupled system corresponding to (3.1) was considered in [11]:

∂2t u = ∆eu− αβP (∂tu)) in Ω×R+,

∂tθ = ∆θ − βdiv∂tθ in Ω×R+,

u = 0, θ = 0 on ∂Ω×R+,

u(0) = u0, ∂tu(0) = u1, θ(0) = θ0 in Ω.

(3.2)

It was proved in [11] that solutions of systems (3.1), (3.2) are described
by appropriate c0-semigroups. Energy of solutions of (3.1) is defined by the
formula:

E0(t) =
1

2

�

Ω

[
|∂tu(x, t)|

2 + σ (u(x, t)) : ǫ (u(x, t)) +
α

β
θ(x, t)2

]
dx.(3.3)



852 P. Głowiński, A. Łada

The energy of solutions (u, θ) of (3.2) is defined by the same formula,
with u, θ replaced by u, θ, and the energy of

(
u, θ
)

we shall denote by E0(·).

Definition 3.1. We say that system (3.1) or system (3.2) has the property
of uniform decaying of energy, when there exist constants c > 0, ω > 0 such
that

E0(t) ≤ ce−ωtE0(0) for every t > 0,

(E0(t) ≤ ce−ωtE0(0) for every t > 0).

In the above

E(0)0 =
1

2

�

Ω

[
|u1(x)|2 + σ

(
u0(x)

)
: ǫ
(
u0(x)

)
+
α

β
θ0(x)2

]
dx,

E0(0) = E0(0).

Condition (C). We say that open, bounded set Ω ⊂ Rn satisfies Condi-
tion (C) if for every s > 0 the system:

−∆v = sv in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω,

has in
(
H1

0 (Ω)
)n

the unique solution v = 0 ∈ Rn.

The information concerning domains satifying Condition (C) and the
references on this subject can be found in [11].

Let ϕ be the solution of the system

∂2t ϕ = ∆eϕ in Ω×R+,

ϕ = 0 on ∂Ω×R+,

ϕ(0) = ϕ0, ∂tϕ(0) = ϕ1 in Ω.

(3.4)

In the paper [11] (see Theorem 1.1 and its proof) it was proved:

Theorem 3.2. Assume n = 2 or n = 3. In the class of domains Ω
satisying Condition (C), the uniform decaying of energies E(·), E(·) hold if
and only if there exist T > 0 and C > 0 such that

(3.5) ||ϕ0||2(L2(Ω))n + ||ϕ1||2(H−1(Ω))n ≤ C

T�

0

||divϕ(t)||2H−1(Ω),

holds for every solution of the system (3.4).

The characterization of domains Ω for which the inequality (3.5) holds
was done in papers [11] when n = 2, and [2] when n = 3. In the case n = 2
it is required that the transversal bicharacteristic rays behave appropriately
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when their space component meet ∂Ω. These rays are the trajectories of
Hamiltionian flow corresponding to principal symbol of wave operator de-
scribing transversal elasticity waves, broken appropriately when their space
components meet ∂Ω.

When n = 3 the condition on Ω also concerns every tranversal ray when
its space component meet ∂Ω. But in this case the condition implies the
restriction on propagation of wave front of polarization for every solution of
the system (3.4).

In both works, mentioned above, the methods of microlocal analysis are
applied. In the second work, also the microlocal defect measure of compact-
ness is used and it involves the C∞ regularity of ∂Ω. Moreover, in both
works, the considerations are proved under the assumption λ+ 2µ > µ. Let
us remark, that when µ, λ satisfy conditions of 2.1 and λ ∈

(
−2

3µ,−
µ
3

)
∪R+,

then λ+ 2µ > µ holds.

4. Analysis of system (1.2)

In this section we assume C2 regularity of ∂Ω. We are going to make
preparations to use the linear semigroups theory to analyze system (1.2).

We rewrite system (1.2) in the form of linear equation in H:

(4.0)
dξ

dt
= Lξ

where ξ :=
(
u, φ, v, ψ, θ

)T
,

L :=




0 , 0 , I , 0 , 0

0 , 0 , 0 , I , 0

∆e , b∇ , −M2

d
P , 0 , 0

−bdiv , (a∆− γI) , 0 , −rI , 0

0 , 0 , −Mdiv , −M1I , d∆



.

We have L : X → H and it is easy to see that L is a closed operator.

In the further considerations we shall need the following proposition:

Proposition 4.1. For each k > 0 the operator kI − L : X → H is
surjective.

Proof. For the purpose of the proof we introduce the following objects. The

Hilbert space H1 := V ×
(
L2(Ω)

)n+1
, subjected with the inner product

(
ζ1, ζ2

)
0
:=

〈(
u1

φ1

)
,

(
u2

φ2

)〉

V

+
�

Ω

(
v1v2 + ψ1ψ2

)
,
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where ζi ∈ H1 have components ζi ≡ (ui, φi, vi, ψi), i = 1, 2, and || · ||0 will
denote the norm in H1 generated by this inner product.

Then we define the operator

L1 :=




0 , 0 , I , 0

0 , 0 , 0 , I

∆e , b∇ , −M2

d
P , 0

−bdiv , (a∆− γI) , 0 , −rI



,

whose domain is equal X1 :=
(
H2(Ω) ∩H1

0 (Ω)
)n

×
(
H2(Ω) ∩H1

0 (Ω)
)
×

H1
0 (Ω)

n
×H1

0 (Ω).

It is easy to observe that X1 is a dense linear subspace of H1, L1 : X1

→ H1. For ξ ≡ (ζ, θ) ∈ X we have Lξ = (L1ζ, d∆θ −Mdivv −M1ψ)
T ,

where v, ψ are suitable components of ζ, and moreover ||ξ||2 = ||ζ||20+
	
Ω θ

2.

The idea of further considerations is the following: first we prove max-
imal dissipativity of L1, which allows us to deduce immediately (see [6])
the surjectivity of kI − L1. Then in a simple way we obtain the assertion.
Therefore we are going to prove maximal dissipativity of L1.

After calculations we achieve

(L1ζ, ζ)0 = −r
�

Ω

ψ2 −
M2

d

�

Ω

|Pv|2 ≤ 0, ζ ∈ X1,

which gives the dissipativity of L1. To proceed on we prove first that
ker(L1) = {0}, and second that L1 : X1 → H1 is surjective.

So, let L1ζ = 0, ζ ∈ X1. Then v = 0, ψ = 0 and (u, φ)T should satisfy

E

(
u

φ

)
=

(
0

0

)
, where

E :=

(
−∆e , −b∇

bdiv , −(a∆− γI)

)
, E : D(E) →

(
L2(Ω)

)n
× L2(Ω),

D(E) :=
(
H2(Ω) ∩H1

0 (Ω)
)n

×
(
H2(Ω) ∩H1

0 (Ω)
)
.

Hence for the solution (u, φ)T ∈ D(E) of this system we will have

0 =

(
E

(
u

φ

)
,

(
u

φ

))

L2

=

∥∥∥∥

(
u

φ

)∥∥∥∥
2

V

,

which gives u = 0, φ = 0, and the injectivity of L1.

Then let g ≡ (g1, g2, g3, g4)T ∈ H1 and consider the system L1ζ = g.

From this equation we immediately get that v = g1, ψ = g2 and (u, φ)T

should solve the system
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(4.1) E

(
u

φ

)
= −

(
g3 + M2

d
Pg1

g4 + rg2

)
=: g̃ ∈

(
L2(Ω)

)n
× L2(Ω).

From Propostion 2.2, Korn inequality and then Poincare inequality we
can achieve

∥∥∥∥

(
u

φ

)∥∥∥∥
2

V

≥ c

∥∥∥∥

(
u

φ

)∥∥∥∥
2

L2

, for each (u, φ) ∈ V,

c > 0 is constant.

This immediately yields
(
E

(
u

φ

)
,

(
u

φ

))

L2

≥ c

∥∥∥∥

(
u

φ

)∥∥∥∥
2

L2

, (u, φ)T ∈ V.

Hence, we can apply the Lax–Milgram theory and obtain the existence
of the weak solution (u, φ) ∈ V for the equation (4.1). Then, we apply
the theory of regularity of weak solutions for elliptic systems [13] (Theorem
4.18), and claim that the weak solution (u, φ) ∈ D(E). Summarizing, the
system L1ζ = g has solution ζ ∈ X1, which gives surjectivity of L1.

Therefore, we can consider L−1
1 : H1 → X1. We prove that L−1

1 treated as
the operator from H1 into H1 is continuous. It is equivalent with establishing
inequality ||ζ||0 ≤ c1||g||0, when g ∈ H1 and L1ζ = g, c1 > 0 is a constant
independent of g.

Taking into account the observations made above, for components
(
u
φ

)

of ζ we carry the following estimations
∥∥∥∥

(
u

φ

)∥∥∥∥
2

V

=

(
E

(
u

φ

)
,

(
u

φ

))

L2

≤

∣∣∣∣

(
g̃,

(
u

φ

))

L2

∣∣∣∣

≤ ||g̃||L2

∥∥∥∥

(
u

φ

)∥∥∥∥
L2

≤ c−
1

2 ||g̃||L2

∥∥∥∥

(
u

φ

)∥∥∥∥
V

.

Because

||g̃||L2 ≤ c−
1

2

∥∥∥∥

(
g1

g2

)∥∥∥∥
V

+max

{
M2

d
, r

}∥∥∥∥

(
g3

g4

)∥∥∥∥
L2

,

we have showed
∥∥∥∥

(
u

φ

)∥∥∥∥
V

≤ c2

(∥∥∥∥

(
g1

g2

)∥∥∥∥
V

+

∥∥∥∥

(
g3

g4

)∥∥∥∥
L

)
,

with constant c2 > 0 which can be easily calculated.
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For components
(
v
ψ

)
of ζ we derive very simply that

∥∥∥∥

(
v

ψ

)∥∥∥∥
L2

=

∥∥∥∥

(
g1

g2

)∥∥∥∥
L2

≤ c−
1

2

∥∥∥∥

(
g1

g2

)∥∥∥∥
V

.

That proves the desired inequality. The norm of L−1 : H1 → H1 we denote
by ||L−1||.

Let λ ∈
(
0, 1

||L−1

1
||

)
, f ∈ H1 and consider the system (λI − L1)ζ = f .

We write this equation in the equivalent form (I − λL−1
1 )ζ = −L−1

1 f .
Because λ||L−1

1 || < 1, the solution of the latter equation obeys the form
ζ = −L−1

1 (
∑∞

k=0

(
λL−1

1 )kf
)
, and hence ζ belongs to X1.

The proof of maximal dissipativity is finished and we can claim [6] that
for each k > 0, the operator kI−L1 : X1 → H1 is surjective. Now let k > 0,
f ∈ H and consider the system

(
kI − L

)
ξ = f . We can write this system

in the form

(kI − L1) ζ = f ′,

kθ − d∇θ = f5 −Mdivv −M1ψ,

where ξ ≡ (ζ, θ), ζ ≡ (u, φ, v, ψ), f ≡ (f ′, f5), f ′ ∈ H1, f
5 ∈ L2(Ω).

Because for each k > 0, g ∈ L2(Ω), the equation kθ − d∇θ = g has solution
θ ∈ H2(Ω) ∩H1

0 (Ω), we can finish the proof.

Theorem 4.2. Operator L is the generator of c0-semigroup in H, which
we denote by S(t),t ≥ 0.

Proof. After elementary calculations we obtain that for ξ ∈ X
(
Lξ, ξ

)
= (L1ζ, ζ)0 +

(
d∆θ −Mdivv −M1ψ, θ

)
L2 =

= −r
�

Ω

ψ
2
−
M2

d

�

Ω

|Pv|2 − d
�

Ω

|∇θ|2 −
�

Ω

(
Mdivv +M1ψ

)
θ ≤

≤ −d
�

Ω

|∇θ|2 +
1

2
M1

(
||ψ||2L2(Ω) + ||θ||2L2(Ω)

)
+M

�

Ω

v · ∇θ ≤

≤
M

ǫ
||v||2L2(Ω) +

1

2
M1

(
||ψ||2L2(Ω) + ||θ||2L2(Ω)

)
,

when ǫ > 0 is sufficiently small.
Therefore, we showed that there exists constant c > 0 such that the

inequality (
Lξ, ξ

)
≤ c||ξ||2, ξ ∈ X

holds.
From that estimation we derive that for each k > c,

((
kI − L

)
ξ, ξ
)
≥

(k − c) ||ξ||2, ξ ∈ X. From that we can deduce injectivity of
(
kI − L

)
, and
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from the Proposition 4.1 the existence of the resolvent operator R(k;L) :
H → X when k > c, and the estimation

||R
(
k;L

)
||H→H ≤ (k − c)−1 .

Using Theorem 5.3, Chapter 1 of [14] we obtain that L generates c0-semi-
group in H.

From classical theorems of semigroup theory we also obtain

Corollary 4.3. If ξ0 ∈ X then ξ(t) := S(t)ξ0 ∈ X, t ≥ 0, is the solution
of equation (4.0) satisfying initial condition ξ(0) = ξ0. Moreover (similarly

as in [8]) if we define
(
u(t), φ(t), v(t), ψ(t), θ(t)

)T
≡ ξ(t) then ∂tu(t) = v(t),

∂tφ(t) = ψ(t) and
(
u(·), φ(·), θ(·)

)
is the strong solution of initial-boundary

problem (1.2) when ξ0 ∈ X and the weak solution when ξ0 ∈ H.

The energy E(t) of the solution ξ(t) ≡ S(t)ξ0, t > 0 to the system (4.0)
will be defined by E(t) := 1

2 ||ξ(t)||
2.

For the fixed value of coefficient b > 0 in the system (1.2) we denote the
corresponding c0-semigroup by Sb(·).

Now we formulate the main result of this section.

Theorem 4.4. Let domain Ω satisfy the Condition (C) and guarantee that
inequality (3.5) holds. Then exists b0 > 0 such, that for every b ∈ (0, b0) the
semigroup Sb(t) has the property of uniform decaying.

Proof. An approximation argument shows that we can assume that ξ0 ∈ X.

Let ξ(t) := Sb(t)ξ
0; t > 0 be a solution of (4.0). We look for ξ(t) having

the form

ξ(t) =
∞∑

l=0

blξl(t); ξl(t) ≡ (ul(t), φl(t), ∂tul(t), ∂tφl(t), θl(t)) , l ∈ {0}∪N.

After the formal substitution into the equation (4.0) we derive equations
for (ul, φl, θl), l ∈ {0} ∪N .

For (u0, φ0, θ0) we obtain

∂2t u0 = ∆eu0 −
M2

d
P (∂tu0) in Ω×R+,

∂tθ0 = d∆θ0 −Mdiv∂tv0 −M1∂tφ0 in Ω×R+,

(4.2)

∂2t φ0 = a∆φ0 − γφ0 − r∂tφ0 in Ω×R+,(4.3)

u0(0) = u0, ∂tu0(0) = u1, φ0(0) = φ0, ∂tφ0(0) = φ1, θ0(0) = θ0 in Ω, where
(u0, φ0, u1, φ1, θ0) ≡ ξ0, u0 = 0, φ0 = 0, θ0 = 0 on ∂Ω×R+.
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For k ∈ {0} ∪N , (uk+1, φk+1, θk+1) will be the solution of problem:

∂2t uk+1 = ∆euk+1 −
M2

d
P (∂tuk+1) +∇φk in Ω×R+,

∂tθk+1 = d∆θk+1 −Mdiv∂tvk+1 −M1∂tφk+1 in Ω×R+,

(4.4)

∂2t φk+1 = a∆φk+1 − γφk+1 − r∂tφk+1 − divuk in Ω×R+,(4.5)

uk+1(0) = 0, ∂tuk+1(0) = 0, φk+1(0) = 0, ∂tφk+1(0) = 0, θk+1(0) = 0 in Ω,
uk+1 = 0, φk+1 = 0, θk+1 = 0 on ∂Ω×R+.

For the clarity of the further considerations we introduce simplifying
notation and make useful observations.

We define the norms

||(φ, ψ)||1 :=
( �

Ω

(
|∇φ|2 + rφ2 + ψ2

)) 1

2

, (φ, ψ) ∈ H1
0 (Ω)× L2(Ω),

||(u, v, θ)||2 :=
( �

Ω

(
σ(u) : ǫ(u) + |v|2 + θ2

)) 1

2

,

(u, v, θ) ∈ H1
0 (Ω)

n
× L2(Ω)

n
× L2(Ω).

From the second inequality in Proposition 2.2 one can derive

(4.6) ||(u, v, θ)||22 + |(φ, ψ)||21 ≤ c||ξ||2,

where ξ ≡ (u, φ, v, ψ, θ) ∈ H, c > 0 is a constant.
It can be also noticed that

(4.7) ||ξ|| ≤ c0(||(u, v, θ)||2 + |(φ, ψ)||1),

c0 is a constant.
We shall denote

hk(t) := ||(φk(t), ∂tφk(t))||1, gk(t) := ||(uk(t), ∂tuk(t), θk(t))||2, k ∈ {0}∪N.

We are ready to begin the essential considerations of this proof.
It is well known that solutions of the considered initial-boundary value

problem for equation (4.3) is described by c0-semigroup of contractions,
which we denote Γ(t), t > 0. Hence this solution can be written as

(φ0(t), ∂tφ0(t)) = Γ(t)
(
φ0, φ1

)
.

This can be accomplished clasically by way of the Fourier method.
One can show that there exist constants c1, q > 0 such that

(4.8) h20(t) ≤ c1e
−qt||

(
φ0, φ1

)
||21, t ≥ 0.

This estimation can be obtained by finding the solution of equation (4.3) by
way of the Fourier method.
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We rewrite the system (4.2) in the following form:

(4.9)
d

dt




u0

∂tu0

θ0


 =W




u0

∂tu0

θ0


+




0

0

−M1∂tφ0


,

where we treat −M∂tφ0 as the known function and

W :=




0 , I , 0

∆e , −M
d2
P , 0

0 , −Mdiv , d∆


.

In [11] it is proved that W is the generator of c0-semigroup SW (t), t ≥ 0
in space

(
H1

0 (Ω)
)n

× L2(Ω)
n
× L2(Ω). The domain of W is equal to

(H2(Ω) ∩H1
0 (Ω))

n × (H1
0 (Ω))

n × (H2(Ω) ∩H1
0 (Ω)).

The solution of system (4.9) can be written in the form

(4.10)




u0(t)

∂tu0(t)

θ0(t)


 = SW (t)



u0

u1

θ0


+

t�

0

SW (t− s)




0

0

−M1∂tφ0(s)


 ds.

For the validity of this formula one can consult Corollary 2.20 and Corollary
2.11 from Chapter 4 of [14].

From [11] (see Theorem 3.2 in this paper) we obtain that

(4.11)

∥∥∥∥∥∥∥∥


SW (t)



u

v

θ







T
∥∥∥∥∥∥∥∥

2

2

≤ c2e
−q1t||(u, v, θ)||22, t ≥ 0,

where c1, q1 > 0 are constant.
Now using (4.10) and (4.11) we obtain

g0(t) ≤ c2e
−

q1
2
t||
(
u0, u1, θ0

)
||2(4.12)

+ c2

t�

0

e−
q1
2
(t−s)|| (0, 0,−M1∂tφ0(s)) ||2ds.

Because || (0, 0,−M1∂tφ0(s)) ||2 ≤ M1|| (φ0(s), ∂tφ0(s)) ||1, from (4.12) and
(4.8) we get

g0(t) ≤ c2e
−

q1
2
t||
(
u0, u1, θ0

)
||2(4.13)

+ c2M1||
(
φ0, φ1

)
||1

t�

0

e−
q1
2
(t−s)e−

q

2
sds.
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To simplify further estimations we can assume that from here

(4.14) 0 < q < q1,

because if the estimation (4.8) is satified for larger q it is also satisfied for
smaller values of q. Taking into account this assumption we get from (4.13):

(4.15) g0(t) ≤ c3e
− q

2
t
[
||
(
u0, u1, θ0

)
||+ ||

(
φ0, φ1

)
||1
]
,

which according to (4.6) gives

(4.16) g0(t)
2 ≤ 2c23ce

−qt||ξ0||2.

From estimations (4.8), (4.16) and (4.7) we deduce

(4.17) ||ξ0(t)|| ≤ c4e
− q

2
t||ξ0||.

For the solution of the initial-boundary problem (4.5) we can write:

(φk+1(t), ∂tφk+1(t)) =
t�

0

Γ(t− s) (0,−divuk(s)) ds.

Using the same type of argumentation as for deriving (4.8) we get:

hk+1(t) ≤ c1

t�

0

e−
q

2
(t−s)|| (0, divuk(s)) ||1ds.

Since || (0, divuk(s)) ||1 ≤ c5|| (uk(s), ∂tuk(s), θk(s)) ||2, this gives

(4.18) hk+1(t) ≤ c6

t�

0

e−
q

2
(t−s)gk(s)ds.

We can write the solution of the system (4.4) in the form

(uk+1, ∂tuk+1(t), θk+1(t))
T =

t�

0

SW (t− s)




0

∇φk(s)

−M1∂tφk+1(s)


 ds.

According to (4.11) this gives

(4.19) gk+1(t) ≤ c

t�

0

e−
q1
2
(t−s)|| (0,∇φk(s),−M1∂tφk+1(s)) ||2ds.

Notice that

|| (0,∇φk(s),−M1∂tφk+1(s)) ||2 ≤M1|| (φk+1(s), ∂tφk+1(s)) ||1

+|| (φk(s), ∂tφk(s)) ||1.
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We use this inequality to the right hand side in (4.19) and then apply (4.18).
After calculations and making use of (4.14) we get

gk+1(t) ≤ c7

t�

0

e−
q

2
(t−s) [gk(t) + hk(t)] ds.(4.20)

After collecting together (4.18), (4.20) and making use of (4.7) we get

||ξk+1|| ≤ c0(c6 + c7)
t�

0

e
q

2
(t−s) (hk(s) + gk(s)) ds.

From (4.6) this gives

(4.21) ||ξk+1(t) ≤ c8

t�

0

e
q

2
(t−s)||ξk(s)||ds, k ∈ {0} ∪N.

From (4.17) and (4.21), by making use of the succesive iterations we
achieve

||ξl(t)|| ≤ c4c
l
8

tl

l!
e−

q

4
t||ξ

0
||, l ∈ {0} ∪N.

We notice that when 0 < b < q
4c8

the sequence
∑∞

l=0 b
lξl(t) is convergent

in C ([0, τ ];H) for every τ > 0. Let us define ξ
n
(t) :=

∑n
l=0 b

lξl(t), n ∈ N ,

and b ∈ (0, q
4c8

). We notice that ξ
n

is the solution of the problem

dξ
n

dt
= Lξ

n
+ hn(t), ξ

n
(0) = ξ

0
,

where hn(t) := (0, bn∇φn(t), 0,−b
ndivun(t), 0)

T .

Therefore, we can write

ξ
n
(t) = S(t)ξ

0
+

t�

0

S(t− s)hn(s)ds.

On the other hand, denoting ξ(t) :=
∑∞

l=0 b
lξl(t), we obtain

||ξ(t)− S(t)ξ
0
|| =

∥∥∥
∞∑

l=n+1

blξl(t) +
t�

0

S(t− s)hn(s)ds
∥∥∥,

for every n ∈ N .

We observe that ||hn(t)|| ≤ bn||ξn(t)|| and this implies

lim
n→∞

t�

0

S(t− s)hn(s)ds = 0 in C ([0, τ ];H) for every τ > 0.
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It means that S(t)ξ0 = ξ(t). This allows us to claim

||S(t)ξ0|| ≤
∞∑

l=0

bl||ξl(t)|| ≤ c4e
−ωt||ξ0||,

where ω := q
4 − c8b. The proof is finished.

Proposition 4.5. Let ξ0 ∈ H,
(
u(t), φ(t), ∂tu(t), ∂tφ(t), θ(t)

)T
≡ Sb(t)ξ

0,
b ∈ (0, b0), where b0 was defined in Theorem 4.4. There exists constant c > 0,
such that for every t > 0

||divu(·)||2L2(∂Ω×[0,t]) ≤ c(1 + t)||ξ0||2.

Proof. To simplify notation we denote Gt := Ω × [0, t], Σt := ∂Ω × [0, t]
and σ(u)ν denotes vector with coordinates (σ(u)ν)i :=

∑n
j=1 σij(u)νj , i =

1, . . . , n, where ν is an external normal vector to ∂Ω.

We begin with proving the estimation

(4.22) ||σ(u)ν||L2(Σt) ≤ c1(1 + t)||ξ0||2; t > 0,

where c1 > 0 is constant. Proof of this estimation will go along the schema
given in [1]. An approximation argument shows that we can assume that
initial data ξ0 belongs to C∞

0 (Ω) class.

Let h ∈
(
W 1,∞(Ω)

)n
, the equation for u from the system (1.2) we mul-

tiply by (∇u)h and integrate on Gt; the coordinates of vector (∇u)h are
((∇u)h)i :=

∑n
m=1 hm∂mui, i = 1, . . . , u. We obtain

(4.23) 0 =
�

Gt

(∇u)h ·

(
∂2t u−∆e − b∇φ+

M2

d
P (∂tu)

)
= S0 + S1 + S2,

where

S0 :=
�

Gt

(∇u)h ·
(
∂2t u−∆e

)
,

S1 := −b
�

Gt

(∇u)h · ∇φ,

S2 :=
M2

d

�

Gt

(∇u)h · P (∂tu).

After typical estimations, using Korn inequality, we obtain

|S1| ≤ c2

[
||∇φ||2L2(Gt)

+
�

Gt

σ(u) : ǫ(u)
]
,

|S2| ≤ c3

[
||∂tu||

2
L2(Gt)

+
�

Gt

σ(u) : ǫ(u)
]
.
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To estimate S0 we take the same approach as in [1]. We write S0 = It + S1
0 ,

where the formula for S1
0 is given in [1] and It :=

	
Σt

(∇u)h · σ(u)ν. In [1]
the following estimation was derived

|S1
0 | ≤ c4

[
||u1||2L2(Ω) +

�

Ω

σ(u0) : ǫ(u0) + ||∂tu(t)||
2
L2(Ω)

+
�

Ω

σ(u(t)) : ǫ(u(t)) + ||∂tu||
2
L2(Gt)

+
�

Gt

σ(u) : ǫ(u)
]
.

Now, we take h such that h = ν on ∂Ω. For such h it was computed
in [1], that

It =
�

Σt

σ(u) : ǫ(u).

From (4.23) we can estimate

|It| ≤ |S1
0 |+ |S1|+ |S2|.

Taking into account estimations given above for S1
0 , S1, S2 and then using

second inequality in Proposition 2.2, we obtain

|It| ≤ c5

[
||ξ0||2 + ||S(t)ξ0||2 +

t�

0

||S(r)ξ0||2dr
]

≤ c6(1 + t)||ξ0||2.

The last inequality is a consequence of decaying property of semigroup
S(·) proved in Theorem 4.4. Because

|σ(u)ν| ≤ c7

n∑

i,j=1

ǫ2ij(u) ≤ c8σ(u) : ǫ(u),

the inequality (4.22) is proved.

In [3], it was proved that on ∂Ω divu = ((∇u) ν) · ν. Also in [3], the
existence of continuous, reversible matrix B on ∂Ω such that B ((∇u) ν) =
σ(u)ν, was proved. From this we obtain

divu|∂Ω = ν ·B−1 (σ(u) · ν) .

By (4.22) this gives the inequality from the assertion of the Proposition.

5. Compactness of the difference S(t)− S(t)

In this section we prove the following theorem:

Theorem 5.1. For every τ > 0, operator S(·) − S(·) : H → C ([0, τ ], H)
is compact.



864 P. Głowiński, A. Łada

Proof. We denote

(u(t), φ(t), ∂tu(t), ∂tφ(t), θ(t)) := S(t)ξ0,
(
u(t), φ(t), ∂tu(t), ∂tφ(t), θ(t)

)
:= S(t)ξ0,

ξ̃(t) ≡
(
ũ(t), φ̃(t), ∂tũ(t), ∂tφ̃(t), θ̃(t)

)
:=
(
S(t)− S(t)

)
ξ0,

where ξ0 ≡
(
u0, φ0, u1, φ1, θ0

)
∈ H.

For ξ0 ∈ X we check that ξ̃(·) ∈ C(R+;X)∩C1(R+;H) and satisfies the
equation

dξ̃

dt
= Lξ̃ + f(t, ξ0), t > 0,

ξ̃(0) = 0,

(5.1)

where

f(t, ξ0) :=

(
0, 0,

M2

d
Pv(t)−M∇θ(t),M1θ(t), 0

)
, v(t) = ∂tu(t), ξ(0) = ξ0.

Hence, when ξ0 ∈ X, we can write (see [14], Corollary 2.2)

(5.2) ξ̃(t) =
t�

0

S(t− s)f(s; ξ0)ds.

We write f(·) = f1(·) + f2(·), where f1(·) =
(
0, 0, 0,M1θ(·), 0

)T
, f2(·) =(

0, 0, M
2

d
Pv(·)−M∇θ(·), 0, 0

)
. It is evident that f1 ∈ L1 ([0, τ ];H) for each

τ > 0, even when ξ0 ∈ H.
From equation for θ in (1.2), after manipulations we get

(−∆)
s

2 θ(t) = (−∆)
s

2Q(t)θ0(5.3)

−M

t�

0

(−∆)
1+s

2 Q(t− t1)(−∆)−
1

2divv(t1)dt1

−M1

t�

0

(−∆)
s

2Q(t− t1)ψ(t1)dt1,

where s ∈ (0, 1), Q(·) denotes analytical semigroup in L2(Ω) generated
by d∆.

From (5.3) w get the formula for θ(·) when we put s = 0.
If we take into account the estimation

(5.4) ||(−∆)ωQ(t)||L2(Ω)→L2(Ω) ≤ ct−ω, t > 0, ω ∈ (0, 1),

and the boundedness of operator (−∆)−
1

2div in L2(Ω), we claim that ∇θ(·) ∈
L1
(
[0, τ ], L2(Ω)

)
; hence f2 ∈ L1 ([0, τ ];H), τ > 0.

We have proved that (5.2) makes sense when ξ0 ∈ H.
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Let O ⊂ H be a bounded set. The assertion of the theorem will be
proved if we show that the sets

Yi(τ, O) :=
{t�

0

S(t− s)fi(s, ξ
0), 0 ≤ t ≤ τ : ξ0

}
,

are precompact in C ([0, τ ];H), i = 1, 2, τ > 0.

Our further considerations will be supported by the following lemma
([10], Lemma 6):

Lemma 5.2. Let E(t), t ≥ 0 be a c0-semigroup in a Banach space X and
{h(s;α), 0 ≤ s ≤ T : α ∈ A} ⊂ L1([0, T ];X).

The set {
	t
0E(t − s)h(s;α)ds, 0 ≤ t ≤ T : α ∈ A} is precompact in

C([0, T ];X) if either

(1) {h(s;α) : α ∈ A, 0 ≤ s ≤ T} is a precompact set of X,
(2) for any ǫ > 0 there is δ(ǫ) > 0 and a compact set K(ǫ) ⊂ X such that	δ

0 ||h(s;α)||Xds ≤ ǫ, α ∈ A, and h(s;α) ∈ K(ǫ) for δ ≤ s ≤ T , α ∈ A.

First we prove that Y1(τ, O) is precompact in C ([0, τ ];H), τ > 0. We
show this, if we prove that the setQ1 :=

{
θ(·; ξ0) : ξ0 ∈ O

}
satisfies condition

(2) in Lemma 5.2 – when X ≡ L2(Ω), T ≡ τ . So, let us put s = 0 in (5.3).
We observe that Q1 is bounded in C

(
[0, τ ];L2(Ω)

)
, which yields that the

first part of the condition 2 is satisfied. Then, from (5.3), (5.4) we can infer
that Q1 is bounded in L1 ([0, τ ];Hs(Ω)), s ∈ (0, 1). Because of compactness
of the embedding Hs(Ω) ⊂ L2(Ω), s > 0, we conclude that the second part of
the condition 2 is satisfied. The desired assertion about Y1(τ, O) was proved.

Next we go to prove that Y2(τ, 0) is precompact in C ([0, τ ];H), τ > 0.

We obtain this if we show that the set Q2 =
{
M2

d
P (∂tu(·)) − M∇θ(·) :

ξ0 ∈ O
}

also satisfies condition 2 of Lemma 5.2 - when X ≡ L2(Ω), T = τ .

The first topic in our considerations will be to prove that for some δ ∈
(0, 1), Q2 is bounded in L1

(
[0, τ ];

(
Hδ(Ω)

)n)
. This will be accomplished in

the same way as it was done in [15] (see Appendix).

First, we remark that

M2

d
P (∂tv)−M∇θ = ∇w1 +∇w2,

where w1 and w2 are solutions of the following problems:

∂tw1 = d∆w1 in Ω× (0, τ),

w1 = 0 on ∂Ω× (0, τ),

w1(0) = −

[
M2

d
(−∆)−1divu1 +Mθ0

]
in Ω,
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∂tw2 = d∆w2 −
M2

d
(−∆)−1div

(
∂2t u

)
in Ω× (0, τ),

w2 = 0 on ∂Ω× (0, τ),

w2(0) = 0 in Ω.

In the above, we have taken into account the formula for P.

Since the set
{
M2

d
(−∆)−1(divu1) +Mθ0 : ξ0 ∈ O

}
is bounded in L2(Ω),

from the estimation (5.4) we obtain that set
{
w1 : ξ

0 ∈ O
}

is bounded in

L1
(
[0, τ ];H1+δ(Ω)

)
, τ > 0.

From the equation for u in (1.2) we infer

div
(
∂2t u

)
= (λ+ 2ν)∆div (u)−

M2

d
div (∂tu) + b∆φ.

Since the set
{
φ : ξ0 ∈ O

}
is bounded in C

(
[0, τ ];H1

0 (Ω)
)
, the set

{b(−∆)−1
(
∆φ
)
: ξ0 ∈ O}

is bounded in the same space, too. The set
{
−
M2

d
∂tu : ξ0 ∈ O

}

is bounded in C
(
[0, τ ];L2(Ω)

)
, therefore

{
−
M2

d
(−∆)−1div (∂tu) : ξ

0 ∈ O

}

is bounded in C
(
[0, τ ];H1

0 (Ω)
)
.

Finally, since we have the estimation on ||divu||L2(∂Ω×[0,τ ]) (Proposi-
tion (4.6)), similarly as in [15] we obtain boundedness of

{
(λ+ 2ν)(−∆)−1∆div (u) : ξ0 ∈ O

}
in L2 (Ω× [0, τ ]) .

Therefore, we claim that the set
{
(−∆)−1div

(
∂2t u

)
: ξ0 ∈ O

}
is bounded

in L2(Ω × [0, τ ]) which allows to claim that
{
w2 : ξ

0 ∈ O
}

is bounded in

L1
(
[0, τ ];H1+δ(Ω)

)
, when δ ∈ (0, 1). The latter assertion is a consequence

of regularity theory for nonhomogeneous heat equation.

Once more – the compactness of embedding Hδ(Ω) ⊂ L2(Ω), allows us
to make the conclusion that Q2 satisfies second part of the condition 2.

Taking into account the equation for w1(·), and then (5.4), after calcula-
tions we derive

(5.5)
s�

0

||∇w1(t)||L2dt ≤ 2cs−
1

2m sup{||w1(0; ξ
0)||L2 : ξ0 ∈ O}, 0 < s < τ,

where m := ||∇(−∆)−
1

2 ||L2(Ω)→(L2(Ω))n .



On exponential decay for linear porous-thermo-elasticity system 867

For brevity, let denote g(t; ξ0) := −m2

d
(−∆)−1div∂2t u. From the above

considerations, we have that

||g(·; ξ0)||L2([0,τ ]×Ω) ≤M(τ) <∞, ξ0 ∈ O, τ > 0,

where M(τ) depends only on τ > 0. Now, taking into account equation for
w2(·), and then (5.3), we derive

s�

0

||∇w2(t)||L2dt ≤ m

s�

0

t�

0

||(−∆)
1

2Q(t− r)g(r; ξ0)||L2drdt(5.6)

≤ cmM(τ)
s�

0

t�

0

(t− r)−
1

2drdt =
4

3
cmM(τ)s

3

2 ,

where 0 < s < τ .

If we collect together (5.5), (5.6) we arrive to the claim that Q2 satisfies
the first part of condition 2 under consideration. The proof is finished.

6. Uniform decaying property for system (1.1)

First we recall from [9] the following theorem (Theorem 2).

Theorem 6.1. Let T (t), TB(t) be c0-semigroups on a Banach space Y with
generators G and G+B respectively. Assume the following hypotheses:

(1) limt→∞ ||T (t)y|| = 0 for every y ∈ Y ,
(2) ||TB(t)|| ≤Me−ωt, t ≥ 0, where M,ω > 0 are constants,
(3) T (t0)− TB(t0) is compact for some t0 > 0.

Then there exist constants M1, ω1 > 0, such that ||T (t)|| ≤M1e
−ω1t, t ≥ 0.

We shall also need our main result from the paper [8].

Theorem 6.2. If coefficients in the system (1.1) satisfy conditions from
Theorem 2.4 and domain Ω satisfies Condition (C), then limt→∞E(t) = 0.

We recall that E(t) = 1
2 ||S(t)ξ

0||2, where S(t)ξ0 is the solution for (2.1)
and in view of Theorem 2.4 is the solution of (1.1).

Let Sb(·) ≡ S(·), where b > 0 is the parameter standing in systems (1.1),
(1.2). The main result of this paper is the following:

Theorem 6.3. Let the assumptions of Theorem 4.4 and Theorem 6.2 hold,
and b ∈ (0, b0), where b0 was defined in Theorem 4.4. Then the semigroup
Sb(·) has the property of uniform decaying.

Proof. We will derive the assertion from Theorem 6.1, when applied to
semigroups Sb(t), Sb(t), b ∈ (0, b0). From Theorem 6.2 we deduce that Sb(t),
t ≥ 0 satisfies the condition (i) of Theorem 6.1. From Theorem 4.4, Sb(t),
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t ≥ 0, satisfies the condition (ii) of Theorem 6.1. From Theorem 5.1 we
deduce that the difference Sb(t) − Sb(t) satisfies, for every t > 0, condition
(iii) from Theorem 6.1. From the conclusion of Theorem 6.1 we obtain the
assertion.
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