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RAMANUJAN TYPE TRIGONOMETRIC FORMULAE

Abstract. In the paper, new Ramanujan type trigonometric formulae for arguments
27/7 and 27/9 are presented.

1. Introduction
This paper presents some new Ramanujan type trigonometric identities
in the spirit of his original identities (see [1]):

(1.1) (cos 277r>1/3 + (COS 4%)1/3 + (cos 8%)1/3 = (5_2ﬂ>1/37

(1.2) <Cos %)1/3 + (COS %)1/3 + (cos %)1/3 = (73 \3/2 — 6>1/3.

It is worth to mention that Wituta and Stota already discussed such
kind of identities in papers [7| and |9]. The main reason of taking an interest
in this matter was an intention of applying the, so called, quasi-Fibonacci
numbers (see [6, 8, 10|) for generating the Ramanujan type identities. It
seems that this research succeeded. For example, in paper [9] the following
formulae were received:

COoS & k 3/COS 2a k 5/ cos 4o k
1. 3 2 2 2 2 4
(1.3) p—— ( cos a) + p—y ( cos a) + p—— ( cos a)
) . 2
=2 ;0:20(; (2 CoS 2a)k+1 + ¢ ZZZ Z (2 coslloc)k+1
4
+ ¢ costa (2 cosoz)k+1 = \3/71/%,
cos o

where o = 27”, Yo = —1, 1 =0, Y9 = —3 and
V43 + V2 — 2Ppp1 — Y =0, k€ Z;
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and
COS (¢ k 3/COS 2a k 5/ cos 4o k
1.4 3 2 2 2 2 4
(1.4) T ( cos a) + p— ( cos a) + p— ( cos a)
2 4
Y (2 cosoz)]Cle + ¢ cos e (2 COSQa)k+1
Cos & cos 2«

+ \3/7% (2 cos40¢)kJrl = /49 Pk,

where g = 0, o1 = —1, 3 = 1 and
Pr+3 T Prt2 — 2¢0k+1 — 0k = 0, ke Z.

Equivalents of the above formulae for the angle 5 = 9 are presented in the
current work (see formulae (2.1) and (2.2)).

Moreover, V. Shevelev in the context of works [4], [7] and [9] distinguished
the Ramanujan cubic polynomials (shortly RCP), i.e. real cubic polynomials

(1.5) 234 px? g4, r#0,
having real roots &1, &2, €3 and satisfying the condition
(1.6) pr+3Vr2 +q=0.

Then we can note that two crucial identities hold: (Ramanujan type, see

14, 9])

W) Va+ e+ e =60 +39

and (Shevelev type, see |3, 4])

18 361 352 351 363 352 353
52 51 53 §1 &2 \/

Witula, continuing Shevelev’s research (see [11, 13]), distinguished the
next class of Ramanujan cubic polynomials of the second kind (shortly
RCP2), defined as the real cubic polynomials of the form (1.5), having real
roots and satisfying the condition

(1.9) P42t + 2 =0

(every term in this sum is cube of the corresponding term in the sum (1.6)).
For example, polynomial f(z) = 23 +322 —3+/22+1 is the RCP2 and, simul-
taneously, is not RCP. Roots {1, &2, &3 of f(z) satisfy the following conditions
(see [13]):

Va+{e+Y&=0
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351 352 351 353 362 363
52 51 53 51 &

In the figure (1) Venn diagram for the sets of RCP’s and RCP2’s is given.
Let us notice, that RCP’s and RCP2’s share many similar properties.

and

Fig. 1. Venn diagram for the sets of RCP’s and RCP2’s

Now let us resume the contents of the current paper. In Section 2, the
equivalents of formulae (2) and (3) from paper |9] for the angle 27/9 are
presented, whereas, the initial values for those recurrence identities are gen-
erated in Section 5. In Section 3 we give few more trigonometric identities
for the angle 2 /7, essentially completing the set of identities from work [9].
Moreover, in Section 4, the generalizations of some Berndt, Zhang and Liu
formulae from the paper [2] are presented.

We note that all the identities are related, just as in [9], where formula
(10) from [9] was applied to the sum of the cubic roots of the roots of some
special polynomials of the third degree, discussed by Witula and Stota in [7].
Some detailed calculations have been omitted in the paper.

2
2. The argument il

We remind in this moment that notation § will be consistently used for
2
5

First let us discuss identities that are equivalent to identities (2.1) and

(2.2) from [9]:

cos(5)
cos(23)

5 c0s(26)

21) cos(43)

(2 cos(B))" + (2 cos(28))"
feos(45)

<os(3) (2 cos(48))
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4/ cos(23)
cos(40)

(2 cos(2ﬁ))mL1 + (2 cos(élﬂ))nJrl

= ({9

4/ cos(45) cos(B))"

= (\3/2 cos(3) (2 cos(2 ﬁ))3n+2 + 6/2 cos(23) (2 cos(4 ﬁ))3n+2
+ <’/2 cos(48) (2 cos(B))3n+2> =V37,,

where \IJO = 0, \111 = 3, \112 = 0 and
Vs —3¥p1 + W, =0, n € Z;

5| cos(B) n, 5/cos(26) n
(2.2) cos(4) (2 cos(B))" + cos(0) (2 cos(2))

4/ cos(45)
* cos(20)

- (2 cos(26) cos ntl | 4/ cos(4p) oS n+1
- ( cos(g) 2O+ ] o (2 00s(20))

5/ cos(p) n+1
+ cos(45) (2 cos(43)) )

= —<{’/2 cos(2) (2 cos(ﬂ))?m+2 + €/2 cos(4 B) (2 cos(2 ﬂ))3n+2 +

+ \3/2 cos(f) (2 cos(46))3n+2> =90,
where &g = —1, &; =1, P53 = —4 and

(2 cos(4B))"

Proof. We note that

2
(2.3) X? = 3%+ 1= ] (X -2 cos (2°8))
k=0
(it is easy to calculate, see also [14]). Since it is generating function for (2.1)
and (2.2) so the rest of the proof reduces to checking whether (2.1) and (2.2)
hold true for the initial values n = 0,1, 2. It will be presented in Section 5. =

We note that (1.3) and (1.4), as well as (2.1) and (2.2) from above, all
equalities for n = 0, include the Shevelev’s formulae [3]:
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2 cos(2Fa 5| cos(2Fa 5
Z <\/cos 2k+1)) + \/cos(2<k+2o)z)> =V

k=0

and
2 4| cos(2k3) 5| cos(2k3) 5
k:zo <\/cos(2k+1ﬂ) * cos(2k+25)> =V,

respectively. Moreover, using Remark 1 from [9] we deduce the following
relation

(2.4) S, = < cos(p) >n/3 <cos(2ﬁ))n/3 (008(45))71/3,

cos(20) cos(40) cos(f)
where Sop =3, 51 =0, S2 = 2 /9. We have also
(2.5) Spis = V91 + Sh.
On the other hand, from (2.5) we obtain
(2.6) Sn = 2 + VIyn + V81 2y,

where
CC():?), y0220:O7
x1 =y =21 =0,
To=20=0, y2=2,
and, we have
Tpt3 = Tn +92n41,
Ynt3 = Yn + Tpai,
Znt3 = Zn + Ynt1-

Moreover, one can deduce the following relation:

(2.7) S = (3 CCOOSS((Q%)) (2 cos(ﬁ))z)n + <3 % (2 cos(25))2>n +

“({fnap oo,

where S = 3, Sf =0, S5 = 14 v/9. Furthermore
(2.8) Sk g =TV9S; + S5
Likewise, the following relation can be generated

(2.9) St =al +V9y: +V8lz,
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where
* * *
37023, yOZZOZO,
* * *
1=y =2 =0,
* * *
Ty =25 =0, y;=14,

and, by (2.8), we have
Ty = Tn + 632,41,
Ynt3 =Yn + TThy1,
Znt3 = Zn T TYnir-

Let us present one more identity derived by using Lemma 5.4 (see also
the equation (10) from [9]):

% (ig/sin(Qﬁ)— V/sin(B) — Q/Sin(4,8)) = f/%/gjL \3/1_ Yo+ \3/2_ %

since

2
[T (x - (-1)F2sin (28)) =x° - 3%+ V3.

k=0

2
3. The argument TW

3.1. The first identity. The notation a will be consistently used for 2—”

The following identity holds

4o
(3.1) sin"(a) {/ sin( + sin” (2cv) sin(a + sin" (4a) sin(2
sin(a) sin(2 ) sin(4

- 3f+b v/ 11 — 3 /409,
where ag =1, bp =0, a1 = —\/7/2 by =0,a2=0,0by = \/_/4 (see [7]), and

(3.2) Tni1 = VT (2n — Tn—2),
for every x € {a,b}, n = 2,3,4,.... We note that
3
7 _1\n
(3.3) b, = \/T_ (\4/7)3+( SA,

where Y0 =71 = 07 Y2 = 1/7)
(34) Yn+1 = (\/?)14—(—1)" ('Yn - ’7n72)7

and ~,, n = 6,7,8, ..., are all integers (see Table 1). Moreover, let us remind
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that (see |7, 14]):
2
X3 VT2 4+ VT = H (X —2 sin(2k a)),
k=0

which implies the relation (3.2).
3.2. The second identity. We have the following identity

(3.5)  csc™(2a) /2 cos(a) + csc™(4a) /2 cos(2a) + csc” (o) v/ 2 cos(4a)

= o \/5— 3T +dn \/2+ 3749,

where cg =1, dy =0, ¢ = —2/V/7,d; =0, cg =0, dy = —4//7, and
V7

(36) Tn4+2 = Tp — 7 Tn—1,

for every z € {c,d}, n=1,2,3,....
On the other hand, by (4.32) from [7] we have

VT

(3.7) (—7>n<cscn(a) v/2 cos(da) + esc™(2ar) /2 cos(2ar)

+csc” (4a) | QCos(a))

—</w§n+67n—%<€/8+\/7'+ f/S—ﬁ),

where
S = (_1)n—1 Y3n_1 (7377,/2 wgn +6 7571/2) — g7 wgn —9 7377,’
T = 73n (wgn)Q y?%nfl -4 (_\/?)Qn ygnfl -4 73n (wgn)S
+ 18 (=7 V7)™ w3, ysp—1 — 277",
where
(3.8) w;;+3 - 3w7’;+1 — Wy = Zon41 + Zon—1 — Z?% - 22—17
(3.9) Znt6 — T 2nta + 14 20 — T2, =0,
(310) Yn = Zn+2 — 3 Zn,

for n € Nand zp = yg = V/7, z1 = 7 and wg = —1 (see Tables 3 and 4 in [7]).
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We note that

(3.11) zn = (2 sin(3E
(8

(3.12) Yn = 2 sin(5F

x 2 . /92 . n
(3.13) wy, = 2 cos(#E) (4 sin(2E) sin(5F))
4 27 S

(see A079309 [5] for the sequence {zo0,/v/T}).

3.3. The next identities. Moreover, by using formula (4.10) from |7] we
get

2
(3.14) > W 2 sin(2%a))"
k=0
—anmwn{’/&sm%ﬁ—ﬁ@

where
apg =1, a1:—\6/?, az = 0,
by = 0, b1 =0, by = V7,
a; =7, ay =0, aj =0,
f=0, by = —v/2V/7, b =0,
=0, c5 =0, s = —/49,
and
(3.15) Tnys — VT Znio+ VT2, =0,

for every n € Z and x € {a, b, a*,b*, c*};

(3.16) Ap= Ay =0, Ay = —3, Apys— Anio—2Api1 + A =0, n€Z,
(3.17) Bo= -3, Bi =By =3, Bnss—2Bns2— Bps1 +Ba=0, nez
(3.18) Cp = (V7)) ™ugy +6(=1)", neZ,

and finally

(319) uo=—1, uy =V7, up =0, tnys — V7tnss +V7u, =0, n€Z
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Additionally, we note that for every n € Z we have
2
(3.20) Uy = 22 cos(28a) (2 sin(2¥a))".
REMARK 3.1. Furthermore, we get the following formula
2
(3.21) Z (2 sin(2%a) + V/7) {/2 cos(2ka) = 0.
k=0

By formula (4.11) from [7] we receive
(3.22)  {/2cos(2a)(2 sin(@))" + /2 cos() (2 sin(4a))”
+3 2cos(4a)(2 sin(2a))n = /7" Q/An V49 + B, V7 + C),

— a0 /5= 3T+ b, {3VT (34 (14 V7)2) + ¢ {/63 (14 V7).

where
a():l, CL1:0, QQZO,
bp =0, by =—1, by =0,
COZO, C1 :0, 62:—1,

and

(323) Tn+3 — ﬁ$n+2 + ﬁxn = 0,

for n € Z and z € {a,b,c};

(324) AO = O, A1 = 3, A2 = 0, An+3 — An+2 — 2An+1 — An = 0, n e Z,
(3.25) B() = 3, Bl = 6, B2 = 9, Bn+3 — 2Bn+2 — Bn+1 + Bn = 0, n e Z,
(3.26) Cp = —(V7) "3, — 6(—1)", n € Z,

and where

’U[):—l, 01:—2ﬁ,

3.27
( ) vn+3—\/7@n+g+\/7vn:0, n € 7.

Let us note that for every n € Z we have

(3.28) v, =2 cos(2a) (2 sin(@))” + 2 cos(a) (2 sin(4a))”
+ 2 cos(4a) (2 sin(2a))".
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By formula (4.12) from [7] we obtain
(3.29) /2 cos(4a) (2 sin(@))"+ {/2cos(a) (2 sin(2a))"
+ /2 cos(2a) (2 sin(4a))" = V7" \3/An V49 — B, VT +C,
= a, /5 —3 V7 + by i’/ﬁ(—5—3€ﬁ+3€/@) +en {21 (2-V7)°
=a} /21 (2 V7)? + 05 VT A (3VT —4)°

+ e {147 ((2V7 - 5)2 + V7),

where
CL[)Zl, CL1:0, a2:07
bo =0, by =1, by =0,
C():O, Cl:O7 02:1,
ay =1, a3 =0, ay; =0,
b5 =0, by =1, by =0,
c; =0, c5 =0, =1,

and

(3.30) Tn43 — ﬁxn+2 + \/?xn =0,

for every n € Z and z € {a,b, c,a*,b*, c*};

(3.31) Ay=0, A1 = Ay =3, An+3 — An+2 —2A,1+A,=0, neZ,
(3.32) By= DBy =3, By=12, Bpys—2Bnys— Bpi1+ Bn=0, neZ,
(3.33) Cp=(V7) "ws, +6(-1)", neZ,

and
(3.34) wo=-1, wy =we =0, wWpy3— ﬁwnﬂ +V7w, =0, neZ.

Let us note that for every n € Z we have

(3.35) wy, =2 cos(4a) (2 sin(a))” + 2 cos() (2 sin(2a))"
+ 2 cos(2a) (2 sin(4a))".

REMARK 3.2. Multiplying (36) by (51) (from [9]) we get the following
equality
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(3.36) ((2 COS(Q))_2/3 L2 C()5(2()[))—2/i’> L2 COS(4a))—2/3>
X (2 cos(a) (2 COS(4Q))_1/3 + 2 cos(2) (2 Cos(a))_1/3

+ 2 cos(4a) (2 cos(2a))71/3> =3,

ie.,
cos(a) cos(2a) cos cos(2a) cos(4a)
3.37) ¢
(3:37) \/cos(4a) * \/ cos( + \/cos cos(a * cos(2a)
cos(a) + 2 cos(d cos(4 + 2 cos( 4/ cos(a)
cos(4a) cos(a cos(2a)
2
+ 2 cos(2a) o c08(20)
cos(4a

which, by (37) and (41) from [9], is equivalent to the equality
cos(2a)  cos(4a)  cos(a)

cos(a)  cos(2a)  cos(4a) =3

(3.38)

Similarly, multiplying (48) by (49) from [9] we get

(3.39) <\3/cos(a) n {/cos(2a) N %/008(404))

cos(2a) cos(4a) cos(a)

4 cos(a) s/cos(2a) 4/ cos(4a)
Oy —12
X (\/0052(4a) + \/cosQ(a) * cos2(2a)> ’
which, by (37) and (41) from [9], is equivalent to
(3.40) scs?(a) + ses?(2a) 4 scs?(4a) = 24.

4. Generalizations of some Berndt-Zhang
and Liu trigonometric identities

Now we will present the generalizations of equations (1.1)—(1.5) discussed
in [2]| (the elementary proof of the identities shall be given in [15]).
Let us set

(4.1)
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22n 1
(4.2) Z csc ( 2“‘1 sin? (2k @),
22n—1 2
(4.3) Ty = D ese (262 @) sin® (2% a).
VT 5
Then we have
K‘,O:l, 161:2, I£2:7,
Ao =0, A =1, Ao =5,
70 =0, 1 =0, =1,
and
(4.4) Tnts — T Tpyo+ 1401 — T2, =0,

for every x € {k, A\, 7} and n € Ny.

Furthermore, let us set

22n+1 2
(4.5) U = 7 Z( 1)¥ sin (2k B) sin (2k+1 B)
k=0
22n+1 i F sin (22 6) sin® (2" B)
= (1) sin (2872 ) sin®® (2 3
V3
k=0
g2l & E cse (2541 9) (2* 5)
(4.6) Up = — (—=1)" csc (2777 B) sin”" (27 B
V3
k=0
221 & k k+2 k
(4.7) &n = 7 Z( 1)* csc (2512 B) sin?" (2% B).
k=0
Then we have
Ho = 07 H1 = 37 M2 = 127
vy = 1, vy = 3, Vy = 12,
60:17 51:37 52:97
and
(4.8) T3 —6ZTpto+92ny1 — 32, =0,

for every = € {u, v, £} and n € Np.
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5. Discussion of the initial values for (2.1) and (2.2)

Let us set
(5.1)  fo=2""" (cos(8) (cos(28))" + cos(28) (cos(4))"+
+ cos(4B) (cos(8))"),
(5.2) gn = 27F1 (cos(46) (cos(2B))" + cos(B) (cos(48))"
+ cos(28) (cos(8))"),

(5.3) hy, = 2"t1 ((cos(ﬂ))nJrl + (cos(QB))n+1 + (cos(46))n+l>,
for every n =0,1,2,....
LEMMA 5.1. We have
Jo=g90=ho=0, fi=g1=-3 and hy =6,
fn+1 = fn - hnflv
In+1 = hp, — hnfla
hn+1 =0gn+2hp-1,

for every n € N. Elements of any of the following three sequences: {fn}52,
{gn}22 o and {hn}22, satisfy the same recurrence relation

(5.4) Tpts — 3Tt +xn =0, n=0,1,...
Proof. We have

hpnt1 =gn+2hp—1=hp—1—hp—o+2h,_1,
ie.,

hnt1 —3hp—1+ hp—o =0.
Similar relation holds for the sequence {g,}>2 since
g3—3g1+go=ho—h1+9=9g1+2hg—6+9=0,
g1—3g2+g1=h3g—h2—3(h1 —ho) —3=ga+2h; — 18 =
=3h1—hp—18=0
and
Int1 = hn — hn_1, n € N.

Moreover, we find

fa=fi—ho=-3, f3=fa—h1=-9,

f3=3fi+ fo=0,
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and the induction step runs as follows

fn+4 - 3fn+2 + fn+1 = fn+3 - hn+2 -3 (fnJrl - hn) +fn—hp-1=0 m

The first twelve elements of the sequences { f, }22, {gn}22 and {hy}22,
are given in Table 1.
Furthermore, let us set

(5.5) an = (4 cos(8) cos(26) ) + (4 cos() cos(45))
+ (4 cos(28) cos(45))”

(5:6) b =2 cos(8) (4 cos(5) cos(26))n +2 cos(48) (4 cos(8) cos(4/3))”
+2 cos(28) (4 cos(26) cos(46))n,

(5.7) cn =2 cos(B) (4 cos(28) cos(48) )" +2 cos(26) (4 cos(8) cos(48))"
+2 cos(48) (4 cos() Cos(2ﬁ)>n,

(5.8) dy =2 cos(5) (4 cos(8) cos(48))" +2 cos(28) (4 cos(8) cos(28))"
+2 cos(48) (4 cos(26) cos(45)>n,

for every n =0,1,2,....
LEMMA 5.2. The following relations are satisfied

ant1 =5 (hf = hani1) = by — an,
bpi1 =2ay, — by +dy,

(5.9)
Cpnt1 = —Qn,
dpt1 = —ay + by — dy,
for every n = 0,1,.... Additionally, all four sequences {an}>2 g, {bn}oo,

{en}o2 and {dn}22 satisfy the recurrence relation of the form
(5.10) Tnt3 + 3Tpyo — xy =0, n e N.

Proof. The relations (5.9) from simple trigonometric considerations follow,
for example:

bui1 = 8 cos?(B) cos(2 ) (4 cos(B) cos(28))"
+ 8 cos(f) cos?(43) (4 cos(B) cos(48))" +
= (4 cos(28) + 4 cos?(2 B3)) (4 cos(B) cos(2 ))
+ (4 cos(B) + 4 cos*(B)) (4 cos(B) cos(43))" +
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= (4 cos(28) +2+2 cos(48)) (4 cos(B) cos(23))"
(4 cos(fB) + 2+ 2 cos(2 )) (4 cos(f) cos(4 ﬂ))

@D (2 cos(28) + 2 — 2 cos(8)) (4 cos(B) cos(28))"
+ (2 cos(B) + 2 — 2 cos(43)) (4 cos(B) cos 43))
:2an—bn+dn-

From (5.9) (more precisely from the first to the last identity of the system
of equation (5.9)) it can be deduced the relations

(5.11) by = apy1 + ap,
api2 + apy1 = 2an — Apt1 — Gp + dn7

ie.,
(5.12) dn = Gpi2 +2ap41 — an,
(5.13) dpy1+dp = —ap + by = ant1
and at last
an+3 +2ap42 — Gyl + Gpy2 + 2ap4+1 — Gp = Apt1,
i.e.,
(5.14) ap+3 + 3any2 —an = 0.

Hence and from identities: ¢,4+1 = —ay, (5.11) and (5.12) the relation (5.10)
follows. m

THEOREM 5.3. The following decompositions of polynomials hold

(X — (2 cos(B))") (X — (2 cos(28))") (X — (2 cos(48))")
=X% — hpo1 X2+ @, X+ (=1)"H

(5.15) (X —2 cos(B) (2 cos(28))") (X — 2 cos(28) (2 cos(48))")
x (X —2 cos(48) (2 cos(,é’))n) =X — [, X2+ (e — an) X+ (=1)"
=X% — £ X2 = by X+ (-1)7,

(5.16) (X —2 cos(B) (2 cos(48))") (X — 2 cos(28) (2 cos(8))")
x (X =2 cos(48) (2 cos(28))") = X3 — g, X2+ (dy — ap) X+ (=1)"
=X — g, X2 —dp 1 X+ (=17,

(X — 2 cos(B) (4 cos(B) cos(2B))") (X — 2 cos(48) (4 cos(B) cos(4))")
x (X — 2 cos(28) (4 cos(28) cos(4))")
= X3 b, X2 (=) (fo— ) X+ 1,
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(X — 2 cos(B) (4 cos(2B) cos(48))") (X — 2 cos(28) (4 cos(B) cos(45))")
x (X =2 cos(48) (4 cos(B) cos(28))")
=X — e, X2+ (=1)" (g — hn_1) X + 1,

(X — 2 cos(B) (4 cos(B) cos(4B))") (X — 2 cos(28) (4 cos(B) cos(28))")
x (X — 2 cos(48) (4 cos(28) cos(4))")
=X —d, X2+ (=1)" (hp — hp1) X + 1.

Proof. The respective formulas can be easily deduced from definitions of all
sequences: {fn}~{hn}, {an}—{d,} and Lemmas 5.1 and 5.2. =

The following result finishes the preparatory investigations.

LEMMA 5.4. Let f(2) € R[z] and f(z) =22 +p22+qz+r=(2—&) (2 —
&) (2 — &3). Suppose that £1,&2,&3 € R. Then we have

(5.17) VA= + &+ Ve
:i/—p—ﬁ\‘g/_—gi\/i<€/5+\/7_-+ {’/S—x/’_f),

where
S:=pq+6qYr+6pVr2+9r,
T =p*¢® —4¢>—4p3r+18pqr — 2702

Moreover, if T > 0 then we can assume that all the roots appearing here are
real.

Proof. See Section 3 of the paper [9]. »

Now let us describe how the initial values of recurrence sequences (2.1)
and (2.2) could be generated.

The value of ¥, follows from (5.15) for n = 2 (then from Table 1 we
obtain p =3, ¢ = —6, r = 1) and from Lemma 5.4 (then we obtain S = —27,
T = 27%). The value of ®, follows from (5.16) for n = 2 (then by Table 1 we
have p = —6, ¢ = 3, r = 1) and from Lemma 5.4 (then we deduce & = —27,
T = 3%).

The value of ¥; follows from (5.15) for n = 5 (then from Table 1 we
obtain p =24, ¢ = 129 and r = —1) and from Lemma 5.4 (then we deduce

S=27-91, T =30.372, S+ VT = 5322) The value of ®; follows
from (5.16) for n = 5 (then from Table 1 we get p = 33, ¢ = —105 and

r = —1) and from Lemma 5.4 (then we deduce S = —27-98, T = 6° - 192,
SEVT ={*2,)
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The value of Wy follows from (5.15) for n = 8 (then from Table 1 we
obtain p = 3, ¢ = —3084 and r = 1) and from Lemma 5.4 (then we deduce

S=-27-1027, T = 3*-38073%, S+ /T = {*3;}_@;,19)3). At last, the value
of ®3 can be obtained from (5.16) for n = 8 (then from Table 1 we get

p = —249, ¢ = 2514 and r = 1) and from Lemma 5.4 (then we deduce
3
§=-27-22681, T = 20 19% - 1117%, VS £ VT = { 52527

Table 1. The first twelve values of some recurrent sequences discussed in the paper

[nl ol ] o[ 8[ 4] s[ o 7 s o 10 uf
.|| 0| 3 0 9] -3 27 —18 84| —81 270 =327 891
P, ||-1] 1| —4 4| —-13 16| —43 61| —145 226| —496 823
| 0| 0f1/7]1/7 1| 6/7 5 4 22 17 91 69
En |l 1] 2 28| 112| 441| 1715| 6615| 25382| 97069 | 370440 | 1411788
An |l O] 1 5| 21 84| 329 1274| 4900| 18767| T71687| 273371| 1041348
Tn 0] 0 1 7 35| 154 637| 2548 9996| 38759| 149205| 571781
wn || O 3| 12| 45| 171| 657 2538| 9828 38097 | 147744 | 573075| 2223045
Un 1| 3| 12| 48] 189| 738| 2871| 11151 | 43281 | 167940| 651564 | 2527767
én 1l 3 9| 30| 108| 405| 1548| 5967| 23085| 89451 | 346842 | 1345248
fnll O|=-3| =3| —9| —-6| —24 —9| —66 -3 —-189 57 —564
gn || O[=3 6| —9 21| =33 72| —120 249| —432 867| —1545
hn| 0| 6| —=3| 18| —15 57| —63 186| —246 621 —924 2109
an || 3|-3 9| —24 69| —198 570|—1641| 4725|—13605| 39174|—-112797
bn 0| 6|—15| 45|—129| 372|—-1071| 3084|—8880| 25569|—73623| 211989
Cn 0|-3 3] -9 24| —69 198| —570| 1641| —4725| 13605| —39174
dn|| O3] 12|-36| 105|-303 873|—2514| 7239|—20844| 60018|—172815
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