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FEKETE–SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES
OF ANALYTIC FUNCTIONS

Abstract. In this present investigation, authors introduce certain subclasses of star-
like and convex functions of complex order b, using a linear multiplier differential operator
Dm

λ,µf(z). In this paper, for these classes the Fekete–Szegö problem is completely solved.
Various new special cases of our results are also pointed out.

1. Introduction

Let A denote the family of functions f of the form

(1.1) f(z) = z +
∞
∑

n=2

anz
n

which are analytic in the open unit disk U = {z : |z| < 1}. Further, let S
denote the class of functions which are univalent in U . It is well-known that
for f ∈ S,

∣

∣a3 − a22
∣

∣ 6 1. A classical theorem of Fekete–Szegö (see [7]) states
that for f ∈ S given by (1.1)

∣

∣a3 − ηa22
∣

∣ 6















3− 4η if η 6 0,

1 + 2 exp
(

−2η
1−η

)

if 0 < η < 1,

4η − 3 if η > 1.

This inequality is sharp in the sense that for each η there exists a function
in S such that equality holds. Later, Pfluger (see [17]) has considered the
complex values of η and provided

∣

∣a3 − ηa22
∣

∣ 6 1 + 2

∣

∣

∣

∣

exp

(

−2η

1− η

)∣

∣

∣

∣

.
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Up to this time, several authors have attempted to extend the above
inequality to more general classes of analytic functions.

Given 0 6 α < 1, a function f ∈ A is said to be in the class S∗(α) of
starlike functions of order α in U if

ℜ
zf ′(z)

f(z)
> α, z ∈ U , 0 6 α < 1.

On the other hand, a function f ∈ A is said to be in the class of convex
functions of order α in U , denoted by C(α), if

ℜ

(

1 +
zf ′′(z)

f ′(z)

)

> α, z ∈ U , 0 6 α < 1.

A notions of α-starlikeness and α-convexity were generalized onto a complex
order α by Nasr and Aouf (see [13]), Wiatrowski (see [21]), Nasr and Aouf
(see [14]). In particular, the classes S∗ = S∗(0) and C = C(0) are the familiar
classes of starlike and convex functions in U , respectively.

The linear multiplier differential operator Dm,α
λ,µ f was defined by the au-

thors in (see [6]) as follows

D0
λ,µf(z) = f(z),

D1
λ,µf(z) = Dλ,µf(z) = λµz2(f(z))′′ + (λ− µ)z(f(z))′ + (1− λ+ µ)f(z),

D2
λ,µf(z) = Dλ,µ

(

D1
λ,µf(z)

)

,

...

Dm
λ,µf(z) = Dλ,µ

(

Dm−1
λ,µ f(z)

)

,

where λ > µ > 0 and m ∈ N0 = N ∪ {0}.
If f is given by (1.1) then from the definition of the operator Dm

λ,µf(z) it
is easy to see that

(1.2) Dm
λ,µf(z) = z +

∞
∑

n=2

[1 + (λµn+ λ− µ)(n− 1)]manz
n.

It should be remarked that the Dm,α
λ,µ is a generalization of many other

linear operators considered earlier. In particular, for f ∈ A we have the
following:

• Dm
1,0f(z) ≡ Dmf(z) the operator investigated by Sălăgean (see [20]).

• Dm
λ,0f(z) ≡ Dm

λ f(z) the operator studied by Al-Oboudi (see [2]).
• Dm

λ,µf(z) the operator firstly considered for 0 6 µ 6 λ 6 1, by Răducanu
and Orhan (see [19]).

Now, by making use of the differential operator Dm
λ,µ, we define a new

subclass of analytic functions.
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Definition 1. Let b be a nonzero complex number, and let f ∈ A , such
that Dm

λ,µf(z) 6= 0 for z ∈ U − {0}. We say that f belongs to Sm(b, λ, µ) if

ℜ

(

1 +
1

b

(

z(Dm
λ,µf(z))

′

Dm
λ,µf(z)

− 1

))

> 0, 0 6 µ 6 λ, m ∈ N, z ∈ U .

By giving specific values to the parameters m, b, λ and µ, we obtain the
following important subclasses studied by various authors in earlier works,
for instance, Sm(1 − α, 1, 0) = Sm(α) (Sălăgean (see [20])), S0(b, 1, 0) =
S∗(1 − b) (Nasr and Aouf (see [13])), S1(b, 1, 0) = C(1 − b) (Wiatrowski
(see [21]), Nasr and Aouf (see [14])). For special values of λ = 1 and µ = 0
from the general class Sm(b, λ, µ) the new class Sm(b) can be obtained.

Actually, many authors have considered the Fekete–Szegö problem for
various sublasses of A, the upper bound for

∣

∣a3 − ηa22
∣

∣ is investigated by
many different authors (see [1, 3–5, 7, 9–12, 17]) and (see also recent investi-
gations on this subject by [6, 8, 15, 16]). In the present paper we concentrate
on the Fekete–Szegö problem for the subclasses Sm(b, λ, µ) and Cm(b, λ, µ).

2. Main results
We denote by P a class of analytic function in U with p(0) = 1 and

ℜp(z) > 0. In order to derive our main results, we have to recall here the
following Lemma (see [18]).

Lemma 1. Let p ∈ P with p(z) = 1 + c1z + c2z
2 + . . . , then

|cn| 6 2, for n > 1.

If |c1| = 2 then p(z) ≡ p1(z) = (1 + γ1z)/(1 − γ1z) with γ1 = c1/2. Con-

versely, if p(z) ≡ p1(z) for some |γ1| = 1, then c1 = 2γ1 and |c1| = 2.
Furthermore, we have

∣

∣

∣

∣

c2 −
c21
2

∣

∣

∣

∣

6 2−
|c1|

2

2
.

If |c1| < 2 and

∣

∣

∣
c2 −

c2
1

2

∣

∣

∣
= 2− |c1|

2

2 , then p(z) ≡ p2(z), where

p2(z) =
1 + z γ2z+γ1

1+γ̄1γ2z

1− z γ2z+γ1
1+γ̄1γ2z

,

and γ1 = c1/2, γ2 =
2c2−c2

1

4−|c1|
2 . Conversely, if p(z) ≡ p2(z) for some |γ1| < 1

and |γ2| = 1 then γ1 = c1/2, γ2 =
2c2−c2

1

4−|c1|
2 and

∣

∣c2 −
c2
1

2

∣

∣ 6 2− |c1|
2

2 .

Now, we consider functional
∣

∣a3 − ηa22
∣

∣ for b nonzero complex number
and η ∈ C.
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Theorem 1. Let b be a nonzero complex number and η ∈ C, 0 6 µ 6 λ.

If f of the form (1.1) is in Sm(b, λ, µ), then

|a2| 6
2 |b|

Am
,(2.1)

|a3| 6
|b|

Bm
max {1, |1 + 2b|}(2.2)

and

(2.3)
∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
max

{

1,

∣

∣

∣

∣

1 + 2b− 4ηb
Bm

A2m

∣

∣

∣

∣

}

,

where A = [1 + (2λµ+ λ− µ)] and B = [1 + 2(3λµ+ λ− µ)] . Consider the

functions

(2.4)
z(Dm

λ,µf(z))
′

Dm
λ,µf(z)

= 1 + b[p1(z)− 1]

and

(2.5)
z(Dm

λ,µf(z))
′

Dm
λ,µf(z)

= 1 + b[p2(z)− 1]

where p1, p2 are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2)
if (2.4) and (2.5); for each η in (2.3) if (2.4) and (2.5).

Proof. Denote Dm
λ,µf(z) = z + β2z

2 + β3z
3 + . . . , then

(2.6) β2 = Ama2, β3 = Bma3.

By the definition of the class Sm(b, λ, µ) there exists p ∈ P such that

z(Dm
λ,µf(z))

′

Dm
λ,µf(z)

= 1 + b(p(z)− 1),

so that
(

z
(

1 + 2β2z + 3β3z
2 + . . .

)

z + β2z2 + β3z3 + . . .

)

= 1− b+ b(1 + c1z + c2z
2 + . . .),

which implies the equality

z + 2β2z
2 + 3β3z

3 + · · · = z + (bc1 + β2)z
2 + (bc2 + β2bc1 + β3)z

3 + . . .

Equating the coefficients of both sides we have

(2.7) β2 = bc1, β3 =
b2c21
2

+
bc2
2

,

so that, on account of (2.6) and (2.7)

(2.8) a2 =
bc1
Am

, a3 =
b

2Bm
(bc21 + c2).
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Taking into account (2.8) and Lemma 1, we obtain

(2.9) |a2| =

∣

∣

∣

∣

b

Am
c1

∣

∣

∣

∣

6
2 |b|

Am
,

and

|a3| =

∣

∣

∣

∣

b

2Bm

[

c2 −
c21
2

+
1 + 2b

2
c21

]
∣

∣

∣

∣

6
|b|

2Bm

[

2−
|c1|

2

2
+ |1 + 2b|

|c1|
2

2

]

=
|b|

Bm

[

1 + |c1|
2 |1 + 2b| − 1

4

]

6
|b|

Bm
max {1, [1 + |1 + 2b| − 1]} .

Thus, we have

|a3| 6
|b|

Bm
max {1, |1 + 2b|} .

Then, with the aid of Lemma 1, we obtain

∣

∣a3 − ηa22
∣

∣ =

∣

∣

∣

∣

b

2Bm
(bc21 + c2)− η

b2c21
A2m

∣

∣

∣

∣

(2.10)

≤
|b|

2Bm

(∣

∣

∣

∣

c2 −
c21
2

∣

∣

∣

∣

+
|c1|

2

2

∣

∣

∣

∣

1 + 2b−
4ηbBm

A2m

∣

∣

∣

∣

)

≤
|b|

2Bm

(

2−
|c1|

2

2
+

|c1|
2

2

∣

∣

∣

∣

1 + 2b−
4ηbBm

A2m

∣

∣

∣

∣

)

=
|b|

Bm

[

1 +
|c1|

2

4

(∣

∣

∣

∣

1 + 2b−
4ηbBm

A2m

∣

∣

∣

∣

− 1

)]

6
|b|

Bm
max

{

1,

∣

∣

∣

∣

1 + 2b−
4ηbBm

A2m

∣

∣

∣

∣

}

.

We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).

Firstly, in (2.1) the equality holds if c1 = 2. Equivalently, we have p(z) ≡
p1(z) = (1 + z)/(1 − z). Therefore, the extremal function in Sm(b, λ, µ) is
given by

(2.11)
z(Dm

λ,µf(z))
′

Dm
λ,µf(z)

=
1 + (2b− 1)z

1− z
.

Next, in (2.2), for first case, the equality holds if c1 = c2 = 2. Therefore,
the extremal functions in Sm(b, λ, µ) is given by (2.11) and for second case,
the equality holds if c1 = 0, c2 = 2. Equivalently, we have p(z) ≡ p2(z) =
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(1+ z2)/(1− z2). Therefore, the extremal function in Sm(b, λ, µ) is given by

(2.12)
z(Dm

λ,µf(z))
′

Dm
λ,µf(z)

=
1 + (2b− 1)z2

1− z2
.

Finally, in (2.3), the equality holds. Obtained extremal function for (2.2)
is also valid for (2.3).

Thus, the proof of Theorem 1 is completed.

We next consider the case, when η and b are real. Then we have:

Theorem 2. Let b > 0 and let f ∈ Sm(b, λ, µ). Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6















b
Bm

{

1 + 2b
[

1− 2ηBm

A2m

]}

if η 6
A2m

2Bm ,

b
Bm if A2m

2Bm 6 η 6
(1+2b)A2m

4bBm ,
b

Bm

[

4ηbBm

A2m − 2b− 1
]

if η >
(1+2b)A2m

4bBm ,

where A = [1 + (2λµ+ λ− µ)] and B = [1 + 2(3λµ+ λ− µ)] . For each η,
the equality holds for functions in (2.4) and (2.5).

Proof. First, let η 6
A2m

2Bm 6
(1+2b)A2m

4bBm . In this case (2.8) and Lemma 1 give

∣

∣a3 − ηa22
∣

∣ 6
b

2Bm

[

2−
|c1|

2

2
+

|c1|
2

2

(

1 + 2b−
4ηbBm

A2m

)]

6
b

Bm

[

1 + 2b

(

1−
2ηBm

A2m

)]

.

Let, now A2m

2Bm 6 η 6
(1+2b)A2m

4bBm . Then, using the above calculations, we
obtain

∣

∣a3 − ηa22
∣

∣ 6
b

Bm
.

Finally, if η >
(1+2b)A2m

4bBm , then

∣

∣a3 − ηa22
∣

∣ 6
b

2Bm

[

2−
|c1|

2

2
+

|c1|
2

2

(

4ηbBm

A2m
− 1− 2b

)]

=
b

2Bm

[

2 +
|c1|

2

2

(

4ηbBm

A2m
− 2− 2b

)]

6
b

Bm

[

4ηbBm

A2m
− 2b− 1

]

.

Thus, the proof of Theorem 2 is completed.

Finally, we consider the case, when b is a nonzero complex number and
η ∈ R. Then we get:
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Theorem 3. Let b be a nonzero complex number and let f ∈ Sm(b, λ, µ).
Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6



















4|b|2

A2m [ℜ(k1)− η] + |b||sin θ|
Bm if η 6 N1,

|b|
Bm if N1 6 η 6 R1,

4|b|2

A2m [η −ℜ(k1)] +
|b||sin θ|
Bm if η > R1,

where A = [1 + (2λµ+ λ− µ)], B = [1 + 2(3λµ+ λ− µ)], |b| = beiθ, k1 =
A2m

2Bm + A2meiθ

4|b|Bm , ℓ1 = A2m

4|b|Bm , N1 = ℜ(k1) − ℓ1(1− |sin θ|) and R1 = ℜ(k1) +

ℓ1 (1− |sin θ|). For each η there is a function in Sm(b, λ, µ) such that the

equality holds.

Proof. From the inequality (2.10), we have

∣

∣a3 − ηa22
∣

∣ =
|b|

2Bm

(∣

∣

∣

∣

c2 −
c21
2

∣

∣

∣

∣

+
|c1|

2

2

∣

∣

∣

∣

1 + 2b−
4ηbBm

A2m

∣

∣

∣

∣

)

6
|b|

2Bm

[

2−
|c1|

2

2
+

|c1|
2

2

∣

∣

∣

∣

1 + 2b−
4ηbBm

A2m

∣

∣

∣

∣

]

=
|b|

2Bm

[

|c1|
2

2

(∣

∣

∣

∣

1 + 2b−
4ηbBm

A2m

∣

∣

∣

∣

− 1

)

+ 2

]

=
|b|

Bm
+

|b|

4Bm

[∣

∣

∣

∣

4ηbBm

A2m
− 2b− 1

∣

∣

∣

∣

− 1

]

|c1|
2

=
|b|

Bm
+

|b|2

A2m

[
∣

∣

∣

∣

η −
A2m

2Bm
−

A2m

4bBm

∣

∣

∣

∣

−
A2m

4 |b|Bm

]

|c1|
2 .

If we write |b| = beiθ (or b = |b| e−iθ ), A2m

2Bm + A2meiθ

4|b|Bm = k1 and A2m

4|b|Bm = ℓ1
in last equation, we get

∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
+

|b|2

A2m
[|η − k1| − ℓ1] |c1|

2(2.13)

6
|b|

Bm
+

|b|2

A2m

[

|η −ℜ(k1)|+ ℓ1|sin θ| − ℓ1
]

|c1|
2

=
|b|

Bm
+

|b|2

A2m

[

|η −ℜ(k1)| − ℓ1(1− |sin θ|)
]

|c1|
2 .

We consider the following cases for (2.13). Suppose η 6 ℜ(k1). Then

∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
+

|b|2

A2m
[ℜ(k1)− ℓ1(1− |sin θ|)− η] |c1|

2(2.14)

=
|b|

Bm
+

|b|2

A2m
[N1−η] |c1|

2 .
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Let η 6 N1 = ℜ(k1)− ℓ1 (1− |sin θ|). By using Lemma 1 and ℓ1 =
A2m

4|b|Bm in

inequality (2.14), we get

∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
+

4 |b|2

A2m
(ℜ(k1)− η)−

4 |b|2

A2m

A2m

4 |b|Bm
(1− |sin θ|)

=
|b|

Bm
+

4 |b|2

A2m
(ℜ(k1)− η)−

|b|

Bm
(1− |sin θ|)

=
4 |b|2

A2m
(ℜ(k1)− η) +

|b| |sin θ|

Bm
.

If we take N1 = ℜ(k1)− ℓ1 (1− |sin θ|) 6 η 6 ℜ(k1), then (2.14) gives

∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
.

Let η > ℜ(k1). From (2.13) we get

∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
+

|b|2

A2m
[η− (ℜ(k1) + ℓ1(1− |sin θ|))] |c1|

2(2.15)

=
|b|

Bm
+

|b|2

A2m
[η −R1] |c1|

2 .

Let η 6 R1 = ℜ(k1) + ℓ1 (1− |sin θ|). Applying (2.15) we obtain

∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
.

Let η > R1 = ℜ(k1) + ℓ1 (1− |sin θ|). By using Lemma 1 and ℓ1 =
A2m

4|b|Bm in

equality (2.15), we get

∣

∣a3 − ηa22
∣

∣ 6
|b|

Bm
+

4 |b|2

A2m
(η −ℜ(k1))−

|b|

Bm
(1− |sin θ|)

6
4 |b|2

A2m
(η −ℜ(k1)) +

|b| |sin θ|

Bm
.

Therefore, the proof is completed.

Corollary 1. If we take λ = 1 and µ = 0 in Theorems 1–3, we have

following new results, respectively.

(1) Let b ∈ C, b 6= 0 and f ∈ Sm(b). Then for η ∈ C we have

|a2| 6
|b|

2m−1
, |a3| 6

|b|

3m
max {1, |1 + 2b|}

and
∣

∣a3 − ηa22
∣

∣ 6
|b|

3m
max

{

1,

∣

∣

∣

∣

1 + 2b− 4ηb

(

3

4

)m∣

∣

∣

∣

}

.

Equality holds for the cases λ=1, µ=0 of (2.4) and (2.5) in Theorem 1.
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(2) Let b > 0 and f ∈ Sm(b). Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6



















b
3m

{

1 + 2b
[

1− 2ηBm

A2m

]}

if η 6
1
2

(

4
3

)m
,

b
Bm if 1

2

(

4
3

)m
6 η 6

(1+2b)
4b

(

4
3

)m
,

b
Bm

[

4ηbBm

A2m − 2b− 1
]

if η >
(1+2b)

4b

(

4
3

)m
.

For each η, the equality holds for the cases λ=1, µ=0 of (2.4) and (2.5).
(3) Let b ∈ C, b 6= 0 and f ∈ Sm(b). Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6



















|b|2

4m−1 [ℜ(k1)− η] + |b||sin θ|
3m if η 6 N1,

|b|
3m if N1 6 η 6 R1,

|b|2

4m−1 [η −ℜ(k1)] +
|b||sin θ|

3m if η > R1,

where |b| = beiθ, k1 =
(

4
3

)m
−

(

4
3

)m eiθ

4|b| , ℓ1 =
(

4
3

)m 1
4|b| , N1 = ℜ(k1) −

ℓ1 (1− |sin θ|) and R1 = ℜ(k1) + ℓ1 (1− |sin θ|). For each η there is a

function in Sm(b) such that the equality holds.

As an analogue to the complex nth starlikeness of a complex order we
can introduce the notion of nth convexity of a complex order as follows:

Definition 2. Let b be a nonzero complex number and let f ∈ A. We say
that f belongs to Cm(b, λ, µ) if

Re

(

1 +
1

b

(

z
(Dm

λ,µf(z))
′′

(Dm
λ,µf(z))

′

))

> 0, 0 6 µ 6 λ, m ∈ N, z ∈ U .

We easily obtain bounds of coefficients and a solution of the Fekete–Szegö
problem in Cm(b, λ, µ). For special values of λ = 1 and µ = 0 from the general
class Cm(b, λ, µ), the new class Cm(b) can be obtained.

Theorem 4. Let b be a nonzero complex number and η ∈ C, 0 6 µ 6 λ.

If f of the form (1.1) is in Cm(b, λ, µ), then

|a2| 6
|b|

Am
, |a3| 6

|b|

3Bm
max {1, |1 + 2b|}

and
∣

∣a3 − ηa22
∣

∣ 6
|b|

3Bm
max

{

1,

∣

∣

∣

∣

1 + 2b− η
3bBm

A2m

∣

∣

∣

∣

}

,

where A = [1 + (2λµ+ λ− µ)] and B = [1 + 2(3λµ+ λ− µ)] . For each η
there is a function in Cm(b, λ, µ) such that equalities hold.
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Theorem 5. Let b > 0 and let f ∈ Cm(b, λ, µ). Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6















b
3Bm

[

1 + 2b− η 3bBm

A2m

]

if η 6
4A2m

3Bm ,

b
3Bm if 4A2m

3Bm 6 η 6
(1+2b)A2m

3bBm ,

b
3Bm

[

−1− 2b+ η 3bBm

A2m

]

if η >
(1+2b)A2m

3bBm ,

where A = [1 + (2λµ+ λ− µ)] and B = [1 + 2(3λµ+ λ− µ)] . For each η
there is a function in Cm(b, λ, µ) such that equality holds.

Theorem 6. Let b be a nonzero complex number and let f ∈ Cm(b, λ, µ).
Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6



















|b|2

A2m (ℜ(k2)− η) + |b||sin θ|
3Bm if η 6 N2,

|b|
3Bm if N2 6 η 6 R2,

|b|2

A2m (η −ℜ(k2)) +
|b||sin θ|
3Bm if η > R2,

where A = [1 + (2λµ+ λ− µ)], B = [1 + 2(3λµ+ λ− µ)], |b| = beiθ, k2 =
2A2m

3Bm + A2meiθ

3|b|Bm , ℓ2 =
A2m

3|b|Bm , N2 = ℜ(k2)− ℓ2 (1− |sin θ|) and R2 = ℜ(k2) +

ℓ2 (1− |sin θ|). For each η there is a function in Cm(b, λ, µ) such that equality

holds.

Corollary 2. If we take λ = 1 and µ = 0 in Theorems 4–6, we have the

following new results.

(1) Let b ∈ C, b 6= 0 and f ∈ Cm(b). Then for η ∈ C we have

|a2| 6
|b|

2m
, |a3| 6

|b|

3m+1
max {1, |1 + 2b|}

and

∣

∣a3 − ηa22
∣

∣ 6
|b|

3m+1
max

{

1,

∣

∣

∣

∣

1 + 2b− 4ηb

(

3

4

)m+1∣
∣

∣

∣

}

.

For each η there is a function in Cm(b) such that equality holds.

(2) Let b > 0 and f ∈ Cm(b). Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6















b
3m+1

[

1 + 2b− 4ηb
(

3
4

)m+1 ]
if η 6

(

4
3

)m+1
,

b
3m+1 if

(

4
3

)m+1
6 η 6

(1+2b)
4b

(

4
3

)m+1
,

b
3m+1

[

−1− 2b+ 4ηb
(

3
4

)m+1 ]
if η >

(1+2b)
4b

(

4
3

)m+1
.

For each η there is a function in Cm(b) such that equality holds.
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(3) Let b ∈ C, b 6= 0 and f ∈ Cm(b). Then for η ∈ R we have

∣

∣a3 − ηa22
∣

∣ 6



















|b|2

4m (ℜ(k2)− η) + |b||sin θ|
3m+1 if η 6 N2,

|b|
3m+1 if N2 6 η 6 R2,

|b|2

4m (η −ℜ(k2)) +
|b||sin θ|
3m+1 if η > R2,

where |b| = beiθ, k2 = 1
2

(

4
3

)m+1
− eiθ

4|b|

(

4
3

)m+1
, ℓ2 = 1

4|b|

(

4
3

)m+1
, N2 =

ℜ(k2)−ℓ2 (1− |sin θ|) and R2 = ℜ(k2)+ℓ2 (1− |sin θ|). For each η there

is a function in Cm(b) such that equality holds.
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