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CARDINAL INVARIANTS CONCERNING
CLOSED GRAPH FUNCTIONS

Abstract. Cardinal invariants connected with sums, products and quotients of real
functions concerning the family of closed graph functions and the complement in R¥ of
this family are investigate.

1. Introduction

The letters R, Q@ and N denote the real line, the set of rationals and the
set of positive integers, respectively. The family of all functions from a set
X into Y is denoted by YX. The word function denotes a mapping from R
to R unless otherwise explicitly stated. For each set A C R the symbol X4
denote the characteristic function of A. We consider cardinals as ordinals
not in one-to-one correspondence with the smaller ordinals. The symbol
card X stands for the cardinality of a set X. We write ¢ = card R. For each
set A C R the symbol cl A denotes the closure of A.

Let f: R — R. The symbol C(f) denotes the set of points of continuity
of f. For each y € Rlet [f = y] = {x € R: f(z) = y} Similarly we
define the symbols [f > y|, [f < y]. We say that f has the closed graph
(f € U), if the set {(z, f(z)) : © € R} is closed in R%2. We say that f is
a piecewise continuous function (f € P), if there are closed sets F;,, C R such
that | J,cny Fn = R and the restriction f[F, is continuous for each n € N. It
is known that a function f € RR is piecewise continuous iff f is a Baire-one-
star function i.e. for each closed set F' C R there is an open set GG such that
FNG#0and f[(FNG) is continuous (see [9]).

If AcC RE, denote by

A_Ad:f{f_gf7gEA}7
A/Ad:f{f/g:f,ge.A&g(a:)#OforeacthR}.
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In 1991 T. Natkaniec [11] defined the following two cardinal functions for
every A C RF

a(A) U min({card F : F C R*&~(3Vserf + g€ AYU{(29T}),
m(A) £ min({card F : F € R® & ~(3yepe (x,)Vrerf -9 € A U{(2)7)).

The extra assumption that g # X is added in the definition of m since
otherwise for every family A C R® containing constant zero function X; we
would have m(A) = (2°)7.

The values of functions a and m for different classes of real functions has
been studied in several papers (see e.g. [3| and [4]).

The following cardinal function connected with quotients of functions has
been defined in [5] (compare also [6]) for every A C RE.

a(A) 2 min({card F : F € A 4 &3,V ser f/g € A} U{(card A4/ 4)*}).

In the above definition it is quite natural to restrict ourselves to subfam-
ilies of A/ 4 only. Indeed, if there is a function g such that both f/g and 1/g
are in A, then f € A/A.

In 1996 Jordan (see [7] or [8]) examined the values of a(—.A), where

A YR \ A and classes A are chosen from the classes of Darboux-like
functions. Notice that a(—.4) has the following interpretation:

a(—.A) is the smallest cardinality of a family B € R® such that A — B
=RE, where A-B={f—-g:fc A& gc B}

The purpose of this paper is to find the values of cardinal functions a,
m and q for the families ¢/ and =/, where - 4 RrE \ U. We obtained the
following results:

a(d) =2 =m(U) (see Theorems 2.2 and 2.3);
q(U) = w (see Theorem 2.7);

a(—U) = 2¢ = q(—U) (see Corollaries 3.2 and 3.7);
m(—U) =1 ( this equality is obvious).

2. The family U

Before we start our examination, we recall some basic facts about cardinal
functions a and m (see [4] or |7, Proposition 1]), which will be applied in
this paper.

PROPOSITION 2.1. Let A C RR, Then

(a) if A# 0 then a(A) =2 if and only if A — A # RE;
(b) a(A) < 2° if and only if A # RE;
(c) m(A) > 2 if Xp, Xr € A.
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Since Y —U = P (see [2] or |1, Theorem 2|), then from Proposition 2.1(a)
we conclude that

THEOREM 2.2. a(l/) = 2.
THEOREM 2.3. m(Uf) = 2.

Proof. The inequality m(U) > 2 follows from Proposition 2.1(c). To see
that m(U) < 2 take F 4 {Xg,Xr}. Let g € RR\ {Xp}. It is enough to
show that f-g ¢ U for some f € F. If g € U, then Xg - g ¢ U, since
cl[Xg-9=0] =R and Xg - g # Xy. Otherwise, evidently Xg - g ¢ U. =

Now, recall the characterization of 4, given by Borsik [1, Theorem 4].

PROPOSITION 2.4. A function f belongs to u/u iff f belongs to P and the
set [f = 0] is closed.

LEMMA 2.5. Let f,h € u/u. There is a function g : R — (0,00) such that
f/lgeU and h/g e U.

Proof. Let f,h € Uj;. By Proposition 2.4 the sets A 4 [f=0],B 4 [h = 0]

are closed and f,h € P. Let {F, : n € N} be an increasing sequence of
closed subsets of R such that F} a (), the restrictions f|F, and h|F}, are

continuous for each n > 2 and |,y Fn = R. Put E, df n+1 \ Fy for each
n € N. Define g : R — (0, 00) by the formula

g9(z) =
1, if 2 € AN B,
o(z, F,, U B) min{1, |h(x)|}, ifre BE,NA\B,neN,
o(z, F,, U A)min{1, | f(2)|}, ifre BE,NB\ A, neN,

o(z, F, UAU B)min{1, |f(z)],|h(z)|}, ifxe€ E,\(AUB),neN.

We will show that f/g € U (analogously we can prove that h/g € U). Let
x9 € R,y — xo and (f/g)(xn) = yo (yo € R). We consider three cases.

If zg € A, then there is ng € N such that z,, € A for each n > ng. Indeed,
if v € {z, :n €N} \ A, then z € E; \ A for some k € N and

((f/9)(@)| = |f(@)]/(e(z, A) - min{1, [f(2)|}) > 1/e(x, A) = 1/]z = xol.

Since x, — x¢ and (f/g)(zn) — yo, where yp € R, the set of all such x
must be finite. Hence (f/g)(xn) =0 — (f/g)(xo) = 0 for n > nyg.

Now, assume that xg € R\ (AU B). Let k& € N be such that z¢ €
Er\ (AU B). We will show that there is ny € N such that z,, € Ex \ (AU B)
for each n > ng. Since x,, — g, o ¢ (Fr U AU B) and the set F, UAU B
is closed, there is ny € N such that z, ¢ (F, U AU B) for each n > nj.
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Moreover, if x € {z;,, : n > n1} be such that x ¢ Fj41, then z € E;\ (AUB)
for some ¢ > k+ 1 and

[(f/9)(@)| = 1/ o(x, Fiq1) = 1/]x — xol.

Consequently, the set of all such x must be finite. Since f and g are contin-
wous on B\ (AU B), we have (f/g)(z) — (f/9)(x0).

Similarly we can show that, if zg € B\ A, then (f/g)(zn) = (f/g)(x0). =

The proof of the next proposition is a repetition of the argumentation
used in the proof of [10, Proposition II 3.3|.
PROPOSITION 2.6. Let g: R — R. If C(g) # 0, then there is a ¢ € Q such
that X(qy +9 ¢ U.
Proof. Let g be a function and = € C(g). Let 6 > 0 such that |g(t) — g(z)|
<2l fort € (x—6,xz+6). Choose a q € QN (v — &2+ 6). Then
Xy + 9)(@) > g(z) + 271 and (Xqgy + 9)(t) < g(x) + 27" for every t €
(x — 0,2 +0)\ {q}. Consequently X;p; +g ¢ U. =
THEOREM 2.7. (/) = w.
Proof. Proceeding similarly as in the proof of Lemma 2.5 we can show that
if fi,.../x € u/u, then there is a function g: R — (0, 00) such that f;/g € U

for each i € {1,...,k}. Consequently, q(i/) > w.
Now, we will prove the opposite inequality. Define

df
F = {exp oX{q} 4 € Q}.
Evidently card F = w and F c Ujp;. Let g: R — R\ {0}. We will show that

there is a function f € F such that f/g ¢ U.

If C(g) = 0, then C((expoXoy)/g) C {0}, so (expoX(ny)/g € U.
Otherwise, by Proposition 2.6, there is a ¢ € Q such that X, —In|g| & U.
Hence

expo(Xygy —Inlg[) = (expoXyqy)/lgl & U,
and consequently (expoX¢g)/g ¢ U. =

REMARK 1. Let F be a finite family of piecewise continuous functions.
Then there is a closed graph function g: R — (0, 00) such that f+g € U for
each f € F.

Proof. Let fi,...,f; € P. Let {F, : n € N} be an increasing sequence of
closed subsets of R such that UneN F,, = R and the restrictions f;[F},, are

continuous for eachn € Nand i € {1,...,1}. Put Fj 49 and E, e F\F,_1
for each n € N. Define a function h : R — (0,00) as h(z) & 1/o0(z, Fr—1)

for x € E, and n € N. Finally, let g Sy min{ fi,..., f;,0}). Evidently g
is positive.
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Fix i € {1,...,1}. We will show that f; + g € U. Let ¢y € R, z,, — x¢
and (f; + g9)(xn) = yo (yo € R). Let k € N be such that 29 € E;. Then
there is ng € N such that x,, € E}, for each n > ngy. Indeed, since x,, — g
and xg ¢ clF,,_1, there is n; € N such that x,, ¢ F,_; for each n > ny.
Moreover, if z € {x,, : n > n1} \ F, then x € E; for some i > k + 1 and

(fi+9)(@) = (fi + h — min{f, 0})(x) = h(z) = 1/0(z, Fi1) = 1/]x — 20l

Consequently, the set of all x must be finite. Since (f; +g)[E} is continuous,
we have (fi + g)(zn) — (fi + 9)(20) = yo.

It is easy to see that for the family F a {X¢qy + ¢ € Q} of piecewise
continuous functions does not exist a common summand with respect to
the family of closed graph functions (see Proposition 2.6 and the proof of
Theorem 2.7).

Observe also that using Remark 1 with F a {Xg, f}, where f € P and
the inclusion & C P, we obtain the following characterization of the sum
and the difference of closed graph functions Y + U =P =U — U. Of course
this characterization is known (was given by Dobo$ in 1998 [2]).

3. The family -/

THEOREM 3.1. Let ACRR and £ A#£RE. If AC{f e RR: C(f) # 0},
then a(—A) = 2¢.

Proof. The inequality a(—A) < 2° follows from Proposition 2.1(b). The
inequality a(—.A) > 2¢ follows from the proof of [8, Theorem 6|. In this proof
Jordan showed that if F ¢ R® and card F < 2%, then there is a function

g € RR such that f + g is not bounded on any perfect set for every f € F.
Consequently, C(f+g) =0 and f+g € ~A foreach f € F. u

In particular, we obtain
COROLLARY 3.2. a(—U) = 2°.

Now, we prove analogous result for q(—U). We start with the useful
lemma which can be found in [4, Lemma 2.2].

LEMMA 3.3. If B C R has cardinality ¢, H C QF, and card H < 2, then
there is a g € QP such that hn g # O for every h € H.

The next lemma and its proof are similar to [8, Lemma 20| and its proof,
respectively.

LEMMA 3.4. Let A C R and card A = ¢. If F ¢ (R\ {0})* and card F

< 2% there is a function g: A — R\ {0} such that f/g: A — R\ {0} is
unbounded for each f € F.
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Proof. Let {B,, : n € N} be a partition of A such that card B,, = ¢ for each
n € N. Fix n € N. For each f € F choose hi;: B, — Q\ {0} such that

(1) f(x)/hi(x) > n for every x € B,,.

Now, by Lemma 3.3 used with the sets B, and the family {h£ . f € FY,
there is a g,,: B, — Q\ {0} such that,

(2) (Vser) (Buen,) (b (x) = ga(2)).

Let ¢ g U{gn : n € N}. Then, by (1) and (2), for every n € N and
f € F there is x € B,, C A such that f(z)/gn(x) = f(z)/g(x) > n. Hence,
f/g: A — R\ {0} is unbounded for every f € F. m

THEOREM 3.5. Let F C R®\ {Xy} and card F < 2°. There is a function

g: R — R\ {0} such that f/g € =U for each function f € F.

Proof. First recall that, if f € F and cl[f = 0] = R, then f/g € U for

each g: R — R\ {0}. So we may assume that cl[f = 0] # R for each f € F.
Choose a partition {S, : @ < ¢} of R into pairwise disjoint c-dense sets

and let {I, : a < ¢} be an enumeration of the open intervals in R. Let

A, e Sa N I,. Note that card Ay = ¢ and A, NAg =0 for a < 8 < c.

Fix @ < ¢. Let Fo & {flAa : f € F & A, C [f # 0]}. Evidently
card F, < 2°. By Lemma 3.4 there is some go: Ao — R\ {0} such that
f/ga is not bounded on A, for every f € F. Let g: R — R\ {0} extend
U{ga : @ < c¢}. Observe that for each f € F there is a nondegenerate
interval Iy such that C((f/g)[1f) = 0. So f/g € =U for every f € F. m

COROLLARY 3.6. “U/_;; = RF\ {Xy}.

Proof. Clearly “U/_;;, c RR\ {Xp}. Let f € RR\ {Xy}. By Theorem 3.5,
there is a function g such that f/g € -U and 1/g € —U. Hence f =

(f/9)/(1/9) € U/ m

COROLLARY 3.7. q(—U) = 2°.

Proof. The inequality q(—U) > 2¢ follows from Theorem 3.5 and Corol-
lary 3.6. Now we will show the other inequality.

Let F ¥ (R\ {0})R. Clearly card F = 2¢ and F C _‘u/_u (see Corol-
lary 3.6). If g: R — R\ {0}, then evidently g € F and g/g = Xg ¢ —U.
Consequently q(—U/) <2°. =
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