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FEKETE-SZEGO PROBLEM FOR CERTAIN SUBCLASSES
OF ANALYTIC FUNCTIONS

Abstract. In this present investigation, authors introduce certain subclasses of star-
like and convex functions of complex order b, using a linear multiplier differential operator
DY, f(2). In this paper, for these classes the Fekete-Szegd problem is completely solved.
Various new special cases of our results are also pointed out.

1. Introduction
Let A denote the family of functions f of the form

(1.1) f(2) :z+Zanz"
n=2

which are analytic in the open unit disk 4 = {z: |z| < 1}. Further, let S
denote the class of functions which are univalent in &/. It is well-known that
for f €S, |ag — a3| < 1. A classical theorem of Fekete-Szegd (see [7]) states
that for f € S given by (1.1)

3—4n if n<0,
‘a;;—na%! < 1—|—2exp<%> it 0<n<1,
dn —3 if n>1.

This inequality is sharp in the sense that for each 7 there exists a function
in § such that equality holds. Later, Pfluger (see [17]) has considered the

complex values of 1 and provided
exp| —— || .
p 1—7
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Up to this time, several authors have attempted to extend the above
inequality to more general classes of analytic functions.
Given 0 < a < 1, a function f € A is said to be in the class S*(«a) of
starlike functions of order « in U if
o2l'(2)
f(z)
On the other hand, a function f € A is said to be in the class of convex
functions of order «v in U, denoted by C(«), if

>a, ze€U, 0<a< 1.

1
éR(l+zf (Z)) >a, z€U, 0<a<l.
f'(z)

A notions of a-starlikeness and a-convexity were generalized onto a complex
order a by Nasr and Aouf (see [13]), Wiatrowski (see [21]), Nasr and Aouf
(see [14]). In particular, the classes S* = §*(0) and C = C(0) are the familiar
classes of starlike and convex functions in U, respectively.

The linear multiplier differential operator D;’ff f was defined by the au-
thors in (see [6]) as follows

DS, f(z) = f(2),
Dj ,f(2) = Dauf(2) = M2 (f(2)" + (A= w)2(f(2)) + (1= A+ p) f(2),
D3 . f(2) = Dx (D} . f(2))

DY f(2) = Dy (DR £(2))

where A > > 0 and m € Ny = NU {0}.
If f is given by (1.1) then from the definition of the operator DY', () it
is easy to see that

oo
(1.2) DY, f(z) = Z+Z 14+ Aun+ X —p)(n—1)]"a,z".
n=2
It should be remarked that the DY"" is a generalization of many other
linear operators considered earlier. In particular, for f € A we have the
following:

e Diyf(2) = D™ f(2) the operator investigated by Salagean (see [20]).

e DY f(2) = DY'f(2) the operator studied by Al-Oboudi (see [2]).

° D/\mw f(2) the operator firstly considered for 0 < p < A < 1, by Raducanu
and Orhan (see [19]).

m

N we define a new

Now, by making use of the differential operator D
subclass of analytic functions.
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DEFINITION 1. Let b be a nonzero complex number, and let f € A , such
that D' f(z) # 0 for z € U — {0}. We say that f belongs to Sy (b, A, p) if

1 [ 2(D3, f(2)
§R<1+—<$—1>> >0, 0<pu<\ meN, zell.
b\ DY, f(2)

By giving specific values to the parameters m, b, A and u, we obtain the
following important subclasses studied by various authors in earlier works,
for instance, Sy (1 — a,1,0) = S, (a) (Sédlagean (see [20])), So(b,1,0) =
S*(1 — b) (Nasr and Aouf (see [13])), S1(b,1,0) = C(1 — b) (Wiatrowski
(see |21]), Nasr and Aouf (see [14])). For special values of A =1 and p =0
from the general class S, (b, A, ) the new class S,,(b) can be obtained.

Actually, many authors have considered the Fekete—Szegé problem for
various sublasses of A, the upper bound for ’a3 — na%‘ is investigated by
many different authors (see [1, 3-5, 7, 9-12, 17]) and (see also recent investi-
gations on this subject by [6, 8, 15, 16]). In the present paper we concentrate
on the Fekete-Szego problem for the subclasses Sy, (b, A, p) and Cyp, (b, A, p).

2. Main results
We denote by P a class of analytic function in & with p(0) = 1 and
Rp(z) > 0. In order to derive our main results, we have to recall here the
following Lemma (see [18]).
LEMMA 1. Let p € P with p(z) =1+ c1z +ca2® + ..., then
len] <2, forn > 1.
If le1] = 2 then p(2) = pi(z) = (1 4+ 712)/(1 — 112) with 1 = ¢1/2. Con-

versely, if p(z) = pi(z) for some |y1| = 1, then ¢; = 2y and |c1] = 2.
Furthermore, we have

2 2 X 9 -
2 2
If lef] <2 and |cg — 3| =2 — ‘g' , then p(z) = pa(z), where
Y2z+m
pale) = 1Lt
1 — y22tm ’
1+917v22
2
and 1 = c1/2, y2 = i(f'—cjé. Conversely, if p(z) = pa(z) for some |y1| < 1

_ 2 2 2
and |y2| =1 then v1 = ¢1/2, y2 = iicf‘é and ‘02 — %1| <2-— %

Now, we consider functional ‘ag — na%‘ for b nonzero complex number
and n € C.
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THEOREM 1. Let b be a nonzero complex number andn € C, 0 < u < A
If f of the form (1.1) is in Sy (b, A, ), then

21|
2.1 < 200
(2.1) s < S0

b
(2.2) las| < BL—’L max {1, |1 + 2b|}
and
b B™

(2.3) ‘a;;—naﬂéé—i@max{l, 1+2b—4nbm‘},

where A =1+ 2 pu+ X —p)] and B = [1+ 2(3\u+ X — )] . Consider the
functions

ADPF(2)
and

ADPS)) N
(2.5) W* 1+ b[py(z) — 1]

where p1, p2 are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2)
if (2.4) and (2.5); for each n in (2.3) if (2.4) and (2.5).

Proof. Denote Df\”uf(z) =2+ B92% + 3323 4+ ..., then

(2.6) ﬁg = AmCLQ, 53 = Bma3.
By the definition of the class Sy, (b, \, ) there exists p € P such that
2(DY, f(2))

Dgﬂfuf(z) zl—l—b(p(z)—l),

so that
(z (142822 +3p322 +...)

2+ B22% + B323 + ...
which implies the equality

)—1—b+b(1+clz+c222+...),

z+ 25222 + 3B323 +--=z+4 (bay + 52)22 + (bea + B2ber + ,83)23 + ...
Equating the coeflicients of both sides we have
b2 be
(2.7) B2 =bcr, Pz = 71 + 727

so that, on account of (2.6) and (2.7)

b b
“ — (bt + c3).

(28) as = A—m, asz = oBm
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Taking into account (2.8) and Lemma 1, we obtain
21|
<

b
(29) |CL2| = ‘A—mc NS A—m,

and

Tl |22 T

b [ c 1+26}
a
2 2

b

2B™ 2

|b] o |1+ 2b] —
= — 1 _—

Bm + ]61’ 1

0]

Thus, we have

b
las| < £|3_’L max {1, |1 + 2b|} .
Then, with the aid of Lemma 1, we obtain
2 b boct
(2.10) ‘ag — 77@2‘ = |3gm —(bc? + ¢3) — 1 43m
o 3| el 1bB™
P 2% —
Sopel[27 2| P Y Azm
0] e el 4nbB™
< 2 — 14+2b—
- 2Bm 2 + 2 + A2m
[l |cl| dnbB™
= 1 1+2b— —1
g T T A
b 4nbB™

We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).

Firstly, in (2.1) the equality holds if ¢; = 2. Equivalently, we have p(z) =
p1(z) = (1 4+ 2)/(1 — z). Therefore, the extremal function in S,,(b, \, p) is
given by

2(DY, f(2)) _14(2b-1)2
Dy, f(z) 1—2z

(2.11)

Next, in (2.2), for first case, the equality holds if ¢; = ¢o = 2. Therefore,
the extremal functions in S, (b, A, i) is given by (2.11) and for second case,
the equality holds if ¢; = 0, co = 2. Equivalently, we have p(z) = p2(z) =
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(1+22)/(1 — 22). Therefore, the extremal function in S, (b, A, it) is given by

2Dy f(2) 14 (20— 1)22
Dy f(z) 1— 22

(2.12)

Finally, in (2.3), the equality holds. Obtained extremal function for (2.2)
is also valid for (2.3).
Thus, the proof of Theorem 1 is completed. =

We next consider the case, when n and b are real. Then we have:

THEOREM 2. Letb >0 and let f € S, (b, \, ). Then for n € R we have

e {12 [1-220 ] i< g
2 A2m 14-2b) A2™
’613—7]‘12‘ < BLm Zf 2B™ <n<2%7
b [4npB™ (142b) A%m
e [ T — 2b— l} if nZ= >

where A = [14+ (2 \u+ X —p)] and B = [1 + 23 \u+ X — p)]. For each n,
the equality holds for functions in (2.4) and (2.5).

Proof. First, let n < QAE:Z < (lﬁlgﬁzm. In this case (2.8) and Lemma 1 give

b 2 2 4nbB™
|ag —na3| < [2—|Cl| 4 Ll <1+2b— i >]

2B™ 2 2 A2m
b 2nB™
< pfea(- 2]
Let, now % <n < %. Then, using the above calculations, we
obtain
b

‘ag —na§| < B

Finally, if n > % then

b e | Jea)? (4nbB™
2
|a3—na2‘<23m[2— 5 + 5 2 —-1-2b

b ler|* [ AnbB™
= 2 —-2-2b
2B [ T\
b [4nbB™
Bm A2m
Thus, the proof of Theorem 2 is completed. m

~2-1].

Finally, we consider the case, when b is a nonzero complex number and
n € R. Then we get:
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THEOREM 3. Let b be a nonzero complex number and let f € Sp, (b, A\, ).
Then for n € R we have

2 in@
A [R(ky) — ) + ROy <V,
|az —na3| < { L4 if Ni <n<Ri,

A = RO + 22 i > Ry,

where A = [14+ 2\ + X —p)], B = [14+28 \u+ X —p)], |b] = be®, ky =
2m 2m6i9 2'm .

—ngm + —4A|b\Bm’ 0y 4|b|Bm’ Ny = %(kl) - 61(1 — ‘Slnal) and Ry = %(kl) +

01 (1 —|sind|). For each n there is a function in Spy(b,\, ) such that the

equality holds.

Proof. From the inequality (2.10), we have

2
2 _ o |, lel 4nbB™
‘GS_na2|_W<‘C2_E +T 142b— 2m

[b] e | lerf? 4nbB™
2 —

= opBm 2 + 2 A2m

4 m
1 [’61’ (‘1+26— "bi ’—1>+2]

142b—

~oBm| 2 A?
ol bl H4nb3m

~ Bm  4Bm || A2m
ST | PO S
- A2m 2B™  4bB™

—2b — 1' — 1} leq |

B A2m | |2
Ap|Bm | M

. . . 2m 2m 160
If we write |b] = be? (or b = |b|e™% ), é‘}gfm"‘flbl—Bem = k1 and
in last equation, we get

b b
(2.13) |ag —naj| < H +l12’m

b b .
l + 1’4% [l — R(k)| + ¢, |sin 6] — ¢,] le1|?

4\6\37" =10

(17— k| = £4] fea|*

= o+ 11— Rk = €, (1= [sind])] |er]*.
We consider the followmg cases for (2.13). Suppose n < R(k1). Then

b .
219 oy —nad] < l+1’4%[9%<k1>—61<1—rsme|>—n1|c1|2
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Let n < Ny = R(k1) — ¢1 (1 — |sinf|). By using Lemma 1 and ¢; = ‘Hibll% in

inequality (2.14), we get

b 4| 4[p* AP -
s = 03] < o + g OROky) =) = S (1 sind)
e I
= A (k) — ) — L (1~ [sind))
41 b| |sin 6
= A ) -+ 2RO

If we take Ny = R(k1) — ¢1 (1 — |sinf]) < n < R(k1), then (2.14) gives

[b]
s —nas| < 550
Let n > R(k1). From (2.13) we get
2.1 ﬂ - R(ky) + £, (1 — |sind 2
(2.15) |as = na3| < o + —m (1= (R(ky) + 6,(1 = [sin 0])] fed]
b b
—H%[ - Rl
Let n < Ry = R(k1) + £1 (1 — |sinf|). Applying (2.15) we obtain
[b]
s —nas| < 550
Let n > Ry = R(k1) + £1 (1 — [sinf|). By using Lemma 1 and ¢; = le’;“% in
equality (2.15), we get
|b| 4ol [b] :
Jay —nad] < 12 20 6 miky)) - A (1~ fsin)
4|b| |b] |sin 6]
S o (n— R(ky)) + —pm

Therefore, the proof is completed. »

COROLLARY 1. If we take A = 1 and p = 0 in Theorems 1-3, we have
following new results, respectively.

(1) Let be C, b#0 and f € S, (b). Then for n € C we have

0| ! |
a2l € G sl <

b m
‘CL3 —na§| < S%max{l, ‘1 +2b—4nb<§> ‘ }

Equality holds for the cases A\=1, u=0 of (2.4) and (2.5) in Theorem 1.

—max {1, [1 + 20}

and
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(2) Let b> 0 and f € Sy(b). Then for n € R we have

Bl |1 ML < ()"
Jas — a3 < { 7 73" << A"
e | 2 —1) > R ()"

For each n, the equality holds for the cases A=1, u=0 of (2.4) and (2.5).
(3) Let be C, b# 0 and f € S;u(b). Then for n € R we have

2 .
o [R(ky) — ) + LA < Ny,
|lag — na3| < % if N1 <n< Ry,
2L - R(ky)) + Ul ip g > Ry,
i 4\m 4\m it 4\m
where [b] = be, ky = (3)" — (3) i O = (3) ‘1| Ny = R(k1) —

01 (1 —|sind|) and Ry = R(k1) + £1 (1 — |sinf|). For each n there is a
function in S, (b) such that the equality holds.

As an analogue to the complex nth starlikeness of a complex order we
can introduce the notion of nth convexity of a complex order as follows:

DEFINITION 2. Let b be a nonzero complex number and let f € A. We say
that f belongs to Cp,(b, A, ) if

1/ (DY, f(2)
R6<1+E<ZW>> >0, 0<us< A meN, zel.

We easily obtain bounds of coefficients and a solution of the Fekete-Szego
problem in C,, (b, A, ). For special values of A = 1 and p = 0 from the general
class Cp, (b, A, 1), the new class Cy,,(b) can be obtained.

THEOREM 4. Let b be a nonzero complex number and n € C, 0 < p < A
If f of the form (1.1) is in Cp(b, A\, ), then

b
lag| < ,|4—’”|”’ las| < | | —max {1, |1+ 2b[}
and
6] 3bB™
‘a;;—na%‘ 3 pm max 1, 1—|—2b—77—A2m ,

where A = [1+ 2+ X —p)] and B = [1 +2(3Au+ X\ — p)]. For each n
there is a function in Cp, (b, \, ) such that equalities hold.
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THEOREM 5. Let b > 0 and let f € Cpp(b, A\, ). Then for n € R we have

b 3bB™ : 442m
3B™ [1 + 2b — n A2m ] Zf nx < 3B™
2 b . 14+2b) A2™
|as —na3| < § 5= if e <n< SEge
b 3bB™ , (142b)A2m
g | —1—2b+ 0] i nz gppm

where A = [1+ (2 A+ X —p)] and B = [1 4+ 2(3\u+ A — p)]. For each n
there is a function in Cp (b, \, ) such that equality holds.

THEOREM 6. Let b be a nonzero complex number and let f € Cp,(b, A, ).
Then for n € R we have

2 in@ .
I (R(ka) — ) + HERA Gy < Ny,
|as —na3| < { 4 if N2 <n< Ry,
b|2 b 0 .
() — R(ka)) + 2B i ) > Ry,

where A = [14+ (2 \u+ X —p)], B = [14+28 \u+ X —p)], |b] = be¥, ky =
2m 2mei0 2m .

e %W’ by = 3\?\%7 Ny = R(ka) — £ (1 — [sind]) and Ry = R(ks) +

Uy (1 —|sind|). For eachn there is a function in Cy, (b, A, 1) such that equality

holds.

COROLLARY 2. If we take A =1 and u = 0 in Theorems 4-6, we have the
following new results.

(1) Let be C, b # 0 and f € Cyy(b). Then for n € C we have

ol < I fag| < 1
20 X 3\3m+1

om’
3 m+1
Lra-am(2)))

For each n there is a function in Cp,(b) such that equality holds.
(2) Let b> 0 and f € Cyy(b). Then for n € R we have

gorl+20—a ()™ ] i a< (B
‘ag—na§| < 3771% if (g)erl <77< (1+2b)(3)m+1,
Jr

ger[ —1 =20+ 4np (3)"] i 0> CER ()™

max {1, |1+ 2b|}

and

L
|ag —na3| < gm+1 Max

3
1
For each n there is a function in Cp,(b) such that equality holds.
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Letbe C, b#0 and f € Cp(b). Then for n € R we have

2 .
Lf—#(ﬁ“ﬁ(@)—n)—k% if m< Ny,
|as — naj| < 37‘71% if No <n< Ry,
2 .
Lf—#(n — R(k2)) + |bg|,|7ilfle‘ if m> Ra,
. 0 1 /4 \ym+1 i0 4 \m+1 1 4\m+1 .
where [b] = be”, ky = 5 (3)" " — i (3)7 =g (5) N2 =

R(k2)—Ll2 (1 — [sind|) and Ry = R(ka)+{2 (1 — [sinf]|). For each n there
is a function in Cp(b) such that equality holds.
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