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ON EXPONENTIAL DECAY FOR LINEAR
POROUS-THERMO-ELASTICITY SYSTEM

Abstract. We study the problem of exponential decaying for solutions of porous-
thermoelasticity system, when time ¢ — oco. For sufficiently small values of the parameter
of intensity of elasticity-porosity interactions the exponential decaying is established.

In the considerations we apply the idea of compact decoupling for the system of equa-
tions. The exponential decaying property is proved first for the corresponding decoupled
system, which is simpler to handle, then the property is derived for the original system.

1. Introduction

In this paper we continue research, which we have begun in [7], on de-
caying of solutions as t — oo for the thermoelasticity system of viscoporous
media.

We consider the following system:

O*u=Au+bVp—MVO in QxR
2 = aA¢ — bdivu — b — 10y + M1 in Qx R,
(1.1) 0P = dAO — Mdivoyu — M10y¢p in QX Ry,
u=0, ¢=0, =0 on 0N x Ry,
u(0) = u’, u(0) = u', $(0) = ¢°, B;(0) = ¢*, 0(0) = 6° in Q.
In the above we denoted: 2 C R™, n = 2,3, is open bounded set, the
regularity of 92 will be precised later, A, = pAIl 4+ (u + A\)Vdiv is Lame
operator, R4 := (0, 00) and coefficents a, b, d, r, M, My, r, u > 0 (more precise
constraints on coefficents will be introduced later).

Interpretation of u, ¢, f and mechanical justification of (1.1) is given in [4]
and was recalled in [8]. We recall that v € R™ is the displacement vector for
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media occupying domain €2, ¢ denotes the change of volume fraction relative
to equilibrium configuration, 6 is the temperature.

In the deep papers [2], [11] the speed of energy decay for thermoelastic
system is studied (¢ is excluded from system (1.1)). Some theorems proved
in these papers will be recalled in Section 3 of our paper.

Methods developed in our paper allow us only to establish the exponential
decaying of energy of solution of (1.1). In the paper [2]| the possibility of
exponential as well as polynomial speed of decay of energy was shown.

The system (1.1) in one dimensional case was studied in [12] and it was
proved that when r > 0, the exponential decay takes place, and when r = 0
this effect does not occur. It is known, that for thermoelasticity system
(without ¢) for n = 1 the energy decays exponentially (see references in |7]).
These facts mean that the interaction between ¢ and 6 works against the
damping — therefore the problem stated in this paper is interesting.

To the authors knowledge there are no papers concerning the speed of
decaying of energy of thermoelastic system with boundary conditions other
than Dirichlet conditions (see [2], [11] and literature cited therein). Because
the methods we use in this paper rely on the results of [11], we consider the
Dirichlet boundary conditions as well. The problem with other boundary
conditions remains completely open.

By A we shall denote the Laplace operator with domain H?(Q) N H} (),
and the range space L*(Q2). Let P := V (A~!)div, where the operator
div is considered as acting: div : L?(Q)" — H~1(92). From [15] we know
that P is the orthogonal projection operator in (LQ(Q))n onto the subspace
{V@b VNS Hol(Q)}, the proof that this subspace is closed in (LZ(Q))n is
done in [5].

The decoupled system corresponding to system (1.1) will have the fol-
lowing form:

—  M?
0¥ = Au+ bV — 7Pam in QxRy,
(1.2) 0%p = aA$ — bdivi — y¢ — r0;p in QX Ry,
8755 = dAg — Mdlv@tﬂ — Ml(?ta in Qx R+.

Initial and boundary conditons are of the same form as in the sys-
tem (1.1).

The motivation for introducing the decoupled system (1.2) as a pertur-
bation of (1.1) is the same as in the context of the classical system of ther-
moelasticity [10], [11], [15]. We drop the term M;60 in the second equation
in (1.1) because 6 as a solution of parabolic equation has a good regularity
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properties. Then, keeping the leading terms in the third equation, we get:

M
A = Fdivatu, in Ry xQ,
=0 on R+ x 0f).

Because of the structure of P described above, this means that VO = %P@tu.
By replacing V6 in the first equation in (1.1) by %P@tu we obtain the first
equation in (1.2).

In Section 4 we show that for appropriate domains €2 and the parameter
b > 0 sufficiently small, the energy of solutions of (1.2) decays with exponen-
tial speed when ¢ — co. The proof will be based on a concept of expansion
of the solution of (1.2) into a series of functions (independent of b) multiplied
by powers of b.

Besides this, we show that solutions of system (1.2) are described by the
co-semigroup, and we prove the estimation for |[diva(-)||r290x[0g): t > 0
The latter result will be necessary in Section 5 for proving the compactness of
S(t) - S(t),t € [0,T], T > 0, where S(-), S(-) are co-semigroups connected
with systems (1.1), (1.2). These results from Sections 4, 5 will be used
in Section 6 for deriving the main result of the paper - about exponential
stabilization of solutions of (1.1), provided b > 0 is sufficiently small.

2. Assumptions on coefficients, basic spaces and recalling main re-
sults from [8]

Let us denote

1
eij(u) = 5(831% + aiu]‘),

O’ij(u) = AZe”(u)&j + 2,ueij(u), i,j c {1, . ,n},
=1

n

o(u) : e(v) = Z oij(u)eij(v).

ij=1
We remind that (Acu); = >, 9j045(u), i€ {l,...,n}

AsSUMPTION 2.1. We require A + g > 0, (A + u)y > b? when n = 2 and
3\ 421 >0, (3\ + 2u)y > 3b> when n = 3.

It was proved in [7] that

PROPOSITION 2.2. Ifb,vy,v, X\ satisfy Assumption 2.1 then there exist con-
stants c1,co > 0 such that
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( >6121]

o(u) : e(u) + 2bedive +v¢% > ¢ (¢2 +3 efj(u)).
ij=1
We define spaces V = HY(Q)" x HY(Q), H =V x (L3(Q))""" x L2(Q).
It was proved in [7] that

PRrRoOPOSITION 2.3. The bilinear form

ul u2
<(¢> ’ (¢>> = | [o(u) : e(u?) + Vg - V& + 7o' >+
s Q

+b¢' dive® + bg*divu']
is the scalar product in V and V is the Hilbert space.
Let & = (ui,qﬁi,vi,wi,ﬁi)T € H, i =1,2. The bilinear form

-{(3}2)) v

is the inner product in H and H is the Hilbert space.

The norm generated by this scalar product will be denoted by || - ||.
We shall also use the dense subspace X € H, X := (H2 )N HO( )n
(H*(Q) N H () x Hy(Q)" x Hy(Q) x (H*(Q) N Hi(Q)).

We rewrite (1.1) as the ordinary differential equation in H:

dg
=1L t>0
(2.1) dt &
g( ) - 507
where g = (Ua¢7va¢,9) € Hv v = 815“; w = 8t¢7 §0 = (U0,¢0,u1,¢1,90) €H

and

o, o0 , I , 0 , 0
o, o0 ., 0 ., I ., 0
L= a, , w»w , 0o , 0 ,-MV]|,
—bdiv , (aA—~I), 0 , —rl , MI
0 , 0 ,—Mdiv, —MI, dA

with domain X. We see that L : X — H.
It was proved in [8] (Theorem 2.7):

THEOREM 2.4. Let the coefficients satisfy Assumption 2.1, 02 has reqular-
ity of class C?.
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Then on H the operator L generates the cy-semigroup of contractions
S(t), t > 0. Moreover, when (u(t), d(t),v(t),v(t),0(t)" = S(t)E0 then
v(t) = u(t), Y(t) = Bip(t), t > 0, and (u(t),d(t),0(t)), t >0 for & € X
is the unique strong solution of (1.1), and for £ € H is the unique weak
solution of (1.1).

We recall from [8] that S(¢)€° € H when ¢ € H, S(t)¢° € X when
e X, S(t)€% € D(L¥) when €° € D(LF), k€ N, t > 0.

For strong and weak solutions their energy is given by the formula

(see [8]):

B(t) = SISO = 511 (u(r), 6(1), du(t), 016(1), 6(1)) |1

Because of contractivity property of the semigroup S we have E(t3) < E(t1)
when 0 S tl S tz.

3. Some necessary facts proved in papers of Lebeau—Zuazua [11]
and Burg—Lebeau [2]

The problem of speed of vanishing of energy when ¢ — oo for the system
Otu=Au—aVl in QxRy,
o = AO — Bdivou  in QX Ry,

u=0,=0 on 00 x Ry,
u(0) = u®, u(0) = u',0(0) =6° in Q,
was analyzed in papers [2[, [11]. The coefficients p, A of operator A, in (3.1)
must satisfy conditions p > 0,A + 2u > 0, # —pu, and the coefficients
a, B > 0.

It is easily seen that p, A satisfying the Assumption 2.1 will also satisfy

the above assumptions.
The decoupled system corresponding to (3.1) was considered in [11]:

0¥t = AJi — afP (0/m) in Qx Ry,
00 = AG — pdivof in Qx Ry,
T=0,0=0 on 00xR,,
7(0) = u°, 0;w(0) = u',0(0) =0 in Q.
It was proved in [11] that solutions of systems (3.1), (3.2) are described

by appropriate cp-semigroups. Energy of solutions of (3.1) is defined by the
formula:

(3.3)  Eo(t) =

(3.1)

(3.2)

| \atu(x,t)|2+a(u(x,t)):e(u(x,t))+%9(x,t)2 dz.
Q

DO | =
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The energy of solutions (u,0) of (3.2) is defined by the same formula,
with u, § replaced by @, 6, and the energy of (u 49) we shall denote by Ey(-).

DEFINITION 3.1. We say that system (3.1) or system (3.2) has the property
of uniform decaying of energy, when there exist constants ¢ > 0,w > 0 such
that

Eo(t) < ce @'Eg(0) forevery t >0,
(Eo(t) < ce “"Eg(0) forevery t > 0).

In the above

B = 5 § |10 @) +0 (@) s € (u(a) + G0°(a)?| da,
Eo(0) = Eo(0).

CoNDITION (C). We say that open, bounded set {2 C R™ satisfies Condi-
tion (C) if for every s > 0 the system:

1
©

—Av=sv in Q,
divv =0 in £,
v=0 on 09,

has in (H&(Q))n the unique solution v = 0 € R".

The information concerning domains satifying Condition (C) and the
references on this subject can be found in [11].
Let ¢ be the solution of the system

D2p=NA.p in QxR,,
(3.4) =0 on 002 xRy,
(0) = ", 0p(0) = ' in Q.
In the paper [11] (see Theorem 1.1 and its proof) it was proved:

THEOREM 3.2. Assume n = 2 or n = 3. In the class of domains §
satisying Condition (C), the uniform decaying of energies E(-), E(-) hold if
and only if there exist T > 0 and C > 0 such that

T
(3.5) 1° 2y + 1M 1Tg-1i0y < O Y ldive®)lIF-1(qy,
0

holds for every solution of the system (3.4).

The characterization of domains € for which the inequality (3.5) holds
was done in papers [11] when n = 2, and [2] when n = 3. In the case n = 2
it is required that the transversal bicharacteristic rays behave appropriately
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when their space component meet 0{2. These rays are the trajectories of
Hamiltionian flow corresponding to principal symbol of wave operator de-
scribing transversal elasticity waves, broken appropriately when their space
components meet 0.

When n = 3 the condition on ) also concerns every tranversal ray when
its space component meet 0{2. But in this case the condition implies the
restriction on propagation of wave front of polarization for every solution of
the system (3.4).

In both works, mentioned above, the methods of microlocal analysis are
applied. In the second work, also the microlocal defect measure of compact-
ness is used and it involves the C'™ regularity of 9€). Moreover, in both
works, the considerations are proved under the assumption A 4+ 2u > p. Let
us remark, that when p, A satisfy conditions of 2.1 and A € (—%,u, —%) UR4,
then X\ + 2 > p holds.

4. Analysis of system (1.2)

In this section we assume C? regularity of 92. We are going to make
preparations to use the linear semigroups theory to analyze system (1.2).
We rewrite system (1.2) in the form of linear equation in H:

-
(4.0) =L
where € := (7, 6,7, ,0)

o0 0 ., I , 0 , 0]
0 0 .0, I ,0
L= A, , W ,-Mp_ o |0
—bdiv , (aA—~I), O , —rl , 0
o0, 0 , —Mdiv , =M1 , dA |

We have L : X — H and it is easy to see that L is a closed operator.
In the further considerations we shall need the following proposition:

PROPOSITION 4.1. For each k > 0 the operator kI — L : X — H is
surjective.

Proof. For the purpose of the proof we introduce the following objects. The
Hilbert space Hy :=V X (LQ(Q))nH, subjected with the inner product

= ((0) (2)), e
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where (¢ € Hy have components (! = (u’, ¢%,v%, ), i = 1,2, and || - ||o will
denote the norm in H; generated by this inner product.
Then we define the operator

o ., o0 ., I ,0
o, o ., 0 |
Ll = M2 9
Ae 9 bv P} _TP 9 0
—bdiv , (aA—-~I), 0 ,—rl

whose domain is equal X7 := (H2(Q)NH(Q)" x (H*(Q)NHLQ)) x
HG(Q)" x Hg ().

It is easy to observe that X is a dense linear subspace of Hy, L1 : X3
— Hy. For ¢ = ((,0) € X we have L = (Li¢,dA0 — Mdive — Miy)7,
where v, 9 are suitable components of ¢, and moreover ||¢||? = [[¢]|3 + |, 6%

The idea of further considerations is the following: first we prove max-
imal dissipativity of L;, which allows us to deduce immediately (see [6])
the surjectivity of kI — Li. Then in a simple way we obtain the assertion.
Therefore we are going to prove maximal dissipativity of L.

After calculations we achieve

(L1¢,¢)o = —r | 9? -

Q Q

M2
— | |Pv]* <0, CeXi,

which gives the dissipativity of L;. To proceed on we prove first that
ker(Li) = {0}, and second that Ly : X1 — H; is surjective.
So, let Li¢ =0, ¢ € X;. Then v = 0, ¢ = 0 and (u, )’ should satisfy

RGeS

_Ae ) _b n
E = v . E:D(E)— (L*(2)" x L*(®),
bdiv , —(aA — ~I)
D(E) := (H*(Q) N H}(Q))" x (H2(Q) N H ().
Hence for the solution (u, $)” € D(E) of this system we will have

o= (e (2)-(2)), 1)

which gives u = 0, ¢ = 0, and the injectivity of L;.
Then let g = (¢, g%, ¢%,¢*)T € Hy and consider the system Li( = g.
From this equation we immediately get that v = g', ¢ = g% and (u, )7
should solve the system

2
)
14
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“41) E (Z) S (93 - MTQPQl) =g e (LXQ)" x LX(Q).

g4 4 T92

From Propostion 2.2, Korn inequality and then Poincare inequality we
can achieve
H u u
¢ )
This immediately yields

¢ > 0 is constant.
(E (ucf)) 7 <u¢>> - CH (Z)
L2

Hence, we can apply the Lax—Milgram theory and obtain the existence
of the weak solution (u,¢) € V for the equation (4.1). Then, we apply
the theory of regularity of weak solutions for elliptic systems [13] (Theorem
4.18), and claim that the weak solution (u,¢) € D(F). Summarizing, the
system L1( = g has solution { € X7, which gives surjectivity of Lj.

Therefore, we can consider Lfl : Hi — X;. We prove that Lfl treated as
the operator from H; into Hj is continuous. It is equivalent with establishing
inequality [|¢|lo < c1]|gllo, when g € Hy and L1{ = g, ¢1 > 0 is a constant
independent of g.

2

, foreach (u,¢) €V,
L2

2
>c
v

2
, (u,9)T eV
L2

Taking into account the observations made above, for components (Z))
of ( we carry the following estimations

-GGG,
2) 2)

gl M2 g3
(g2> v+max{7’r}H <g4>
we have showed
=)L)
H<¢> V_62< 9> ) llv g* )z

with constant co > 0 which can be easily calculated.

1
< c2llgl[pe

< |lgllr2

L2 Vv

_ 1
1gll2 <72

I

L2
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For components (Z) of ¢ we derive very simply that

1)L =1 )L =)

That proves the desired inequality. The norm of L™ : H; — H; we denote
by ||L71].

Let A € (0, ﬁ), f € Hy and consider the system (A — L1)( = f.
1

We write this equation in the equivalent form (I — )\Lfl)C = —Lfl I
Because M||L7!|| < 1, the solution of the latter equation obeys the form
C=-L7'(%, ()\Ll_l)kf), and hence ¢ belongs to X.

The proof of maximal dissipativity is finished and we can claim [6] that
for each k£ > 0, the operator kI — Ly : X1 — Hj is surjective. Now let & > 0,
f € H and consider the system (kI — f)ﬁ = f. We can write this system
in the form

_1
<c?2
L2

|4

(kI —Ly)¢ = f,
kO —dVe = f° — Mdive — My,

Because for each k > 0, g € L?(€), the equation kf — dV6 = g has solution
0 € H*(Q) N HL(Y), we can finish the proof. =

THEOREM 4.2. Operator L is the generator of co-semigroup in H, which
we denote by S(t),t > 0.

Proof. After elementary calculations we obtain that for £ € X
(LE, &) = (L1, ) + (dAG — Mdive — M;), 6)

2=
_ M2 _ . _
— |9 - —- V1P —d | |VBP - | (Mdive + M) 8 <
Q Q Q Q
_ 1 _ _ I
< —d | VO + 50 (/[0 + Bl32(q ) + M [7- VO <
Q Q
M, _ 1 — —
< o}z + 530 (120 + B30y )

when € > 0 is sufficiently small.
Therefore, we showed that there exists constant ¢ > 0 such that the
inequality
(Te8) <P, Eex
holds.
From that estimation we derive that for each k > c, ((k[ — f) g, E) >
(k—¢)[|€]]?, € € X. From that we can deduce injectivity of (kI — L), and
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from the Proposition 4.1 the existence of the resolvent operator R(k;L) :
H — X when k > ¢, and the estimation

IR (kL) ||g—sm < (k—¢)7".

Using Theorem 5.3, Chapter 1 of [14] we obtain that L generates cg-semi-
group in H. =

From classical theorems of semigroup theory we also obtain

COROLLARY 4.3. If £ € X then £(t) := S(t)E% € X, t >0, is the solution
of equation (4.0) satisfying initial condition £(0) = £°. Moreover (similarly
as in [8]) if we define (ﬂ(t),E(t),ﬁ(t),a(t),g(t))T = £(t) then Oyu(t) =(t),
O (t) = (t) and (u(-), d(+),0(-)) is the strong solution of initial-boundary
problem (1.2) when £° € X and the weak solution when &Y € H.

The energy E(t) of the solution £(t) = S(¢)¢°, t > 0 to the system (4.0)
will be defined by E(t) := [|£(¢)||%.

For the fixed value of coefficient b > 0 in the system (1.2) we denote the
corresponding co-semigroup by Sp(+).

Now we formulate the main result of this section.

THEOREM 4.4. Let domain § satisfy the Condition (C) and guarantee that
inequality (3.5) holds. Then exists by > 0 such, that for every b € (0,by) the

semigroup Sy(t) has the property of uniform decaying.

Proof. An approximation argument shows that we can assume that ¢° € X.

Let £(t) := Sp(t)£%; t > 0 be a solution of (4.0). We look for £(t) having
the form

) =Y va);  &t) = (wt), dult), duu(t), i (), 6u(t)), 1 € {0}UN.
1=0

After the formal substitution into the equation (4.0) we derive equations
for (ul, o1, 91), l e {O} UN.
For (ug, ¢o,0p) we obtain

M2
8,52110 = Aeuo — TP(atUO) in Qx R+,
&590 = dA@o — Mdiv@tvg — M18t¢0 in Qx R+,

(4.2)

(4.3) Ofdo = aldy — o — rdhdo in Qx Ry,

UO(O) = u07 atu(](o) = Ul, ¢0(O) = ¢07 at¢0(0) = ¢17 00(0) = 90 n Q? where
(u0’¢0’u1’¢1’90) = 50’ Uy = 0, QSO = 0, 90 =0 on 90 x R+.
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For k € {0} UN, (uk+t1, Pr+1,0k+1) will be the solution of problem:

M? .
Ofupyr = Acugiy — — POur+1) + Ve in Qx Ry,

Otbry1 = dAOg 1 — Mdivopog 1 — M1Orppyr in QX Ry,

(4.4)

(4.5) O dr1 = alAPpi1 — Yori1 — "1 — divey,  in Q x Ry,
u+1(0) = 0, Opug+1(0) = 0, ¢41(0) = 0, Opd+1(0) = 0, O11(0) = 0 in €,
Up4+1 = 0, ¢k+1 = 0, 9k+1 =0 on 0f) x R+.

For the clarity of the further considerations we introduce simplifying
notation and make useful observations.

We define the norms

16,0l i= (§ (Vo +r6? +42))%, (6,0) € H(Q) x LA(Q),

Q

10,0z = (§ (o) €lw) + of? +6) ),

Q

(NI

(u,v,0) € HY(Q)" x L*(Q)" x L*(Q).
From the second inequality in Proposition 2.2 one can derive

(4.6) [(w, 0,0)[5 + |(d, )13 < cll€]]?,
where & = (u, ¢,v,1,0) € H, ¢ > 0 is a constant.
It can be also noticed that

(4.7) €11 < co(l[(u, v, 0)ll2 + [(#,9)1]1),

cp 18 a constant.
We shall denote

hi(t) := [[(dr(t), Otdn ()1, gr(t) := [[(ur(t), Orur(t), O (t))|]2, k € {O}UN.
We are ready to begin the essential considerations of this proof.
It is well known that solutions of the considered initial-boundary value
problem for equation (4.3) is described by co-semigroup of contractions,
which we denote I'(¢), ¢ > 0. Hence this solution can be written as

(¢0(t), Do (t)) =T(t) (¢",¢") -
This can be accomplished clasically by way of the Fourier method.
One can show that there exist constants cq,q > 0 such that

(48) R < cre ) (6%, 63, t>0.

This estimation can be obtained by finding the solution of equation (4.3) by
way of the Fourier method.
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We rewrite the system (4.2) in the following form:

uo [ 0
(4.9) % Oug | =W | Qg | + 0 ,
to to —M; 00
where we treat —M 0;¢g as the known function and
o, I ,0

W:=1|A., 4P, 0
0 , —Mdiv , dA

In [11] it is proved that W is the generator of cy-semigroup Sy (t), t > 0
in space (Hg(9))" x L*(2)" x L*(©2). The domain of W is equal to

(H2(92) N Ho ()" x (Hy ()" x (H*(Q) N Hy (2)).

The solution of system (4.9) can be written in the form

uo(t) u? ' 0
(4.10) Auo(t) | =Sw ) | u | +|Sw(t—s) 0 ds.
0o (t) 0° 0 — M1 01¢0(5)

For the validity of this formula one can consult Corollary 2.20 and Corollary
2.11 from Chapter 4 of [14].
From [11] (see Theorem 3.2 in this paper) we obtain that

T2
u
(4.11) swt) | o || || <eemiiwoolB t>o0,
0
2

where c¢1,q; > 0 are constant.
Now using (4.10) and (4.11) we obtain

(4.12) go(t) < coe™ qT (u ul 90)||2
t

+028 — 4L (t— s)|| (0,0, =M10;¢0(s)) ||2ds.
0

Because || (0,0, —=Mi0:¢0(s)) ||2 < Mi|| (¢0(s), Oedo(s)) |1, from (4.12) and
(4.8) we get

(4.13) go(t) < coe™ tH (u ut 90) |2

t
+02M1H ¢0 ¢1 nge*T1 )e~35(ds.
0
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To simplify further estimations we can assume that from here
(4.14) 0<qg<aq,

because if the estimation (4.8) is satified for larger ¢ it is also satisfied for
smaller values of ¢. Taking into account this assumption we get from (4.13):

(4.15) go(t) < eze™ 3" [|] (u®,u',6%) |+ | (%, 0") 1],
which according to (4.6) gives
(4.16) go()? < 2cce|¢Y) 2.

From estimations (4.8), (4.16) and (4.7) we deduce
(4.17) éo(t)]] < cae™ 2|7

For the solution of the initial-boundary problem (4.5) we can write:

t

(Pr41(t), Oy (t)) = SI‘(t — 5) (0, —divu(s)) ds.
0

Using the same type of argumentation as for deriving (4.8) we get:

t
B (1) < ex § e 207 0, divan(s)) [lds.
0
Since || (0, divug(s)) [|1 < es]] (uk(s), Orur(s), 0k(s)) ||2, this gives

t
(4.18) hi1(t) < cg S e~ 25 g, (s)ds.
0

We can write the solution of the system (4.4) in the form

0
¢
(s 1, Oty (£), 1 (1) = | Sw(t—s) Vor(s) ds.
0 —M10s¢p41(5)
According to (4.11) this gives
¢
(4.19) grr1(t) < c§em 2|1 (0, Vr(s), —Mi0ypri1(s)) ||2ds.

0
Notice that

10, Vor(s), =M101dp41(s)) [l < Mil[ (Pr41(s), Derra(s)) |11
+[ (Dr(s), O (s)) I[1-
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We use this inequality to the right hand side in (4.19) and then apply (4.18).
After calculations and making use of (4.14) we get

(4.20) gra1 (1) < ex e 207 [gy () + hy ()] ds.
0

After collecting together (4.18), (4.20) and making use of (4.7) we get

t
€11 < coles + er) [ €2 (hi(s) + gi(s)) ds.
0

From (4.6) this gives

t

(4.21) i1 (t) < cs {3 )|gu(s)||ds, k€ {0}UN.
0

From (4.17) and (4.21), by making use of the succesive iterations we
achieve

tt —
&Il < cack e HI[E]], 1€ {O}UN.

We notice that when 0 < b < zL- the sequence > /%, b (t) is convergent

in C ([0,7]; H) for every 7 > 0. Let us define £"(t) := Y7, b'&(t), n € N,
and b € (0, &). We notice that £ is the solution of the problem

F— —n _

o = L8 +ha(t), €(0)=¢,

where Ay (t) := (0, 5"V, (t), 0, —b"divu,(t), 0)”.

Therefore, we can write

n

t

€'(t) = S(E" + [ S(t — 5)hn(s)ds.

0
On the other hand, denoting £(t) := Y12, blﬁl(t), we obtain

e - Sl = | 3 val + 5(t = s)ha(s)ds,

l=n+1
for every n € N.
We observe that ||k, (t)|] < b"|¢,,(t)]| and this implies

t
lim S?(t — S)hn(s)ds=0 in C([0,7];H) for every 7 > 0.

n—00
0
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It means that S(¢)¢° = £(¢). This allows us to claim
IS@EN < D bIaI] < cae™ 1€,
=0

where w := ¢ — cgh. The proof is finished. =

PROPOSITION 4.5. Let £ € H, (u(t), ¢(t), dyu(t), 8t$(t),§(t))T = Sp(t)€Y,
b € (0,by), where by was defined in Theorem 4.4. There exists constant ¢ > 0,
such that for every t > 0

1diva ()12 a0 p.) < c(1+OIIEI

Proof. To simplify notation we denote Gy := Q x [0,t], ¥y := 9 x [0, ]
and o(@)v denotes vector with coordinates (o(@)v); := >, 0ij(@)v;, i =
1,...,n, where v is an external normal vector to 0.

We begin with proving the estimation

(4.22) lo@pllLagmy < er(@+B)[1E°)% ¢ >0,

where ¢; > 0 is constant. Proof of this estimation will go along the schema
given in [1]. An approximation argument shows that we can assume that
initial data £° belongs to C5°(Q) class.

Let h € (W1>°(Q))", the equation for @ from the system (1.2) we mul-
tiply by (V@) h and integrate on Gy; the coordinates of vector (Vu)h are
(Va)h), :==> 0 hmOnTi, © = 1,...,u. We obtain

2
(423) 0=\ (Vu)h- (ata — A, — bV + %P(@@) = So+ S1 + Sz,
Gy

where

So = | (Va)h- (07T — A.),

Gy
Sy:==b\| (Va)h Vo,
Gt
Sy = M2 | (Vva)h- P(om).
d o

After typical estimations, using Korn inequality, we obtain

1911 < o [IV8l Baqy + | o(@) : (@)

t

90| < ea[1001]Facy + § (@) : (@)
Gy



On exponential decay for linear porous-thermo-elasticity system 863

To estimate Sy we take the same approach as in [1]. We write Sp = I; + 5S¢,
where the formula for S} is given in [1] and I := \s, (V) h-o(@)v. In [1]
the following estimation was derived

1531 < ea[[u!Bagq + § o)+ e(u®) + 190|220
Q

+ Jo(@(t) : e@®) + 102, + | o(@) : €@).

Q Gy

Now, we take h such that h = v on 9€). For such h it was computed
in [1], that

From (4.23) we can estimate
|1t < [Sp] + 181] + [ Sal-

Taking into account estimations given above for S§, Si, So and then using
second inequality in Proposition 2.2, we obtain

t
11| < s [H&OHQ + SO+ §11S(r)e°|Pdr
0

< eo(1+1)]1€°]%.

_ The last inequality is a consequence of decaying property of semigroup
S(+) proved in Theorem 4.4. Because

u)v| < cr Z ) < cgo(u) : e(u),

t,j=1

the inequality (4.22) is proved.

In (3], it was proved that on 9Q diva = ((Vu)v) - v. Also in [3], the
existence of continuous, reversible matrix B on 0f2 such that B ((Vu)v) =
o(u)v, was proved. From this we obtain

diviilpg =v- B! (o(u) -v).
By (4.22) this gives the inequality from the assertion of the Proposition. m

5. Compactness of the difference S(t) — S(t)
In this section we prove the following theorem:

THEOREM 5.1. For every 7 > 0, operator S(-) — S(-) : H — C ([0,7], H)
1§ compact.
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Proof. We denote
(u(t)7 ¢(t)7 atu(t)7 8t¢(t
(ﬂ(t)7 5“)7 ata(t)7 ata(t
OE (a<t>, B(t), dyii(1), 0r6(), 0(1) ) 1= (S() - 5(1)) &,
where £0 = ( 00, ub, ol 00) € H.
For & € X we check that £(-) € C(R4; X)N Cl(Ry; H) and satisfies the
equation
de 0
(5.1) dt—L£+f(t£) t>0,

where
2

f(t,€9%) = (0 0, ]\g P@(t)—MV@(t),Mﬂ(t),O) , o(t) = oyu(t), £(0)=¢°

Hence, when £ € X, we can write (see [14], Corollary 2.2)
t

(5.2) E(t) = {S(t — 5)f(5:")ds

0
We write f(-) = fi(-) + f2(-), where fi(-) = (0,0,0, M:6(- ,O)T, fo(4) =
(0,0, MT2PE(-) — MV0(-),0,0). It is evident that f; € L* ([0, 7]; H) for each
7> 0, even when &0 € H.

From equation for 6 in (1.2), after manipulations we get
(5-3) (—A)320(t) = (-A)2Q(t)¢°
¢
— M{(=A)ZQ(t — t1)(~A)~2divo(ty)dt
0

t

— My §(=2)2Q(t — t1)P(tr)dt,

0

where s € (0,1), Q(-) denotes analytical semigroup in L?(f2) generated
by dA.

From (5.3) w get the formula for 6(-) when we put s = 0.

If we take into account the estimation

(5-4) (=2)*QU) 2y 120 < ct™, >0, we(0,1),

and the boundedness of operator (—A)_%div in L2(Q2), we claim that VO(-) €
L! ([O,T],LQ(Q)); hence fo € L' ([0,7]; H), 7 > 0.
We have proved that (5.2) makes sense when ¢° € H.
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Let O C H be a bounded set. The assertion of the theorem will be
proved if we show that the sets
t
Yi(r,0) = {]8(t = 5)fi(5, "), 0 <t <72 €0,
0
are precompact in C ([0,7]; H), i = 1,2, 7 > 0.
Our further considerations will be supported by the following lemma
([10], Lemma 6):

LEMMA 5.2. Let E(t), t > 0 be a co-semigroup in a Banach space X and
{h(s;a), 0<s<T:ac A} C LY[0,T); X).

The set {{, E(t — s)h(s;a)ds, 0 < t < T : a € A} is precompact in
C([0,T); X) if either

(1) {h(s;a) :ax€ A, 0<s<T} is a precompact set of X,
(2) for any € > 0 there is 6(€) > 0 and a compact set K(e) C X such that
Sg [|h(s;a)||xds <€, a € A, and h(s;a) € K(e) for 6 <s<T, a € A.

First we prove that Yi(7,O) is precompact in C ([0, 7]; H), 7 > 0. We
show this, if we prove that the set Q1 := {5(-; €960 ¢ O} satisfies condition
(2) in Lemma 5.2 — when X = L?(Q), T = 7. So, let us put s = 0 in (5.3).
We observe that Q; is bounded in C ([0,7]; L*(Q2)), which yields that the
first part of the condition 2 is satisfied. Then, from (5.3), (5.4) we can infer
that Q1 is bounded in L! ([0, 7]; H*(R2)), s € (0,1). Because of compactness
of the embedding H*(Q2) C L2(f2), s > 0, we conclude that the second part of
the condition 2 is satisfied. The desired assertion about Y7 (7, O) was proved.

Next we go to prove that Y3(7,0) is precompact in C ([0, 7]; H), 7 > 0.
We obtain this if we show that the set Qo = {MTQP(E)tﬂ(-)) - MVO() :
¢ € O} also satisfies condition 2 of Lemma 5.2 - when X = L*(Q2), T = 7.

The first topic in our considerations will be to prove that for some § €
(0,1), Q2 is bounded in L* ([0, 7]; (H5(Q))n) This will be accomplished in
the same way as it was done in [15] (see Appendix).

First, we remark that

M2

TP (3,56) — MV@ = le + va,

where w; and ws are solutions of the following problems:
Oywi = dAwy in Qx (0,7),
wp =0 on 00 x(0,7),
M2

wi(0) = = | = (—A)tdive! + M6°| in Q,
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M2
Opwy = dAwy — 7(—A)—ldiv (07w) in Qx(0,7),
wy =0 on 090 x(0,7),
wy(0) =0 in .

In the above, we have taken into account the formula for P.

Since the set {MTQ(—A)_I(divul) + M6° : &% € O} is bounded in L*(12),
from the estimation (5.4) we obtain that set {w; : {” € O} is bounded in
L! ([O,T]; H1+5(Q)), 7> 0.

From the equation for @ in (1.2) we infer

M2
— ——div

div (677) = (A + 2v)Adiv (1) (Oy) + bAS.

Since the set {5 160 ¢ O} is bounded in C ([O,T]; H&(Q)), the set
{b(—A)"1 (Ag) : €" € O}

is bounded in the same space, too. The set
M2
{——atﬂ : 50 S O}
d
is bounded in C ([0, Tl; LQ(Q)), therefore

M2
{—7(—A)_1dlv (atﬂ) : 50 S O}
is bounded in C ([0, 7]; Hj(£2)).

Finally, since we have the estimation on ||diva||r29qx[o,-) (Proposi-
tion (4.6)), similarly as in [15] we obtain boundedness of

{(x+ 2w)(—A) T Adiv (7) : €0 € O} in L2 (Q x [0,7]).

Therefore, we claim that the set {(—A)~!div (871) : £&” € O} is bounded
in L*(Q x [0,7]) which allows to claim that {ws:£° € O} is bounded in
L ([0, 7; H1+5(Q)), when § € (0,1). The latter assertion is a consequence
of regularity theory for nonhomogeneous heat equation.

Once more — the compactness of embedding H*(Q) c L?*(Q), allows us
to make the conclusion that Qo satisfies second part of the condition 2.

Taking into account the equation for wi(-), and then (5.4), after calcula-

tions we derive
S

(5.5) S [|Vwi(t)]|2dt < 2cs*%msup{\|w1(0;§O)HLz €0}, 0<s<r,
0

1
where m := [|V(=A) 72| L2y (22())n -
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2

For brevity, let denote g(t;¢) := —Z-(—A)~*divd}u. From the above
considerations, we have that

Hg(: 0 2(orxe) < M(1) < o0, &% € 0,7 >0,

where M (1) depends only on 7 > 0. Now, taking into account equation for
wa(+), and then (5.3), we derive

(5.6) [ [|Vwa(t)l|g2dt < m {{||(~A)2Q(t — r)g(r; €%)|| 2drdt
0 00
< emM(T) § §(t — r)_%drdt = %CT)’LM(T)S%,
00

where 0 < s < 7.
If we collect together (5.5), (5.6) we arrive to the claim that Q2 satisfies
the first part of condition 2 under consideration. The proof is finished. m

6. Uniform decaying property for system (1.1)
First we recall from [9] the following theorem (Theorem 2).

THEOREM 6.1. Let T(t),Tr(t) be co-semigroups on a Banach space Y with
generators G and G + B respectively. Assume the following hypotheses:

(1) limyyoo [|T(t)y|| = O for every y €Y,
(2) [|IT()|] < Me ™, t >0, where M,w > 0 are constants,
(3) T'(to) — TB(to) is compact for some to > 0.

Then there exist constants My, wy > 0, such that ||T(t)|| < Mye=“1t, ¢ > 0.
We shall also need our main result from the paper [8].

THEOREM 6.2. If coefficients in the system (1.1) satisfy conditions from
Theorem 2.4 and domain § satisfies Condition (C), then lim; o E(t) = 0.

We recall that E(t) = 1(|S(t)€%||?, where S(t)£0 is the solution for (2.1)
and in view of Theorem 2.4 is the solution of (1.1).
Let Sp(-) = S(-), where b > 0 is the parameter standing in systems (1.1),

(1.2). The main result of this paper is the following;:

THEOREM 6.3. Let the assumptions of Theorem 4.4 and Theorem 6.2 hold,
and b € (0,by), where by was defined in Theorem 4.4. Then the semigroup
Sy(+) has the property of uniform decaying.

Proof. We will derive the assertion from Theorem 6.1, when applied to
semigroups Sp(t), Sp(t), b € (0,bp). From Theorem 6.2 we deduce that Sy(t),
t > 0 satisfies the condition (i) of Theorem 6.1. From Theorem 4.4, Sy(t),
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t > 0, satisfies the condition (ii) of Theorem 6.1. From Theorem 5.1 we
deduce that the difference Sy(t) — Sp(t) satisfies, for every ¢t > 0, condition
(iii) from Theorem 6.1. From the conclusion of Theorem 6.1 we obtain the
assertion. m
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