

Halit Orhan, Erhan Deniz, Murat Çağlar

**FEKETE–SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES  
OF ANALYTIC FUNCTIONS**

**Abstract.** In this present investigation, authors introduce certain subclasses of starlike and convex functions of complex order  $b$ , using a linear multiplier differential operator  $D_{\lambda,\mu}^m f(z)$ . In this paper, for these classes the Fekete–Szegö problem is completely solved. Various new special cases of our results are also pointed out.

## 1. Introduction

Let  $\mathcal{A}$  denote the family of functions  $f$  of the form

$$(1.1) \quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk  $\mathcal{U} = \{z : |z| < 1\}$ . Further, let  $\mathcal{S}$  denote the class of functions which are univalent in  $\mathcal{U}$ . It is well-known that for  $f \in \mathcal{S}$ ,  $|a_3 - a_2^2| \leq 1$ . A classical theorem of Fekete–Szegö (see [7]) states that for  $f \in \mathcal{S}$  given by (1.1)

$$|a_3 - \eta a_2^2| \leq \begin{cases} 3 - 4\eta & \text{if } \eta \leq 0, \\ 1 + 2 \exp\left(\frac{-2\eta}{1-\eta}\right) & \text{if } 0 < \eta < 1, \\ 4\eta - 3 & \text{if } \eta \geq 1. \end{cases}$$

This inequality is sharp in the sense that for each  $\eta$  there exists a function in  $\mathcal{S}$  such that equality holds. Later, Pfluger (see [17]) has considered the complex values of  $\eta$  and provided

$$|a_3 - \eta a_2^2| \leq 1 + 2 \left| \exp\left(\frac{-2\eta}{1-\eta}\right) \right|.$$

---

2000 *Mathematics Subject Classification*: 30C45.

*Key words and phrases*: Fekete–Szegö problem, analytic functions, starlike and convex functions of complex order, linear multiplier differential operator.

Up to this time, several authors have attempted to extend the above inequality to more general classes of analytic functions.

Given  $0 \leq \alpha < 1$ , a function  $f \in \mathcal{A}$  is said to be in the class  $\mathcal{S}^*(\alpha)$  of starlike functions of order  $\alpha$  in  $\mathcal{U}$  if

$$\Re \frac{zf'(z)}{f(z)} > \alpha, \quad z \in \mathcal{U}, \quad 0 \leq \alpha < 1.$$

On the other hand, a function  $f \in \mathcal{A}$  is said to be in the class of convex functions of order  $\alpha$  in  $\mathcal{U}$ , denoted by  $\mathcal{C}(\alpha)$ , if

$$\Re \left( 1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \quad z \in \mathcal{U}, \quad 0 \leq \alpha < 1.$$

A notions of  $\alpha$ -starlikeness and  $\alpha$ -convexity were generalized onto a complex order  $\alpha$  by Nasr and Aouf (see [13]), Wiatrowski (see [21]), Nasr and Aouf (see [14]). In particular, the classes  $\mathcal{S}^* = \mathcal{S}^*(0)$  and  $\mathcal{C} = \mathcal{C}(0)$  are the familiar classes of starlike and convex functions in  $\mathcal{U}$ , respectively.

The *linear multiplier differential operator*  $D_{\lambda,\mu}^{m,\alpha} f$  was defined by the authors in (see [6]) as follows

$$\begin{aligned} D_{\lambda,\mu}^0 f(z) &= f(z), \\ D_{\lambda,\mu}^1 f(z) &= D_{\lambda,\mu} f(z) = \lambda \mu z^2 (f(z))'' + (\lambda - \mu) z (f(z))' + (1 - \lambda + \mu) f(z), \\ D_{\lambda,\mu}^2 f(z) &= D_{\lambda,\mu} (D_{\lambda,\mu}^1 f(z)), \\ &\vdots \\ D_{\lambda,\mu}^m f(z) &= D_{\lambda,\mu} \left( D_{\lambda,\mu}^{m-1} f(z) \right), \end{aligned}$$

where  $\lambda \geq \mu \geq 0$  and  $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ .

If  $f$  is given by (1.1) then from the definition of the operator  $D_{\lambda,\mu}^m f(z)$  it is easy to see that

$$(1.2) \quad D_{\lambda,\mu}^m f(z) = z + \sum_{n=2}^{\infty} [1 + (\lambda \mu n + \lambda - \mu)(n-1)]^m a_n z^n.$$

It should be remarked that the  $D_{\lambda,\mu}^{m,\alpha}$  is a generalization of many other linear operators considered earlier. In particular, for  $f \in \mathcal{A}$  we have the following:

- $D_{1,0}^m f(z) \equiv D^m f(z)$  the operator investigated by Sălăgean (see [20]).
- $D_{\lambda,0}^m f(z) \equiv D_{\lambda}^m f(z)$  the operator studied by Al-Oboudi (see [2]).
- $D_{\lambda,\mu}^m f(z)$  the operator firstly considered for  $0 \leq \mu \leq \lambda \leq 1$ , by Răducanu and Orhan (see [19]).

Now, by making use of the differential operator  $D_{\lambda,\mu}^m$ , we define a new subclass of analytic functions.

**DEFINITION 1.** Let  $b$  be a nonzero complex number, and let  $f \in \mathcal{A}$ , such that  $D_{\lambda,\mu}^m f(z) \neq 0$  for  $z \in \mathcal{U} - \{0\}$ . We say that  $f$  belongs to  $\mathcal{S}_m(b, \lambda, \mu)$  if

$$\Re \left( 1 + \frac{1}{b} \left( \frac{z(D_{\lambda,\mu}^m f(z))'}{D_{\lambda,\mu}^m f(z)} - 1 \right) \right) > 0, \quad 0 \leq \mu \leq \lambda, \quad m \in \mathbb{N}, \quad z \in \mathcal{U}.$$

By giving specific values to the parameters  $m, b, \lambda$  and  $\mu$ , we obtain the following important subclasses studied by various authors in earlier works, for instance,  $\mathcal{S}_m(1 - \alpha, 1, 0) = \mathcal{S}_m(\alpha)$  (Sălăgean (see [20])),  $\mathcal{S}_0(b, 1, 0) = \mathcal{S}^*(1 - b)$  (Nasr and Aouf (see [13])),  $\mathcal{S}_1(b, 1, 0) = \mathcal{C}(1 - b)$  (Wiatrowski (see [21]), Nasr and Aouf (see [14])). For special values of  $\lambda = 1$  and  $\mu = 0$  from the general class  $\mathcal{S}_m(b, \lambda, \mu)$  the new class  $\mathcal{S}_m(b)$  can be obtained.

Actually, many authors have considered the Fekete–Szegö problem for various subclasses of  $\mathcal{A}$ , the upper bound for  $|a_3 - \eta a_2^2|$  is investigated by many different authors (see [1, 3–5, 7, 9–12, 17]) and (see also recent investigations on this subject by [6, 8, 15, 16]). In the present paper we concentrate on the Fekete–Szegö problem for the subclasses  $\mathcal{S}_m(b, \lambda, \mu)$  and  $\mathcal{C}_m(b, \lambda, \mu)$ .

## 2. Main results

We denote by  $\mathcal{P}$  a class of analytic function in  $\mathcal{U}$  with  $p(0) = 1$  and  $\Re p(z) > 0$ . In order to derive our main results, we have to recall here the following Lemma (see [18]).

**LEMMA 1.** Let  $p \in \mathcal{P}$  with  $p(z) = 1 + c_1 z + c_2 z^2 + \dots$ , then

$$|c_n| \leq 2, \quad \text{for } n \geq 1.$$

If  $|c_1| = 2$  then  $p(z) \equiv p_1(z) = (1 + \gamma_1 z)/(1 - \gamma_1 z)$  with  $\gamma_1 = c_1/2$ . Conversely, if  $p(z) \equiv p_1(z)$  for some  $|\gamma_1| = 1$ , then  $c_1 = 2\gamma_1$  and  $|c_1| = 2$ . Furthermore, we have

$$\left| c_2 - \frac{c_1^2}{2} \right| \leq 2 - \frac{|c_1|^2}{2}.$$

If  $|c_1| < 2$  and  $\left| c_2 - \frac{c_1^2}{2} \right| = 2 - \frac{|c_1|^2}{2}$ , then  $p(z) \equiv p_2(z)$ , where

$$p_2(z) = \frac{1 + z \frac{\gamma_2 z + \gamma_1}{1 + \bar{\gamma}_1 \gamma_2 z}}{1 - z \frac{\gamma_2 z + \gamma_1}{1 + \bar{\gamma}_1 \gamma_2 z}},$$

and  $\gamma_1 = c_1/2$ ,  $\gamma_2 = \frac{2c_2 - c_1^2}{4 - |c_1|^2}$ . Conversely, if  $p(z) \equiv p_2(z)$  for some  $|\gamma_1| < 1$  and  $|\gamma_2| = 1$  then  $\gamma_1 = c_1/2$ ,  $\gamma_2 = \frac{2c_2 - c_1^2}{4 - |c_1|^2}$  and  $\left| c_2 - \frac{c_1^2}{2} \right| \leq 2 - \frac{|c_1|^2}{2}$ .

Now, we consider functional  $|a_3 - \eta a_2^2|$  for  $b$  nonzero complex number and  $\eta \in \mathbb{C}$ .

**THEOREM 1.** *Let  $b$  be a nonzero complex number and  $\eta \in \mathbb{C}$ ,  $0 \leq \mu \leq \lambda$ . If  $f$  of the form (1.1) is in  $\mathcal{S}_m(b, \lambda, \mu)$ , then*

$$(2.1) \quad |a_2| \leq \frac{2|b|}{A^m},$$

$$(2.2) \quad |a_3| \leq \frac{|b|}{B^m} \max \{1, |1 + 2b|\}$$

and

$$(2.3) \quad |a_3 - \eta a_2^2| \leq \frac{|b|}{B^m} \max \left\{ 1, \left| 1 + 2b - 4\eta b \frac{B^m}{A^{2m}} \right| \right\},$$

where  $A = [1 + (2\lambda\mu + \lambda - \mu)]$  and  $B = [1 + 2(3\lambda\mu + \lambda - \mu)]$ . Consider the functions

$$(2.4) \quad \frac{z(D_{\lambda,\mu}^m f(z))'}{D_{\lambda,\mu}^m f(z)} = 1 + b[p_1(z) - 1]$$

and

$$(2.5) \quad \frac{z(D_{\lambda,\mu}^m f(z))'}{D_{\lambda,\mu}^m f(z)} = 1 + b[p_2(z) - 1]$$

where  $p_1, p_2$  are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2) if (2.4) and (2.5); for each  $\eta$  in (2.3) if (2.4) and (2.5).

**Proof.** Denote  $D_{\lambda,\mu}^m f(z) = z + \beta_2 z^2 + \beta_3 z^3 + \dots$ , then

$$(2.6) \quad \beta_2 = A^m a_2, \quad \beta_3 = B^m a_3.$$

By the definition of the class  $\mathcal{S}_m(b, \lambda, \mu)$  there exists  $p \in \mathcal{P}$  such that

$$\frac{z(D_{\lambda,\mu}^m f(z))'}{D_{\lambda,\mu}^m f(z)} = 1 + b(p(z) - 1),$$

so that

$$\left( \frac{z(1 + 2\beta_2 z + 3\beta_3 z^2 + \dots)}{z + \beta_2 z^2 + \beta_3 z^3 + \dots} \right) = 1 - b + b(1 + c_1 z + c_2 z^2 + \dots),$$

which implies the equality

$$z + 2\beta_2 z^2 + 3\beta_3 z^3 + \dots = z + (bc_1 + \beta_2)z^2 + (bc_2 + \beta_2 bc_1 + \beta_3)z^3 + \dots$$

Equating the coefficients of both sides we have

$$(2.7) \quad \beta_2 = bc_1, \quad \beta_3 = \frac{b^2 c_1^2}{2} + \frac{bc_2}{2},$$

so that, on account of (2.6) and (2.7)

$$(2.8) \quad a_2 = \frac{bc_1}{A^m}, \quad a_3 = \frac{b}{2B^m}(bc_1^2 + c_2).$$

Taking into account (2.8) and Lemma 1, we obtain

$$(2.9) \quad |a_2| = \left| \frac{b}{A^m} c_1 \right| \leq \frac{2|b|}{A^m},$$

and

$$\begin{aligned} |a_3| &= \left| \frac{b}{2B^m} \left[ c_2 - \frac{c_1^2}{2} + \frac{1+2b}{2} c_1^2 \right] \right| \\ &\leq \frac{|b|}{2B^m} \left[ 2 - \frac{|c_1|^2}{2} + |1+2b| \frac{|c_1|^2}{2} \right] \\ &= \frac{|b|}{B^m} \left[ 1 + |c_1|^2 \frac{|1+2b|-1}{4} \right] \\ &\leq \frac{|b|}{B^m} \max \{1, [1+|1+2b|-1]\}. \end{aligned}$$

Thus, we have

$$|a_3| \leq \frac{|b|}{B^m} \max \{1, |1+2b|\}.$$

Then, with the aid of Lemma 1, we obtain

$$\begin{aligned} (2.10) \quad |a_3 - \eta a_2^2| &= \left| \frac{b}{2B^m} (bc_1^2 + c_2) - \eta \frac{b^2 c_1^2}{A^{2m}} \right| \\ &\leq \frac{|b|}{2B^m} \left( \left| c_2 - \frac{c_1^2}{2} \right| + \frac{|c_1|^2}{2} \left| 1+2b - \frac{4\eta b B^m}{A^{2m}} \right| \right) \\ &\leq \frac{|b|}{2B^m} \left( 2 - \frac{|c_1|^2}{2} + \frac{|c_1|^2}{2} \left| 1+2b - \frac{4\eta b B^m}{A^{2m}} \right| \right) \\ &= \frac{|b|}{B^m} \left[ 1 + \frac{|c_1|^2}{4} \left( \left| 1+2b - \frac{4\eta b B^m}{A^{2m}} \right| - 1 \right) \right] \\ &\leq \frac{|b|}{B^m} \max \left\{ 1, \left| 1+2b - \frac{4\eta b B^m}{A^{2m}} \right| \right\}. \end{aligned}$$

We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).

Firstly, in (2.1) the equality holds if  $c_1 = 2$ . Equivalently, we have  $p(z) \equiv p_1(z) = (1+z)/(1-z)$ . Therefore, the extremal function in  $\mathcal{S}_m(b, \lambda, \mu)$  is given by

$$(2.11) \quad \frac{z(D_{\lambda, \mu}^m f(z))'}{D_{\lambda, \mu}^m f(z)} = \frac{1 + (2b-1)z}{1-z}.$$

Next, in (2.2), for first case, the equality holds if  $c_1 = c_2 = 2$ . Therefore, the extremal functions in  $\mathcal{S}_m(b, \lambda, \mu)$  is given by (2.11) and for second case, the equality holds if  $c_1 = 0, c_2 = 2$ . Equivalently, we have  $p(z) \equiv p_2(z) =$

$(1+z^2)/(1-z^2)$ . Therefore, the extremal function in  $\mathcal{S}_m(b, \lambda, \mu)$  is given by

$$(2.12) \quad \frac{z(D_{\lambda, \mu}^m f(z))'}{D_{\lambda, \mu}^m f(z)} = \frac{1 + (2b - 1)z^2}{1 - z^2}.$$

Finally, in (2.3), the equality holds. Obtained extremal function for (2.2) is also valid for (2.3).

Thus, the proof of Theorem 1 is completed. ■

We next consider the case, when  $\eta$  and  $b$  are real. Then we have:

**THEOREM 2.** *Let  $b > 0$  and let  $f \in \mathcal{S}_m(b, \lambda, \mu)$ . Then for  $\eta \in \mathbb{R}$  we have*

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{b}{B^m} \left\{ 1 + 2b \left[ 1 - \frac{2\eta B^m}{A^{2m}} \right] \right\} & \text{if } \eta \leq \frac{A^{2m}}{2B^m}, \\ \frac{b}{B^m} & \text{if } \frac{A^{2m}}{2B^m} \leq \eta \leq \frac{(1+2b)A^{2m}}{4bB^m}, \\ \frac{b}{B^m} \left[ \frac{4\eta b B^m}{A^{2m}} - 2b - 1 \right] & \text{if } \eta \geq \frac{(1+2b)A^{2m}}{4bB^m}, \end{cases}$$

where  $A = [1 + (2\lambda\mu + \lambda - \mu)]$  and  $B = [1 + 2(3\lambda\mu + \lambda - \mu)]$ . For each  $\eta$ , the equality holds for functions in (2.4) and (2.5).

**Proof.** First, let  $\eta \leq \frac{A^{2m}}{2B^m} \leq \frac{(1+2b)A^{2m}}{4bB^m}$ . In this case (2.8) and Lemma 1 give

$$\begin{aligned} |a_3 - \eta a_2^2| &\leq \frac{b}{2B^m} \left[ 2 - \frac{|c_1|^2}{2} + \frac{|c_1|^2}{2} \left( 1 + 2b - \frac{4\eta b B^m}{A^{2m}} \right) \right] \\ &\leq \frac{b}{B^m} \left[ 1 + 2b \left( 1 - \frac{2\eta B^m}{A^{2m}} \right) \right]. \end{aligned}$$

Let, now  $\frac{A^{2m}}{2B^m} \leq \eta \leq \frac{(1+2b)A^{2m}}{4bB^m}$ . Then, using the above calculations, we obtain

$$|a_3 - \eta a_2^2| \leq \frac{b}{B^m}.$$

Finally, if  $\eta \geq \frac{(1+2b)A^{2m}}{4bB^m}$ , then

$$\begin{aligned} |a_3 - \eta a_2^2| &\leq \frac{b}{2B^m} \left[ 2 - \frac{|c_1|^2}{2} + \frac{|c_1|^2}{2} \left( \frac{4\eta b B^m}{A^{2m}} - 1 - 2b \right) \right] \\ &= \frac{b}{2B^m} \left[ 2 + \frac{|c_1|^2}{2} \left( \frac{4\eta b B^m}{A^{2m}} - 2 - 2b \right) \right] \\ &\leq \frac{b}{B^m} \left[ \frac{4\eta b B^m}{A^{2m}} - 2b - 1 \right]. \end{aligned}$$

Thus, the proof of Theorem 2 is completed. ■

Finally, we consider the case, when  $b$  is a nonzero complex number and  $\eta \in \mathbb{R}$ . Then we get:

**THEOREM 3.** Let  $b$  be a nonzero complex number and let  $f \in \mathcal{S}_m(b, \lambda, \mu)$ . Then for  $\eta \in \mathbb{R}$  we have

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{4|b|^2}{A^{2m}} [\Re(k_1) - \eta] + \frac{|b||\sin \theta|}{B^m} & \text{if } \eta \leq N_1, \\ \frac{|b|}{B^m} & \text{if } N_1 \leq \eta \leq R_1, \\ \frac{4|b|^2}{A^{2m}} [\eta - \Re(k_1)] + \frac{|b||\sin \theta|}{B^m} & \text{if } \eta \geq R_1, \end{cases}$$

where  $A = [1 + (2\lambda\mu + \lambda - \mu)]$ ,  $B = [1 + 2(3\lambda\mu + \lambda - \mu)]$ ,  $|b| = be^{i\theta}$ ,  $k_1 = \frac{A^{2m}}{2B^m} + \frac{A^{2m}e^{i\theta}}{4|b|B^m}$ ,  $\ell_1 = \frac{A^{2m}}{4|b|B^m}$ ,  $N_1 = \Re(k_1) - \ell_1(1 - |\sin \theta|)$  and  $R_1 = \Re(k_1) + \ell_1(1 - |\sin \theta|)$ . For each  $\eta$  there is a function in  $\mathcal{S}_m(b, \lambda, \mu)$  such that the equality holds.

**Proof.** From the inequality (2.10), we have

$$\begin{aligned} |a_3 - \eta a_2^2| &= \frac{|b|}{2B^m} \left( \left| c_2 - \frac{c_1^2}{2} \right| + \frac{|c_1|^2}{2} \left| 1 + 2b - \frac{4\eta b B^m}{A^{2m}} \right| \right) \\ &\leq \frac{|b|}{2B^m} \left[ 2 - \frac{|c_1|^2}{2} + \frac{|c_1|^2}{2} \left| 1 + 2b - \frac{4\eta b B^m}{A^{2m}} \right| \right] \\ &= \frac{|b|}{2B^m} \left[ \frac{|c_1|^2}{2} \left( \left| 1 + 2b - \frac{4\eta b B^m}{A^{2m}} \right| - 1 \right) + 2 \right] \\ &= \frac{|b|}{B^m} + \frac{|b|}{4B^m} \left[ \left| \frac{4\eta b B^m}{A^{2m}} - 2b - 1 \right| - 1 \right] |c_1|^2 \\ &= \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} \left[ \left| \eta - \frac{A^{2m}}{2B^m} - \frac{A^{2m}}{4b B^m} \right| - \frac{A^{2m}}{4|b|B^m} \right] |c_1|^2. \end{aligned}$$

If we write  $|b| = be^{i\theta}$  (or  $b = |b|e^{-i\theta}$ ),  $\frac{A^{2m}}{2B^m} + \frac{A^{2m}e^{i\theta}}{4|b|B^m} = k_1$  and  $\frac{A^{2m}}{4|b|B^m} = \ell_1$  in last equation, we get

$$\begin{aligned} (2.13) \quad |a_3 - \eta a_2^2| &\leq \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} [|\eta - k_1| - \ell_1] |c_1|^2 \\ &\leq \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} [|\eta - \Re(k_1)| + \ell_1 |\sin \theta| - \ell_1] |c_1|^2 \\ &= \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} [|\eta - \Re(k_1)| - \ell_1(1 - |\sin \theta|)] |c_1|^2. \end{aligned}$$

We consider the following cases for (2.13). Suppose  $\eta \leq \Re(k_1)$ . Then

$$\begin{aligned} (2.14) \quad |a_3 - \eta a_2^2| &\leq \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} [\Re(k_1) - \ell_1(1 - |\sin \theta|) - \eta] |c_1|^2 \\ &= \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} [N_1 - \eta] |c_1|^2. \end{aligned}$$

Let  $\eta \leq N_1 = \Re(k_1) - \ell_1(1 - |\sin \theta|)$ . By using Lemma 1 and  $\ell_1 = \frac{A^{2m}}{4|b|B^m}$  in inequality (2.14), we get

$$\begin{aligned} |a_3 - \eta a_2^2| &\leq \frac{|b|}{B^m} + \frac{4|b|^2}{A^{2m}} (\Re(k_1) - \eta) - \frac{4|b|^2}{A^{2m}} \frac{A^{2m}}{4|b|B^m} (1 - |\sin \theta|) \\ &= \frac{|b|}{B^m} + \frac{4|b|^2}{A^{2m}} (\Re(k_1) - \eta) - \frac{|b|}{B^m} (1 - |\sin \theta|) \\ &= \frac{4|b|^2}{A^{2m}} (\Re(k_1) - \eta) + \frac{|b| |\sin \theta|}{B^m}. \end{aligned}$$

If we take  $N_1 = \Re(k_1) - \ell_1(1 - |\sin \theta|) \leq \eta \leq \Re(k_1)$ , then (2.14) gives

$$|a_3 - \eta a_2^2| \leq \frac{|b|}{B^m}.$$

Let  $\eta \geq \Re(k_1)$ . From (2.13) we get

$$\begin{aligned} (2.15) \quad |a_3 - \eta a_2^2| &\leq \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} [\eta - (\Re(k_1) + \ell_1(1 - |\sin \theta|))] |c_1|^2 \\ &= \frac{|b|}{B^m} + \frac{|b|^2}{A^{2m}} [\eta - R_1] |c_1|^2. \end{aligned}$$

Let  $\eta \leq R_1 = \Re(k_1) + \ell_1(1 - |\sin \theta|)$ . Applying (2.15) we obtain

$$|a_3 - \eta a_2^2| \leq \frac{|b|}{B^m}.$$

Let  $\eta \geq R_1 = \Re(k_1) + \ell_1(1 - |\sin \theta|)$ . By using Lemma 1 and  $\ell_1 = \frac{A^{2m}}{4|b|B^m}$  in equality (2.15), we get

$$\begin{aligned} |a_3 - \eta a_2^2| &\leq \frac{|b|}{B^m} + \frac{4|b|^2}{A^{2m}} (\eta - \Re(k_1)) - \frac{|b|}{B^m} (1 - |\sin \theta|) \\ &\leq \frac{4|b|^2}{A^{2m}} (\eta - \Re(k_1)) + \frac{|b| |\sin \theta|}{B^m}. \end{aligned}$$

Therefore, the proof is completed. ■

**COROLLARY 1.** *If we take  $\lambda = 1$  and  $\mu = 0$  in Theorems 1–3, we have following new results, respectively.*

(1) *Let  $b \in \mathbb{C}$ ,  $b \neq 0$  and  $f \in \mathcal{S}_m(b)$ . Then for  $\eta \in \mathbb{C}$  we have*

$$|a_2| \leq \frac{|b|}{2^{m-1}}, \quad |a_3| \leq \frac{|b|}{3^m} \max \{1, |1 + 2b|\}$$

and

$$|a_3 - \eta a_2^2| \leq \frac{|b|}{3^m} \max \left\{ 1, \left| 1 + 2b - 4\eta b \left( \frac{3}{4} \right)^m \right| \right\}.$$

*Equality holds for the cases  $\lambda=1$ ,  $\mu=0$  of (2.4) and (2.5) in Theorem 1.*

(2) Let  $b > 0$  and  $f \in \mathcal{S}_m(b)$ . Then for  $\eta \in \mathbb{R}$  we have

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{b}{3^m} \left\{ 1 + 2b \left[ 1 - \frac{2\eta B^m}{A^{2m}} \right] \right\} & \text{if } \eta \leq \frac{1}{2} \left( \frac{4}{3} \right)^m, \\ \frac{b}{B^m} & \text{if } \frac{1}{2} \left( \frac{4}{3} \right)^m \leq \eta \leq \frac{(1+2b)}{4b} \left( \frac{4}{3} \right)^m, \\ \frac{b}{B^m} \left[ \frac{4\eta B^m}{A^{2m}} - 2b - 1 \right] & \text{if } \eta \geq \frac{(1+2b)}{4b} \left( \frac{4}{3} \right)^m. \end{cases}$$

For each  $\eta$ , the equality holds for the cases  $\lambda=1$ ,  $\mu=0$  of (2.4) and (2.5).

(3) Let  $b \in \mathbb{C}$ ,  $b \neq 0$  and  $f \in \mathcal{S}_m(b)$ . Then for  $\eta \in \mathbb{R}$  we have

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{|b|^2}{4^{m-1}} [\Re(k_1) - \eta] + \frac{|b||\sin \theta|}{3^m} & \text{if } \eta \leq N_1, \\ \frac{|b|}{3^m} & \text{if } N_1 \leq \eta \leq R_1, \\ \frac{|b|^2}{4^{m-1}} [\eta - \Re(k_1)] + \frac{|b||\sin \theta|}{3^m} & \text{if } \eta \geq R_1, \end{cases}$$

where  $|b| = b e^{i\theta}$ ,  $k_1 = \left( \frac{4}{3} \right)^m - \left( \frac{4}{3} \right)^m \frac{e^{i\theta}}{4|b|}$ ,  $\ell_1 = \left( \frac{4}{3} \right)^m \frac{1}{4|b|}$ ,  $N_1 = \Re(k_1) - \ell_1 (1 - |\sin \theta|)$  and  $R_1 = \Re(k_1) + \ell_1 (1 - |\sin \theta|)$ . For each  $\eta$  there is a function in  $\mathcal{S}_m(b)$  such that the equality holds.

As an analogue to the complex  $n$ th starlikeness of a complex order we can introduce the notion of  $n$ th convexity of a complex order as follows:

**DEFINITION 2.** Let  $b$  be a nonzero complex number and let  $f \in \mathcal{A}$ . We say that  $f$  belongs to  $\mathcal{C}_m(b, \lambda, \mu)$  if

$$\operatorname{Re} \left( 1 + \frac{1}{b} \left( z \frac{(D_{\lambda, \mu}^m f(z))''}{(D_{\lambda, \mu}^m f(z))'} \right) \right) > 0, \quad 0 \leq \mu \leq \lambda, \quad m \in \mathbb{N}, \quad z \in \mathcal{U}.$$

We easily obtain bounds of coefficients and a solution of the Fekete–Szegö problem in  $\mathcal{C}_m(b, \lambda, \mu)$ . For special values of  $\lambda = 1$  and  $\mu = 0$  from the general class  $\mathcal{C}_m(b, \lambda, \mu)$ , the new class  $\mathcal{C}_m(b)$  can be obtained.

**THEOREM 4.** Let  $b$  be a nonzero complex number and  $\eta \in \mathbb{C}$ ,  $0 \leq \mu \leq \lambda$ . If  $f$  of the form (1.1) is in  $\mathcal{C}_m(b, \lambda, \mu)$ , then

$$|a_2| \leq \frac{|b|}{A^m}, \quad |a_3| \leq \frac{|b|}{3B^m} \max \{1, |1 + 2b|\}$$

and

$$|a_3 - \eta a_2^2| \leq \frac{|b|}{3B^m} \max \left\{ 1, \left| 1 + 2b - \eta \frac{3bB^m}{A^{2m}} \right| \right\},$$

where  $A = [1 + (2\lambda\mu + \lambda - \mu)]$  and  $B = [1 + 2(3\lambda\mu + \lambda - \mu)]$ . For each  $\eta$  there is a function in  $\mathcal{C}_m(b, \lambda, \mu)$  such that equalities hold.

**THEOREM 5.** Let  $b > 0$  and let  $f \in \mathcal{C}_m(b, \lambda, \mu)$ . Then for  $\eta \in \mathbb{R}$  we have

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{b}{3B^m} \left[ 1 + 2b - \eta \frac{3bB^m}{A^{2m}} \right] & \text{if } \eta \leq \frac{4A^{2m}}{3B^m}, \\ \frac{b}{3B^m} & \text{if } \frac{4A^{2m}}{3B^m} \leq \eta \leq \frac{(1+2b)A^{2m}}{3bB^m}, \\ \frac{b}{3B^m} \left[ -1 - 2b + \eta \frac{3bB^m}{A^{2m}} \right] & \text{if } \eta \geq \frac{(1+2b)A^{2m}}{3bB^m}, \end{cases}$$

where  $A = [1 + (2\lambda\mu + \lambda - \mu)]$  and  $B = [1 + 2(3\lambda\mu + \lambda - \mu)]$ . For each  $\eta$  there is a function in  $\mathcal{C}_m(b, \lambda, \mu)$  such that equality holds.

**THEOREM 6.** Let  $b$  be a nonzero complex number and let  $f \in \mathcal{C}_m(b, \lambda, \mu)$ . Then for  $\eta \in \mathbb{R}$  we have

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{|b|^2}{A^{2m}} (\Re(k_2) - \eta) + \frac{|b||\sin \theta|}{3B^m} & \text{if } \eta \leq N_2, \\ \frac{|b|}{3B^m} & \text{if } N_2 \leq \eta \leq R_2, \\ \frac{|b|^2}{A^{2m}} (\eta - \Re(k_2)) + \frac{|b||\sin \theta|}{3B^m} & \text{if } \eta \geq R_2, \end{cases}$$

where  $A = [1 + (2\lambda\mu + \lambda - \mu)]$ ,  $B = [1 + 2(3\lambda\mu + \lambda - \mu)]$ ,  $|b| = be^{i\theta}$ ,  $k_2 = \frac{2A^{2m}}{3B^m} + \frac{A^{2m}e^{i\theta}}{3|b|B^m}$ ,  $\ell_2 = \frac{A^{2m}}{3|b|B^m}$ ,  $N_2 = \Re(k_2) - \ell_2(1 - |\sin \theta|)$  and  $R_2 = \Re(k_2) + \ell_2(1 - |\sin \theta|)$ . For each  $\eta$  there is a function in  $\mathcal{C}_m(b, \lambda, \mu)$  such that equality holds.

**COROLLARY 2.** If we take  $\lambda = 1$  and  $\mu = 0$  in Theorems 4–6, we have the following new results.

(1) Let  $b \in \mathbb{C}$ ,  $b \neq 0$  and  $f \in \mathcal{C}_m(b)$ . Then for  $\eta \in \mathbb{C}$  we have

$$|a_2| \leq \frac{|b|}{2^m}, \quad |a_3| \leq \frac{|b|}{3^{m+1}} \max \{1, |1 + 2b|\}$$

and

$$|a_3 - \eta a_2^2| \leq \frac{|b|}{3^{m+1}} \max \left\{ 1, \left| 1 + 2b - 4\eta b \left( \frac{3}{4} \right)^{m+1} \right| \right\}.$$

For each  $\eta$  there is a function in  $\mathcal{C}_m(b)$  such that equality holds.

(2) Let  $b > 0$  and  $f \in \mathcal{C}_m(b)$ . Then for  $\eta \in \mathbb{R}$  we have

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{b}{3^{m+1}} \left[ 1 + 2b - 4\eta b \left( \frac{3}{4} \right)^{m+1} \right] & \text{if } \eta \leq \left( \frac{4}{3} \right)^{m+1}, \\ \frac{b}{3^{m+1}} & \text{if } \left( \frac{4}{3} \right)^{m+1} \leq \eta \leq \frac{(1+2b)}{4b} \left( \frac{4}{3} \right)^{m+1}, \\ \frac{b}{3^{m+1}} \left[ -1 - 2b + 4\eta b \left( \frac{3}{4} \right)^{m+1} \right] & \text{if } \eta \geq \frac{(1+2b)}{4b} \left( \frac{4}{3} \right)^{m+1}. \end{cases}$$

For each  $\eta$  there is a function in  $\mathcal{C}_m(b)$  such that equality holds.

(3) Let  $b \in \mathbb{C}$ ,  $b \neq 0$  and  $f \in \mathcal{C}_m(b)$ . Then for  $\eta \in \mathbb{R}$  we have

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{|b|^2}{4^m} (\Re(k_2) - \eta) + \frac{|b||\sin \theta|}{3^{m+1}} & \text{if } \eta \leq N_2, \\ \frac{|b|}{3^{m+1}} & \text{if } N_2 \leq \eta \leq R_2, \\ \frac{|b|^2}{4^m} (\eta - \Re(k_2)) + \frac{|b||\sin \theta|}{3^{m+1}} & \text{if } \eta \geq R_2, \end{cases}$$

where  $|b| = be^{i\theta}$ ,  $k_2 = \frac{1}{2} \left(\frac{4}{3}\right)^{m+1} - \frac{e^{i\theta}}{4|b|} \left(\frac{4}{3}\right)^{m+1}$ ,  $\ell_2 = \frac{1}{4|b|} \left(\frac{4}{3}\right)^{m+1}$ ,  $N_2 = \Re(k_2) - \ell_2 (1 - |\sin \theta|)$  and  $R_2 = \Re(k_2) + \ell_2 (1 - |\sin \theta|)$ . For each  $\eta$  there is a function in  $\mathcal{C}_m(b)$  such that equality holds.

**Acknowledgements.** Authors would like to thank the referee for thoughtful comments and suggestions.

The present investigation was supported by Ataturk University Rectorship under BAP Project (The Scientific and Research Project of Ataturk University) Project no: 2010/28.

## References

- [1] H. R. Abdel-Gawad, D. K. Thomas, *The Fekete–Szegö problem for strongly close-to-convex functions*, Proc. Amer. Math. Soc. 114 (1992), 345–349.
- [2] F. M. Al-Oboudi, *On univalent functions defined by a generalized Salagean operator*, Int. J. Math. Math. Sci. 27 (2004), 1429–1436.
- [3] A. Chonweerayoot, D. K. Thomas, W. Upakarnitikaset, *On the Fekete–Szegö theorem for close-to-convex functions*, Publ. Inst. Math. (Beograd) (N.S.) 66 (1992), 18–26.
- [4] M. Darus, D. K. Thomas, *On the Fekete–Szegö theorem for close-to-convex functions*, Math. Japon. 44 (1996), 507–511.
- [5] M. Darus, D. K. Thomas, *On the Fekete–Szegö theorem for close-to-convex functions*, Math. Japon. 47 (1998), 125–132.
- [6] E. Deniz, H. Orhan, *The Fekete–Szegö problem for a generalized subclass of analytic functions*, Kyungpook Math. J. 50 (2010), 37–47.
- [7] M. Fekete, G. Szegö, *Eine Bemerkung über ungerade schlichte Funktionen*, J. Lond. Math. Soc. 8 (1933), 85–89.
- [8] S. Kanas, H. E. Darwish, *Fekete–Szegö problem for starlike and convex functions of complex order*, Appl. Math. Lett. 23(7) (2010), 777–782.
- [9] F. R. Keogh, E. P. Merkes, *A coefficient inequality for certain classes of analytic functions*, Proc. Amer. Math. Soc. 20 (1969), 8–12.
- [10] W. Koepf, *On the Fekete–Szegö problem for close-to-convex functions*, Proc. Amer. Math. Soc. 101 (1987), 89–95.
- [11] R. R. London, *Fekete–Szegö inequalities for close-to-convex functions*, Proc. Amer. Math. Soc. 117 (1993), 947–950.
- [12] W. Ma, D. Minda, *A unified treatment of some special classes of univalent functions*, in: Z. Li, F. Ren, L. Yang, S. Zhang (Eds.), Proceeding of Conference on Complex Analytic, Int. Press, 1994, 157–169.
- [13] M. A. Nasr, M. K. Aouf, *Starlike function of complex order*, J. Natur. Sci. Math. 25 (1985), 1–12.

- [14] M. A. Nasr, M. K. Aouf, *On convex functions of complex order*, Mansoura Sci. Bull. (1982), 565–582.
- [15] H. Orhan, E. Deniz, D. Răducanu, *The Fekete–Szegő problem for subclasses of analytic functions defined by a differential operator related to conic domains*, Comput. Math. Appl. 59 (2010), 283–295.
- [16] H. Orhan, D. Răducanu, *Fekete–Szegő problem for strongly starlike functions associated with generalized hypergeometric functions*, Math. Comput. Modelling 50 (2009), 430–438.
- [17] A. Pfluger, *The Fekete–Szegő inequality by a variational method*, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1984).
- [18] C. Pommerenke, *Univalent Functions*, in: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975.
- [19] D. Răducanu, H. Orhan, *Subclasses of analytic functions defined by a generalized differential operator*, Int. J. Math. Anal. 4(1) (2010), 1–15.
- [20] G. S. Sălăgean, *Subclasses of univalent functions*, Complex analysis, Proc. 5th Rom.–Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math. 1013 (1983), 362–372.
- [21] P. Wiatrowski, *The coefficients of a certain family of holomorphic functions*, Zeszyty Nauk. Univ. Łódz., Nauki. Mat. Przyrod. Ser. II (1971), 75–85.

DEPARTMENT OF MATHEMATICS  
 FACULTY OF SCIENCE  
 ATATURK UNIVERSITY  
 ERZURUM, 25240, TURKEY  
 E-mail: horhan@atauni.edu.tr; orhanhalit607@gmail.com  
 edeniz36@gmail.com  
 mcaglar25@gmail.com

*Received July 13, 2010; revised version January 2, 2011.*