

Jolanta Kosman

CARDINAL INVARIANTS CONCERNING CLOSED GRAPH FUNCTIONS

Abstract. Cardinal invariants connected with sums, products and quotients of real functions concerning the family of closed graph functions and the complement in $\mathbb{R}^{\mathbb{R}}$ of this family are investigate.

1. Introduction

The letters \mathbb{R} , \mathbb{Q} and \mathbb{N} denote the real line, the set of rationals and the set of positive integers, respectively. The family of all functions from a set X into Y is denoted by Y^X . The word *function* denotes a mapping from \mathbb{R} to \mathbb{R} unless otherwise explicitly stated. For each set $A \subset \mathbb{R}$ the symbol χ_A denote the characteristic function of A . We consider cardinals as ordinals not in one-to-one correspondence with the smaller ordinals. The symbol $\text{card } X$ stands for the cardinality of a set X . We write $\mathfrak{c} = \text{card } \mathbb{R}$. For each set $A \subset \mathbb{R}$ the symbol $\text{cl } A$ denotes the closure of A .

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. The symbol $C(f)$ denotes the set of points of continuity of f . For each $y \in \mathbb{R}$ let $[f = y] = \{x \in \mathbb{R}: f(x) = y\}$. Similarly we define the symbols $[f > y]$, $[f < y]$. We say that f has the *closed graph* ($f \in \mathcal{U}$), if the set $\{(x, f(x)) : x \in \mathbb{R}\}$ is closed in \mathbb{R}^2 . We say that f is a *piecewise continuous* function ($f \in \mathcal{P}$), if there are closed sets $F_n \subset \mathbb{R}$ such that $\bigcup_{n \in \mathbb{N}} F_n = \mathbb{R}$ and the restriction $f|F_n$ is continuous for each $n \in \mathbb{N}$. It is known that a function $f \in \mathbb{R}^{\mathbb{R}}$ is piecewise continuous iff f is a *Baire-one-star function* i.e. for each closed set $F \subset \mathbb{R}$ there is an open set G such that $F \cap G \neq \emptyset$ and $f|(F \cap G)$ is continuous (see [9]).

If $\mathcal{A} \subset \mathbb{R}^{\mathbb{R}}$, denote by

$$\mathcal{A} - \mathcal{A} \stackrel{\text{df}}{=} \{f - g : f, g \in \mathcal{A}\},$$

$$\mathcal{A}/\mathcal{A} \stackrel{\text{df}}{=} \{f/g : f, g \in \mathcal{A} \text{ & } g(x) \neq 0 \text{ for each } x \in \mathbb{R}\}.$$

In 1991 T. Natkaniec [11] defined the following two cardinal functions for every $\mathcal{A} \subset \mathbb{R}^{\mathbb{R}}$

$$\begin{aligned} a(\mathcal{A}) &\stackrel{\text{df}}{=} \min(\{\text{card } \mathcal{F} : \mathcal{F} \subset \mathbb{R}^{\mathbb{R}} \& \neg(\exists_g \forall_{f \in \mathcal{F}} f + g \in \mathcal{A})\} \cup \{(2^c)^+\}), \\ m(\mathcal{A}) &\stackrel{\text{df}}{=} \min(\{\text{card } \mathcal{F} : \mathcal{F} \subset \mathbb{R}^{\mathbb{R}} \& \neg(\exists_{g \in \mathbb{R}^{\mathbb{R}} \setminus \{\chi_{\emptyset}\}} \forall_{f \in \mathcal{F}} f \cdot g \in \mathcal{A})\} \cup \{(2^c)^+\}). \end{aligned}$$

The extra assumption that $g \neq \chi_{\emptyset}$ is added in the definition of m since otherwise for every family $\mathcal{A} \subset \mathbb{R}^{\mathbb{R}}$ containing constant zero function χ_{\emptyset} we would have $m(\mathcal{A}) = (2^c)^+$.

The values of functions a and m for different classes of real functions has been studied in several papers (see e.g. [3] and [4]).

The following cardinal function connected with quotients of functions has been defined in [5] (compare also [6]) for every $\mathcal{A} \subset \mathbb{R}^{\mathbb{R}}$.

$$q(\mathcal{A}) \stackrel{\text{df}}{=} \min(\{\text{card } \mathcal{F} : \mathcal{F} \subset \mathcal{A}/\mathcal{A} \& \neg(\exists_g \forall_{f \in \mathcal{F}} f/g \in \mathcal{A})\} \cup \{(\text{card } \mathcal{A}/\mathcal{A})^+\}).$$

In the above definition it is quite natural to restrict ourselves to subfamilies of \mathcal{A}/\mathcal{A} only. Indeed, if there is a function g such that both f/g and $1/g$ are in \mathcal{A} , then $f \in \mathcal{A}/\mathcal{A}$.

In 1996 Jordan (see [7] or [8]) examined the values of $a(\neg\mathcal{A})$, where $\neg\mathcal{A} \stackrel{\text{df}}{=} \mathbb{R}^{\mathbb{R}} \setminus \mathcal{A}$ and classes \mathcal{A} are chosen from the classes of Darboux-like functions. Notice that $a(\neg\mathcal{A})$ has the following interpretation:

$a(\neg\mathcal{A})$ is the smallest cardinality of a family $\mathcal{B} \subset \mathbb{R}^{\mathbb{R}}$ such that $\mathcal{A} - \mathcal{B} = \mathbb{R}^{\mathbb{R}}$, where $\mathcal{A} - \mathcal{B} = \{f - g : f \in \mathcal{A} \& g \in \mathcal{B}\}$.

The purpose of this paper is to find the values of cardinal functions a , m and q for the families \mathcal{U} and $\neg\mathcal{U}$, where $\neg\mathcal{U} \stackrel{\text{df}}{=} \mathbb{R}^{\mathbb{R}} \setminus \mathcal{U}$. We obtained the following results:

- $a(\mathcal{U}) = 2 = m(\mathcal{U})$ (see Theorems 2.2 and 2.3);
- $q(\mathcal{U}) = \omega$ (see Theorem 2.7);
- $a(\neg\mathcal{U}) = 2^c = q(\neg\mathcal{U})$ (see Corollaries 3.2 and 3.7);
- $m(\neg\mathcal{U}) = 1$ (this equality is obvious).

2. The family \mathcal{U}

Before we start our examination, we recall some basic facts about cardinal functions a and m (see [4] or [7, Proposition 1]), which will be applied in this paper.

PROPOSITION 2.1. *Let $\mathcal{A} \subset \mathbb{R}^{\mathbb{R}}$. Then*

- (a) *if $\mathcal{A} \neq \emptyset$ then $a(\mathcal{A}) = 2$ if and only if $\mathcal{A} - \mathcal{A} \neq \mathbb{R}^{\mathbb{R}}$;*
- (b) *$a(\mathcal{A}) \leq 2^c$ if and only if $\mathcal{A} \neq \mathbb{R}^{\mathbb{R}}$;*
- (c) *$m(\mathcal{A}) \geq 2$ if $\chi_{\emptyset}, \chi_{\mathbb{R}} \in \mathcal{A}$.*

Since $\mathcal{U} - \mathcal{U} = \mathcal{P}$ (see [2] or [1, Theorem 2]), then from Proposition 2.1(a) we conclude that

THEOREM 2.2. $a(\mathcal{U}) = 2$.

THEOREM 2.3. $m(\mathcal{U}) = 2$.

Proof. The inequality $m(\mathcal{U}) \geq 2$ follows from Proposition 2.1(c). To see that $m(\mathcal{U}) \leq 2$ take $\mathcal{F} \stackrel{\text{df}}{=} \{\chi_{\mathbb{Q}}, \chi_{\mathbb{R}}\}$. Let $g \in \mathbb{R}^{\mathbb{R}} \setminus \{\chi_{\emptyset}\}$. It is enough to show that $f \cdot g \notin \mathcal{U}$ for some $f \in \mathcal{F}$. If $g \in \mathcal{U}$, then $\chi_{\mathbb{Q}} \cdot g \notin \mathcal{U}$, since $\text{cl}[\chi_{\mathbb{Q}} \cdot g = 0] = \mathbb{R}$ and $\chi_{\mathbb{Q}} \cdot g \neq \chi_{\emptyset}$. Otherwise, evidently $\chi_{\mathbb{R}} \cdot g \notin \mathcal{U}$. ■

Now, recall the characterization of $\mathcal{U}_{/\mathcal{U}}$ given by Borsík [1, Theorem 4].

PROPOSITION 2.4. *A function f belongs to $\mathcal{U}_{/\mathcal{U}}$ iff f belongs to \mathcal{P} and the set $[f = 0]$ is closed.*

LEMMA 2.5. *Let $f, h \in \mathcal{U}_{/\mathcal{U}}$. There is a function $g : \mathbb{R} \rightarrow (0, \infty)$ such that $f/g \in \mathcal{U}$ and $h/g \in \mathcal{U}$.*

Proof. Let $f, h \in \mathcal{U}_{/\mathcal{U}}$. By Proposition 2.4 the sets $A \stackrel{\text{df}}{=} [f = 0]$, $B \stackrel{\text{df}}{=} [h = 0]$ are closed and $f, h \in \mathcal{P}$. Let $\{F_n : n \in \mathbb{N}\}$ be an increasing sequence of closed subsets of \mathbb{R} such that $F_1 \stackrel{\text{df}}{=} \emptyset$, the restrictions $f|_{F_n}$ and $h|_{F_n}$ are continuous for each $n \geq 2$ and $\bigcup_{n \in \mathbb{N}} F_n = \mathbb{R}$. Put $E_n \stackrel{\text{df}}{=} F_{n+1} \setminus F_n$ for each $n \in \mathbb{N}$. Define $g : \mathbb{R} \rightarrow (0, \infty)$ by the formula

$$g(x) =$$

$$\begin{cases} 1, & \text{if } x \in A \cap B, \\ \varrho(x, F_n \cup B) \min\{1, |h(x)|\}, & \text{if } x \in E_n \cap A \setminus B, n \in \mathbb{N}, \\ \varrho(x, F_n \cup A) \min\{1, |f(x)|\}, & \text{if } x \in E_n \cap B \setminus A, n \in \mathbb{N}, \\ \varrho(x, F_n \cup A \cup B) \min\{1, |f(x)|, |h(x)|\}, & \text{if } x \in E_n \setminus (A \cup B), n \in \mathbb{N}. \end{cases}$$

We will show that $f/g \in \mathcal{U}$ (analogously we can prove that $h/g \in \mathcal{U}$). Let $x_0 \in \mathbb{R}$, $x_n \rightarrow x_0$ and $(f/g)(x_n) \rightarrow y_0$ ($y_0 \in \mathbb{R}$). We consider three cases.

If $x_0 \in A$, then there is $n_0 \in \mathbb{N}$ such that $x_n \in A$ for each $n > n_0$. Indeed, if $x \in \{x_n : n \in \mathbb{N}\} \setminus A$, then $x \in E_k \setminus A$ for some $k \in \mathbb{N}$ and

$$|(f/g)(x)| \geq |f(x)| / (\varrho(x, A) \cdot \min\{1, |f(x)|\}) \geq 1/\varrho(x, A) \geq 1/|x - x_0|.$$

Since $x_n \rightarrow x_0$ and $(f/g)(x_n) \rightarrow y_0$, where $y_0 \in \mathbb{R}$, the set of all such x must be finite. Hence $(f/g)(x_n) = 0 \rightarrow (f/g)(x_0) = 0$ for $n > n_0$.

Now, assume that $x_0 \in \mathbb{R} \setminus (A \cup B)$. Let $k \in \mathbb{N}$ be such that $x_0 \in E_k \setminus (A \cup B)$. We will show that there is $n_0 \in \mathbb{N}$ such that $x_n \in E_k \setminus (A \cup B)$ for each $n > n_0$. Since $x_n \rightarrow x_0$, $x_0 \notin (F_k \cup A \cup B)$ and the set $F_k \cup A \cup B$ is closed, there is $n_1 \in \mathbb{N}$ such that $x_n \notin (F_k \cup A \cup B)$ for each $n > n_1$.

Moreover, if $x \in \{x_n : n > n_1\}$ be such that $x \notin F_{k+1}$, then $x \in E_i \setminus (A \cup B)$ for some $i \geq k+1$ and

$$|(f/g)(x)| \geq 1/\varrho(x, F_{k+1}) \geq 1/|x - x_0|.$$

Consequently, the set of all such x must be finite. Since f and g are continuous on $E_k \setminus (A \cup B)$, we have $(f/g)(x_n) \rightarrow (f/g)(x_0)$.

Similarly we can show that, if $x_0 \in B \setminus A$, then $(f/g)(x_n) \rightarrow (f/g)(x_0)$. ■

The proof of the next proposition is a repetition of the argumentation used in the proof of [10, Proposition II 3.3].

PROPOSITION 2.6. *Let $g: \mathbb{R} \rightarrow \mathbb{R}$. If $C(g) \neq \emptyset$, then there is a $q \in \mathbb{Q}$ such that $\chi_{\{q\}} + g \notin \mathcal{U}$.*

Proof. Let g be a function and $x \in C(g)$. Let $\delta > 0$ such that $|g(t) - g(x)| < 2^{-1}$ for $t \in (x - \delta, x + \delta)$. Choose a $q \in \mathbb{Q} \cap (x - \delta, x + \delta)$. Then $(\chi_{\{q\}} + g)(q) > g(x) + 2^{-1}$ and $(\chi_{\{q\}} + g)(t) < g(x) + 2^{-1}$ for every $t \in (x - \delta, x + \delta) \setminus \{q\}$. Consequently $\chi_{\{q\}} + g \notin \mathcal{U}$. ■

THEOREM 2.7. $q(\mathcal{U}) = \omega$.

Proof. Proceeding similarly as in the proof of Lemma 2.5 we can show that if $f_1, \dots, f_k \in \mathcal{U}_{\mathcal{U}}$, then there is a function $g: \mathbb{R} \rightarrow (0, \infty)$ such that $f_i/g \in \mathcal{U}$ for each $i \in \{1, \dots, k\}$. Consequently, $q(\mathcal{U}) \geq \omega$.

Now, we will prove the opposite inequality. Define

$$\mathcal{F} \stackrel{\text{df}}{=} \{\exp \circ \chi_{\{q\}} : q \in \mathbb{Q}\}.$$

Evidently $\text{card } \mathcal{F} = \omega$ and $\mathcal{F} \subset \mathcal{U}_{\mathcal{U}}$. Let $g: \mathbb{R} \rightarrow \mathbb{R} \setminus \{0\}$. We will show that there is a function $f \in \mathcal{F}$ such that $f/g \notin \mathcal{U}$.

If $C(g) = \emptyset$, then $C((\exp \circ \chi_{\{0\}})/g) \subset \{0\}$, so $(\exp \circ \chi_{\{0\}})/g \notin \mathcal{U}$.

Otherwise, by Proposition 2.6, there is a $q \in \mathbb{Q}$ such that $\chi_{\{q\}} - \ln |g| \notin \mathcal{U}$. Hence

$$\exp \circ (\chi_{\{q\}} - \ln |g|) = (\exp \circ \chi_{\{q\}})/|g| \notin \mathcal{U},$$

and consequently $(\exp \circ \chi_{\{q\}})/g \notin \mathcal{U}$. ■

REMARK 1. *Let \mathcal{F} be a finite family of piecewise continuous functions. Then there is a closed graph function $g: \mathbb{R} \rightarrow (0, \infty)$ such that $f + g \in \mathcal{U}$ for each $f \in \mathcal{F}$.*

Proof. Let $f_1, \dots, f_l \in \mathcal{P}$. Let $\{F_n : n \in \mathbb{N}\}$ be an increasing sequence of closed subsets of \mathbb{R} such that $\bigcup_{n \in \mathbb{N}} F_n = \mathbb{R}$ and the restrictions $f_i|F_n$ are continuous for each $n \in \mathbb{N}$ and $i \in \{1, \dots, l\}$. Put $F_0 \stackrel{\text{df}}{=} \emptyset$ and $E_n \stackrel{\text{df}}{=} F_n \setminus F_{n-1}$ for each $n \in \mathbb{N}$. Define a function $h: \mathbb{R} \rightarrow (0, \infty)$ as $h(x) \stackrel{\text{df}}{=} 1/\varrho(x, F_{n-1})$ for $x \in E_n$ and $n \in \mathbb{N}$. Finally, let $g \stackrel{\text{df}}{=} h - \min\{f_1, \dots, f_l, 0\}$. Evidently g is positive.

Fix $i \in \{1, \dots, l\}$. We will show that $f_i + g \in \mathcal{U}$. Let $x_0 \in \mathbb{R}$, $x_n \rightarrow x_0$ and $(f_i + g)(x_n) \rightarrow y_0$ ($y_0 \in \mathbb{R}$). Let $k \in \mathbb{N}$ be such that $x_0 \in E_k$. Then there is $n_0 \in \mathbb{N}$ such that $x_n \in E_k$ for each $n > n_0$. Indeed, since $x_n \rightarrow x_0$ and $x_0 \notin \text{cl } F_{n-1}$, there is $n_1 \in \mathbb{N}$ such that $x_n \notin F_{n-1}$ for each $n > n_1$. Moreover, if $x \in \{x_n : n > n_1\} \setminus F_k$, then $x \in E_i$ for some $i \geq k+1$ and

$$(f_i + g)(x) \geq (f_i + h - \min\{f_i, 0\})(x) \geq h(x) = 1/\varrho(x, F_{i-1}) \geq 1/|x - x_0|.$$

Consequently, the set of all x must be finite. Since $(f_i + g)|E_k$ is continuous, we have $(f_i + g)(x_n) \rightarrow (f_i + g)(x_0) = y_0$. ■

It is easy to see that for the family $\mathcal{F} \stackrel{\text{df}}{=} \{\chi_{\{q\}} : q \in \mathbb{Q}\}$ of piecewise continuous functions does not exist a common summand with respect to the family of closed graph functions (see Proposition 2.6 and the proof of Theorem 2.7).

Observe also that using Remark 1 with $\mathcal{F} \stackrel{\text{df}}{=} \{\chi_{\emptyset}, f\}$, where $f \in \mathcal{P}$ and the inclusion $\mathcal{U} \subset \mathcal{P}$, we obtain the following characterization of the sum and the difference of closed graph functions $\mathcal{U} + \mathcal{U} = \mathcal{P} = \mathcal{U} - \mathcal{U}$. Of course this characterization is known (was given by Doboš in 1998 [2]).

3. The family $\neg\mathcal{U}$

THEOREM 3.1. *Let $\mathcal{A} \subset \mathbb{R}^{\mathbb{R}}$ and $\emptyset \neq \mathcal{A} \neq \mathbb{R}^{\mathbb{R}}$. If $\mathcal{A} \subset \{f \in \mathbb{R}^{\mathbb{R}} : C(f) \neq \emptyset\}$, then $a(\neg\mathcal{A}) = 2^c$.*

Proof. The inequality $a(\neg\mathcal{A}) \leq 2^c$ follows from Proposition 2.1(b). The inequality $a(\neg\mathcal{A}) \geq 2^c$ follows from the proof of [8, Theorem 6]. In this proof Jordan showed that if $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ and $\text{card } \mathcal{F} < 2^c$, then there is a function $g \in \mathbb{R}^{\mathbb{R}}$ such that $f + g$ is not bounded on any perfect set for every $f \in \mathcal{F}$. Consequently, $C(f + g) = \emptyset$ and $f + g \in \neg\mathcal{A}$ for each $f \in \mathcal{F}$. ■

In particular, we obtain

COROLLARY 3.2. $a(\neg\mathcal{U}) = 2^c$.

Now, we prove analogous result for $q(\neg\mathcal{U})$. We start with the useful lemma which can be found in [4, Lemma 2.2].

LEMMA 3.3. *If $B \subset \mathbb{R}$ has cardinality c , $\mathcal{H} \subset \mathbb{Q}^B$, and $\text{card } \mathcal{H} < 2^c$, then there is a $g \in \mathbb{Q}^B$ such that $h \cap g \neq \emptyset$ for every $h \in \mathcal{H}$.*

The next lemma and its proof are similar to [8, Lemma 20] and its proof, respectively.

LEMMA 3.4. *Let $A \subset \mathbb{R}$ and $\text{card } A = c$. If $\mathcal{F} \subset (\mathbb{R} \setminus \{0\})^A$ and $\text{card } \mathcal{F} < 2^c$, there is a function $g: A \rightarrow \mathbb{R} \setminus \{0\}$ such that $f/g: A \rightarrow \mathbb{R} \setminus \{0\}$ is unbounded for each $f \in \mathcal{F}$.*

Proof. Let $\{B_n : n \in \mathbb{N}\}$ be a partition of A such that $\text{card } B_n = \mathfrak{c}$ for each $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$. For each $f \in \mathcal{F}$ choose $h_n^f : B_n \rightarrow \mathbb{Q} \setminus \{0\}$ such that

$$(1) \quad f(x)/h_n^f(x) > n \text{ for every } x \in B_n.$$

Now, by Lemma 3.3 used with the sets B_n and the family $\{h_n^f : f \in \mathcal{F}\}$, there is a $g_n : B_n \rightarrow \mathbb{Q} \setminus \{0\}$ such that,

$$(2) \quad (\forall_{f \in \mathcal{F}}) (\exists_{x \in B_n}) (h_n^f(x) = g_n(x)).$$

Let $g \stackrel{\text{df}}{=} \bigcup \{g_n : n \in \mathbb{N}\}$. Then, by (1) and (2), for every $n \in \mathbb{N}$ and $f \in \mathcal{F}$ there is $x \in B_n \subset A$ such that $f(x)/g_n(x) = f(x)/g(x) > n$. Hence, $f/g : A \rightarrow \mathbb{R} \setminus \{0\}$ is unbounded for every $f \in \mathcal{F}$. ■

THEOREM 3.5. *Let $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}} \setminus \{\chi_{\emptyset}\}$ and $\text{card } \mathcal{F} < 2^{\mathfrak{c}}$. There is a function $g : \mathbb{R} \rightarrow \mathbb{R} \setminus \{0\}$ such that $f/g \in \neg\mathcal{U}$ for each function $f \in \mathcal{F}$.*

Proof. First recall that, if $f \in \mathcal{F}$ and $\text{cl}[f = 0] = \mathbb{R}$, then $f/g \in \neg\mathcal{U}$ for each $g : \mathbb{R} \rightarrow \mathbb{R} \setminus \{0\}$. So we may assume that $\text{cl}[f = 0] \neq \mathbb{R}$ for each $f \in \mathcal{F}$.

Choose a partition $\{S_\alpha : \alpha < \mathfrak{c}\}$ of \mathbb{R} into pairwise disjoint \mathfrak{c} -dense sets and let $\{I_\alpha : \alpha < \mathfrak{c}\}$ be an enumeration of the open intervals in \mathbb{R} . Let $A_\alpha \stackrel{\text{df}}{=} S_\alpha \cap I_\alpha$. Note that $\text{card } A_\alpha = \mathfrak{c}$ and $A_\alpha \cap A_\beta = \emptyset$ for $\alpha < \beta < \mathfrak{c}$. Fix $\alpha < \mathfrak{c}$. Let $\mathcal{F}_\alpha \stackrel{\text{df}}{=} \{f|A_\alpha : f \in \mathcal{F} \& A_\alpha \subset [f \neq 0]\}$. Evidently $\text{card } \mathcal{F}_\alpha < 2^{\mathfrak{c}}$. By Lemma 3.4 there is some $g_\alpha : A_\alpha \rightarrow \mathbb{R} \setminus \{0\}$ such that f/g_α is not bounded on A_α for every $f \in \mathcal{F}$. Let $g : \mathbb{R} \rightarrow \mathbb{R} \setminus \{0\}$ extend $\bigcup \{g_\alpha : \alpha < \mathfrak{c}\}$. Observe that for each $f \in \mathcal{F}$ there is a nondegenerate interval I_f such that $C((f/g)|I_f) = \emptyset$. So $f/g \in \neg\mathcal{U}$ for every $f \in \mathcal{F}$. ■

COROLLARY 3.6. $\neg\mathcal{U}/\neg\mathcal{U} = \mathbb{R}^{\mathbb{R}} \setminus \{\chi_{\emptyset}\}$.

Proof. Clearly $\neg\mathcal{U}/\neg\mathcal{U} \subset \mathbb{R}^{\mathbb{R}} \setminus \{\chi_{\emptyset}\}$. Let $f \in \mathbb{R}^{\mathbb{R}} \setminus \{\chi_{\emptyset}\}$. By Theorem 3.5, there is a function g such that $f/g \in \neg\mathcal{U}$ and $1/g \in \neg\mathcal{U}$. Hence $f = (f/g)/(1/g) \in \neg\mathcal{U}/\neg\mathcal{U}$. ■

COROLLARY 3.7. $q(\neg\mathcal{U}) = 2^{\mathfrak{c}}$.

Proof. The inequality $q(\neg\mathcal{U}) \geq 2^{\mathfrak{c}}$ follows from Theorem 3.5 and Corollary 3.6. Now we will show the other inequality.

Let $\mathcal{F} \stackrel{\text{df}}{=} (\mathbb{R} \setminus \{0\})^{\mathbb{R}}$. Clearly $\text{card } \mathcal{F} = 2^{\mathfrak{c}}$ and $\mathcal{F} \subset \neg\mathcal{U}/\neg\mathcal{U}$ (see Corollary 3.6). If $g : \mathbb{R} \rightarrow \mathbb{R} \setminus \{0\}$, then evidently $g \in \mathcal{F}$ and $g/g = \chi_{\mathbb{R}} \notin \neg\mathcal{U}$. Consequently $q(\neg\mathcal{U}) \leq 2^{\mathfrak{c}}$. ■

References

- [1] J. Borsík, *Sums, differences, products and quotients of closed graph functions*, Tatra Mt. Math. Publ. 24 (2002), 117–123.
- [2] J. Doboš, *Sums of closed graph functions*, Tatra Mt. Math. Publ. 14 (1998), 9–11.

- [3] K. Ciesielski, T. Natkaniec, *Algebraic properties of the class of Sierpinski–Zygmund functions*, Topology Appl. 18(1) (1992–93), 232–236.
- [4] K. Ciesielski, I. Reclaw, *Cardinal invariants concerning extendable and peripherally continuous functions*, Real Anal. Exchange 21(2) (1995–96), 459–472.
- [5] J. Jałocha, *Quotients of quasi-continuous functions*, J. Appl. Anal. 6(2) (2000), 251–258.
- [6] J. Kosman, A. Maliszewski *Quotients of Darboux-like functions*, Real Anal. Exchange 35(1) (2009/2010), 243–252.
- [7] F. Jordan, *Cardinal invariants connected with adding real functions*, Real Anal. Exchange 22(1) (1996–97), 91–94.
- [8] F. Jordan, *Cardinal invariants connected with adding real functions*, Real Anal. Exchange 22(2) (1996–97), 696–713.
- [9] B. Kirchheim, *Baire one star functions*, Real Anal. Exchange 18(2) (1992–1993), 385–399.
- [10] A. Maliszewski, *Darboux property and quasi-continuity. A uniform approach*, WSP, Szupsk, 1996.
- [11] T. Natkaniec, *Almost continuity*, Real Anal. Exchange 17(2) (1991–92), 462–520.

CASIMIRUS THE GREAT UNIVERSITY
INSTITUTE OF MATHEMATICS
pl. Weyssenhoffa 11
85–072 BYDGOSZCZ, POLAND
E-mail: jola.kosman@wp.pl

Received September 7, 2010; revised version March 27, 2011.