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CARDINAL INVARIANTS CONCERNING

CLOSED GRAPH FUNCTIONS

Abstract. Cardinal invariants connected with sums, products and quotients of real
functions concerning the family of closed graph functions and the complement in RR of
this family are investigate.

1. Introduction

The letters R, Q and N denote the real line, the set of rationals and the
set of positive integers, respectively. The family of all functions from a set
X into Y is denoted by Y X . The word function denotes a mapping from R

to R unless otherwise explicitly stated. For each set A ⊂ R the symbol χA

denote the characteristic function of A. We consider cardinals as ordinals
not in one-to-one correspondence with the smaller ordinals. The symbol
cardX stands for the cardinality of a set X. We write c = cardR. For each
set A ⊂ R the symbol clA denotes the closure of A.

Let f : R → R. The symbol C(f) denotes the set of points of continuity
of f . For each y ∈ R let [f = y] =

{

x ∈ R : f(x) = y
}

. Similarly we
define the symbols [f > y], [f < y]. We say that f has the closed graph

(f ∈ U), if the set {(x, f(x)) : x ∈ R} is closed in R2. We say that f is
a piecewise continuous function (f ∈ P), if there are closed sets Fn ⊂ R such
that

⋃

n∈N Fn = R and the restriction f↾Fn is continuous for each n ∈ N. It

is known that a function f ∈ RR is piecewise continuous iff f is a Baire-one-

star function i.e. for each closed set F ⊂ R there is an open set G such that
F ∩G 6= ∅ and f↾(F ∩G) is continuous (see [9]).

If A ⊂ RR, denote by

A−A
df
=

{

f − g : f, g ∈ A
}

,

A/A
df
=

{

f/g : f, g ∈ A & g(x) 6= 0 for each x ∈ R
}

.
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In 1991 T. Natkaniec [11] defined the following two cardinal functions for
every A ⊂ RR

a(A)
df
= min

(

{cardF : F ⊂ RR&¬(∃g∀f∈Ff + g ∈ A)} ∪ {(2c)+}
)

,

m(A)
df
= min

(

{cardF : F ⊂ RR&¬(∃g∈RR\{χ∅}
∀f∈Ff · g ∈ A)} ∪ {(2c)+}

)

.

The extra assumption that g 6= χ
∅ is added in the definition of m since

otherwise for every family A ⊂ RR containing constant zero function χ
∅ we

would have m(A) = (2c)+.

The values of functions a and m for different classes of real functions has
been studied in several papers (see e.g. [3] and [4]).

The following cardinal function connected with quotients of functions has
been defined in [5] (compare also [6]) for every A ⊂ RR.

q(A)
df
= min

(

{cardF : F ⊂ A/A&¬(∃g∀f∈F f/g ∈ A)} ∪ {(cardA/A)+}
)

.

In the above definition it is quite natural to restrict ourselves to subfam-
ilies of A/A only. Indeed, if there is a function g such that both f/g and 1/g
are in A, then f ∈ A/A.

In 1996 Jordan (see [7] or [8]) examined the values of a(¬A), where

¬A
df
= RR \ A and classes A are chosen from the classes of Darboux-like

functions. Notice that a(¬A) has the following interpretation:

a(¬A) is the smallest cardinality of a family B ⊂ RR such that A − B
= RR, where A− B = {f − g : f ∈ A & g ∈ B}.

The purpose of this paper is to find the values of cardinal functions a,

m and q for the families U and ¬U , where ¬U
df
= RR \ U . We obtained the

following results:

• a(U) = 2 = m(U) (see Theorems 2.2 and 2.3);
• q(U) = ω (see Theorem 2.7);
• a(¬U) = 2c = q(¬U) (see Corollaries 3.2 and 3.7);
• m(¬U) = 1 ( this equality is obvious).

2. The family U

Before we start our examination, we recall some basic facts about cardinal
functions a and m (see [4] or [7, Proposition 1]), which will be applied in
this paper.

Proposition 2.1. Let A ⊂ RR. Then

(a) if A 6= ∅ then a(A) = 2 if and only if A−A 6= RR;
(b) a(A) ≤ 2c if and only if A 6= RR;
(c) m(A) ≥ 2 if χ∅, χR ∈ A.
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Since U −U = P (see [2] or [1, Theorem 2]), then from Proposition 2.1(a)
we conclude that

Theorem 2.2. a(U) = 2.

Theorem 2.3. m(U) = 2.

Proof. The inequality m(U) ≥ 2 follows from Proposition 2.1(c). To see

that m(U) ≤ 2 take F
df
= {χQ, χR}. Let g ∈ RR \ {χ∅}. It is enough to

show that f · g /∈ U for some f ∈ F . If g ∈ U , then χ
Q · g /∈ U , since

cl[χQ · g = 0] = R and χ
Q · g 6= χ

∅. Otherwise, evidently χ
R · g /∈ U .

Now, recall the characterization of U/U given by Borsík [1, Theorem 4].

Proposition 2.4. A function f belongs to U/U iff f belongs to P and the

set [f = 0] is closed.

Lemma 2.5. Let f, h ∈ U/U . There is a function g : R → (0,∞) such that

f/g ∈ U and h/g ∈ U .

Proof. Let f, h ∈ U/U . By Proposition 2.4 the sets A
df
= [f = 0], B

df
= [h = 0]

are closed and f, h ∈ P. Let {Fn : n ∈ N} be an increasing sequence of

closed subsets of R such that F1

df
= ∅, the restrictions f↾Fn and h↾Fn are

continuous for each n ≥ 2 and
⋃

n∈N Fn = R. Put En
df
= Fn+1 \ Fn for each

n ∈ N. Define g : R → (0,∞) by the formula

g(x) =


















1, if x ∈ A ∩B,

̺(x, Fn ∪B)min{1, |h(x)|}, if x ∈ En ∩A \B, n ∈ N,

̺(x, Fn ∪A)min{1, |f(x)|}, if x ∈ En ∩B \ A, n ∈ N,

̺(x, Fn ∪A ∪B)min{1, |f(x)|, |h(x)|}, if x ∈ En \ (A ∪B), n ∈ N.

We will show that f/g ∈ U (analogously we can prove that h/g ∈ U). Let
x0 ∈ R, xn → x0 and (f/g)(xn) → y0 (y0 ∈ R). We consider three cases.

If x0 ∈ A, then there is n0 ∈ N such that xn ∈ A for each n > n0. Indeed,
if x ∈ {xn : n ∈ N} \A, then x ∈ Ek \A for some k ∈ N and

|(f/g)(x)| ≥ |f(x)|/(̺(x,A) ·min{1, |f(x)|}) ≥ 1/̺(x,A) ≥ 1/|x− x0|.

Since xn → x0 and (f/g)(xn) → y0, where y0 ∈ R, the set of all such x
must be finite. Hence (f/g)(xn) = 0 → (f/g)(x0) = 0 for n > n0.

Now, assume that x0 ∈ R \ (A ∪ B). Let k ∈ N be such that x0 ∈
Ek \ (A∪B). We will show that there is n0 ∈ N such that xn ∈ Ek \ (A∪B)
for each n > n0. Since xn → x0, x0 /∈ (Fk ∪ A ∪B) and the set Fk ∪ A ∪ B
is closed, there is n1 ∈ N such that xn /∈ (Fk ∪ A ∪ B) for each n > n1.
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Moreover, if x ∈ {xn : n > n1} be such that x /∈ Fk+1, then x ∈ Ei \ (A∪B)
for some i ≥ k + 1 and

|(f/g)(x)| ≥ 1/̺(x, Fk+1) ≥ 1/|x− x0|.

Consequently, the set of all such x must be finite. Since f and g are contin-
uous on Ek \ (A ∪B), we have (f/g)(xn) → (f/g)(x0).

Similarly we can show that, if x0 ∈ B \A, then (f/g)(xn) → (f/g)(x0).

The proof of the next proposition is a repetition of the argumentation
used in the proof of [10, Proposition II 3.3].

Proposition 2.6. Let g : R → R. If C(g) 6= ∅, then there is a q ∈ Q such

that χ{q} + g /∈ U .

Proof. Let g be a function and x ∈ C(g). Let δ > 0 such that |g(t)− g(x)|
< 2−1 for t ∈ (x − δ, x + δ). Choose a q ∈ Q ∩ (x − δ, x + δ). Then
(χ{q} + g)(q) > g(x) + 2−1 and (χ{q} + g)(t) < g(x) + 2−1 for every t ∈
(x− δ, x+ δ) \ {q}. Consequently χ

{q} + g /∈ U .

Theorem 2.7. q(U) = ω.

Proof. Proceeding similarly as in the proof of Lemma 2.5 we can show that
if f1, . . . fk ∈ U/U , then there is a function g : R → (0,∞) such that fi/g ∈ U
for each i ∈ {1, . . . , k}. Consequently, q(U) ≥ ω.

Now, we will prove the opposite inequality. Define

F
df
=

{

exp ◦χ{q} : q ∈ Q
}

.

Evidently cardF = ω and F ⊂ U/U . Let g : R → R \ {0}. We will show that
there is a function f ∈ F such that f/g /∈ U .

If C(g) = ∅, then C((exp ◦χ{0})/g) ⊂ {0}, so (exp ◦χ{0})/g /∈ U .
Otherwise, by Proposition 2.6, there is a q ∈ Q such that χ{q}−ln |g| /∈ U .

Hence
exp ◦(χ{q} − ln |g|) = (exp ◦χ{q})/|g| /∈ U ,

and consequently (exp ◦χ{q})/g /∈ U .

Remark 1. Let F be a finite family of piecewise continuous functions.

Then there is a closed graph function g : R → (0,∞) such that f + g ∈ U for

each f ∈ F .

Proof. Let f1, . . . , fl ∈ P. Let {Fn : n ∈ N} be an increasing sequence of
closed subsets of R such that

⋃

n∈N Fn = R and the restrictions fi↾Fn are

continuous for each n ∈ N and i ∈ {1, . . . , l}. Put F0

df
= ∅ and En

df
= Fn\Fn−1

for each n ∈ N. Define a function h : R → (0,∞) as h(x)
df
= 1/̺(x, Fn−1)

for x ∈ En and n ∈ N. Finally, let g
df
= h−min{f1, . . . , fl, 0}). Evidently g

is positive.
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Fix i ∈ {1, . . . , l}. We will show that fi + g ∈ U . Let x0 ∈ R, xn → x0
and (fi + g)(xn) → y0 (y0 ∈ R). Let k ∈ N be such that x0 ∈ Ek. Then
there is n0 ∈ N such that xn ∈ Ek for each n > n0. Indeed, since xn → x0
and x0 /∈ clFn−1, there is n1 ∈ N such that xn /∈ Fn−1 for each n > n1.
Moreover, if x ∈ {xn : n > n1} \ Fk, then x ∈ Ei for some i ≥ k + 1 and

(fi + g)(x) ≥ (fi + h−min{fi, 0})(x) ≥ h(x) = 1/̺(x, Fi−1) ≥ 1/|x− x0|.

Consequently, the set of all x must be finite. Since (fi+g)↾Ek is continuous,
we have (fi + g)(xn) → (fi + g)(x0) = y0.

It is easy to see that for the family F
df
= {χ{q} : q ∈ Q} of piecewise

continuous functions does not exist a common summand with respect to
the family of closed graph functions (see Proposition 2.6 and the proof of
Theorem 2.7).

Observe also that using Remark 1 with F
df
= {χ∅, f}, where f ∈ P and

the inclusion U ⊂ P, we obtain the following characterization of the sum
and the difference of closed graph functions U + U = P = U − U . Of course
this characterization is known (was given by Doboš in 1998 [2]).

3. The family ¬U

Theorem 3.1. Let A⊂RR and ∅ 6=A 6=RR. If A⊂{f ∈ RR : C(f) 6= ∅},
then a(¬A) = 2c.

Proof. The inequality a(¬A) ≤ 2c follows from Proposition 2.1(b). The
inequality a(¬A) ≥ 2c follows from the proof of [8, Theorem 6]. In this proof
Jordan showed that if F ⊂ RR and cardF < 2c, then there is a function
g ∈ RR such that f + g is not bounded on any perfect set for every f ∈ F .
Consequently, C(f + g) = ∅ and f + g ∈ ¬A for each f ∈ F .

In particular, we obtain

Corollary 3.2. a(¬U) = 2c.

Now, we prove analogous result for q(¬U). We start with the useful
lemma which can be found in [4, Lemma 2.2].

Lemma 3.3. If B ⊂ R has cardinality c, H ⊂ QB, and cardH < 2c, then

there is a g ∈ QB such that h ∩ g 6= ∅ for every h ∈ H.

The next lemma and its proof are similar to [8, Lemma 20] and its proof,
respectively.

Lemma 3.4. Let A ⊂ R and cardA = c. If F ⊂ (R \ {0})A and cardF
< 2c, there is a function g : A → R \ {0} such that f/g : A → R \ {0} is

unbounded for each f ∈ F .



818 J. Kosman

Proof. Let {Bn : n ∈ N} be a partition of A such that cardBn = c for each

n ∈ N. Fix n ∈ N. For each f ∈ F choose hfn : Bn → Q \ {0} such that

(1) f(x)/hfn(x) > n for every x ∈ Bn.

Now, by Lemma 3.3 used with the sets Bn and the family {hfn : f ∈ F},
there is a gn : Bn → Q \ {0} such that,

(2) (∀f∈F ) (∃x∈Bn
)
(

hfn(x) = gn(x)
)

.

Let g
df
=

⋃

{gn : n ∈ N}. Then, by (1) and (2), for every n ∈ N and
f ∈ F there is x ∈ Bn ⊂ A such that f(x)/gn(x) = f(x)/g(x) > n. Hence,
f/g : A → R \ {0} is unbounded for every f ∈ F .

Theorem 3.5. Let F ⊂ RR \ {χ∅} and cardF < 2c. There is a function

g : R → R \ {0} such that f/g ∈ ¬U for each function f ∈ F .

Proof. First recall that, if f ∈ F and cl[f = 0] = R, then f/g ∈ ¬U for
each g : R → R \ {0}. So we may assume that cl[f = 0] 6= R for each f ∈ F .

Choose a partition {Sα : α < c} of R into pairwise disjoint c-dense sets
and let {Iα : α < c} be an enumeration of the open intervals in R. Let

Aα
df
= Sα ∩ Iα. Note that cardAα = c and Aα ∩ Aβ = ∅ for α < β < c.

Fix α < c. Let Fα
df
= {f↾Aα : f ∈ F & Aα ⊂ [f 6= 0]}. Evidently

cardFα < 2c. By Lemma 3.4 there is some gα : Aα → R \ {0} such that
f/gα is not bounded on Aα for every f ∈ F . Let g : R → R \ {0} extend
⋃

{gα : α < c}. Observe that for each f ∈ F there is a nondegenerate
interval If such that C((f/g)↾If ) = ∅. So f/g ∈ ¬U for every f ∈ F .

Corollary 3.6. ¬U/¬U = RR \ {χ∅}.

Proof. Clearly ¬U/¬U ⊂ RR \ {χ∅}. Let f ∈ RR \ {χ∅}. By Theorem 3.5,
there is a function g such that f/g ∈ ¬U and 1/g ∈ ¬U . Hence f =
(f/g)

/

(1/g) ∈ ¬U/¬U .

Corollary 3.7. q(¬U) = 2c.

Proof. The inequality q(¬U) ≥ 2c follows from Theorem 3.5 and Corol-
lary 3.6. Now we will show the other inequality.

Let F
df
= (R \ {0})R. Clearly cardF = 2c and F ⊂ ¬U/¬U (see Corol-

lary 3.6). If g : R → R \ {0}, then evidently g ∈ F and g/g = χ
R /∈ ¬U .

Consequently q(¬U) ≤ 2c.
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