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RAMANUJAN TYPE TRIGONOMETRIC FORMULAE

Abstract. In the paper, new Ramanujan type trigonometric formulae for arguments
2π/7 and 2π/9 are presented.

1. Introduction

This paper presents some new Ramanujan type trigonometric identities
in the spirit of his original identities (see [1]):

(
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8π
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2π
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+

(
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)1/3
=

(3 3
√
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2

)1/3
.(1.2)

It is worth to mention that Wituła and Słota already discussed such
kind of identities in papers [7] and [9]. The main reason of taking an interest
in this matter was an intention of applying the, so called, quasi-Fibonacci
numbers (see [6, 8, 10]) for generating the Ramanujan type identities. It
seems that this research succeeded. For example, in paper [9] the following
formulae were received:

(1.3) 3
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√
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√
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√
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√
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2 cos 4α
)k+1

+
3

√

cos 4α

cosα

(

2 cosα
)k+1

=
3
√
7ψk,

where α = 2π
7 , ψ0 = −1, ψ1 = 0, ψ2 = −3 and

ψk+3 + ψk+2 − 2ψk+1 − ψk = 0, k ∈ Z;
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and

(1.4) 3

√

cosα

cos 4α

(

2 cosα
)k

+
3

√

cos 2α

cosα

(

2 cos 2α
)k

+
3

√

cos 4α

cos 2α

(

2 cos 4α
)k

=
3

√

cos 2α

cosα

(

2 cosα
)k+1

+
3

√

cos 4α

cos 2α

(

2 cos 2α
)k+1

+ 3

√

cosα

cos 4α

(

2 cos 4α
)k+1

=
3
√
49ϕk,

where ϕ0 = 0, ϕ1 = −1, ϕ2 = 1 and

ϕk+3 + ϕk+2 − 2ϕk+1 − ϕk = 0, k ∈ Z.

Equivalents of the above formulae for the angle β = 2π
9 are presented in the

current work (see formulae (2.1) and (2.2)).

Moreover, V. Shevelev in the context of works [4], [7] and [9] distinguished
the Ramanujan cubic polynomials (shortly RCP), i.e. real cubic polynomials

(1.5) x3 + px2 + qx+ r, r 6= 0,

having real roots ξ1, ξ2, ξ3 and satisfying the condition

(1.6) p 3
√
r + 3

3
√
r2 + q = 0.

Then we can note that two crucial identities hold: (Ramanujan type, see
[4, 9])

(1.7) 3
√

ξ1 +
3
√

ξ2 +
3
√

ξ3 =
3

√

−p− 6 3
√
r + 3 3

√

9r − pq

and (Shevelev type, see [3, 4])

(1.8) 3

√

ξ1
ξ2

+ 3

√

ξ2
ξ1

+ 3

√

ξ1
ξ3

+ 3

√

ξ3
ξ1

+ 3

√

ξ2
ξ3

+ 3

√

ξ3
ξ2

= 3

√

pq

r
− 9.

Wituła, continuing Shevelev’s research (see [11, 13]), distinguished the
next class of Ramanujan cubic polynomials of the second kind (shortly
RCP2), defined as the real cubic polynomials of the form (1.5), having real
roots and satisfying the condition

(1.9) p3r + 27r2 + q3 = 0

(every term in this sum is cube of the corresponding term in the sum (1.6)).
For example, polynomial f(z) = z3+3z2−3 3

√
2z+1 is the RCP2 and, simul-

taneously, is not RCP. Roots ξ1, ξ2, ξ3 of f(z) satisfy the following conditions
(see [13]):

3
√

ξ1 +
3
√

ξ2 +
3
√

ξ3 = 0
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and

3

√

ξ1
ξ2

+ 3

√

ξ2
ξ1

+ 3

√

ξ1
ξ3

+ 3

√

ξ3
ξ1

+ 3

√

ξ2
ξ3

+ 3

√

ξ3
ξ2

= −3.

In the figure (1) Venn diagram for the sets of RCP’s and RCP2’s is given.
Let us notice, that RCP’s and RCP2’s share many similar properties.

RCP RCP2p q r = 0

Fig. 1. Venn diagram for the sets of RCP’s and RCP2’s

Now let us resume the contents of the current paper. In Section 2, the
equivalents of formulae (2) and (3) from paper [9] for the angle 2π/9 are
presented, whereas, the initial values for those recurrence identities are gen-
erated in Section 5. In Section 3 we give few more trigonometric identities
for the angle 2π/7, essentially completing the set of identities from work [9].
Moreover, in Section 4, the generalizations of some Berndt, Zhang and Liu
formulae from the paper [2] are presented.

We note that all the identities are related, just as in [9], where formula
(10) from [9] was applied to the sum of the cubic roots of the roots of some
special polynomials of the third degree, discussed by Wituła and Słota in [7].
Some detailed calculations have been omitted in the paper.

2. The argument
2π

9
We remind in this moment that notation β will be consistently used for

2π
9 .

First let us discuss identities that are equivalent to identities (2.1) and
(2.2) from [9]:

(2.1) 3

√

cos(β)

cos(2β)

(

2 cos(β)
)n

+ 3

√

cos(2β)

cos(4β)

(

2 cos(2β)
)n

+ 3

√

cos(4β)

cos(β)

(

2 cos(4β)
)n
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= −
(

3

√

cos(β)

cos(2β)

(

2 cos(2β)
)n+1

+ 3

√

cos(2β)

cos(4β)

(

2 cos(4β)
)n+1

+ 3

√

cos(4β)

cos(β)

(

2 cos(β)
)n+1

)

= −
(

3

√

2 cos(β)
(

2 cos(2β)
)3n+2

+
3

√

2 cos(2β)
(

2 cos(4β)
)3n+2

+
3

√

2 cos(4β)
(

2 cos(β)
)3n+2

)

=
3
√
3Ψn,

where Ψ0 = 0, Ψ1 = 3, Ψ2 = 0 and

Ψn+3 − 3Ψn+1 +Ψn = 0, n ∈ Z;

(2.2) 3

√

cos(β)

cos(4β)

(

2 cos(β)
)n

+ 3

√

cos(2β)

cos(β)

(

2 cos(2β)
)n

+ 3

√

cos(4β)

cos(2β)

(

2 cos(4β)
)n

= −
(

3

√

cos(2β)

cos(β)

(

2 cos(β)
)n+1

+ 3

√

cos(4β)

cos(2β)

(

2 cos(2β)
)n+1

+ 3

√

cos(β)

cos(4β)

(

2 cos(4β)
)n+1

)

= −
(

3

√

2 cos(2β)
(

2 cos(β)
)3n+2

+
3

√

2 cos(4β)
(

2 cos(2β)
)3n+2

+

+
3

√

2 cos(β)
(

2 cos(4β)
)3n+2

)

=
3
√
9Φn,

where Φ0 = −1, Φ1 = 1, Φ2 = −4 and

Φn+3 − 3Φn+1 +Φn = 0, n ∈ Z.

Proof. We note that

(2.3) X
3 − 3X+ 1 =

2
∏

k=0

(

X− 2 cos
(

2kβ
)

)

(it is easy to calculate, see also [14]). Since it is generating function for (2.1)
and (2.2) so the rest of the proof reduces to checking whether (2.1) and (2.2)
hold true for the initial values n = 0, 1, 2. It will be presented in Section 5.

We note that (1.3) and (1.4), as well as (2.1) and (2.2) from above, all
equalities for n = 0, include the Shevelev’s formulae [3]:
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2
∑

k=0

(

3

√

cos(2kα)

cos(2k+1α)
+ 3

√

cos(2kα)

cos(2k+2α)

)

= − 3
√
7

and
2

∑

k=0

(

3

√

cos(2kβ)

cos(2k+1β)
+ 3

√

cos(2kβ)

cos(2k+2β)

)

= − 3
√
9,

respectively. Moreover, using Remark 1 from [9] we deduce the following
relation

(2.4) Sn =
( cos(β)

cos(2β)

)n/3
+

(cos(2β)

cos(4β)

)n/3
+

(cos(4β)

cos(β)

)n/3
,

where S0 = 3, S1 = 0, S2 = 2 3
√
9. We have also

(2.5) Sn+3 =
3
√
9Sn+1 + Sn.

On the other hand, from (2.5) we obtain

(2.6) Sn = xn +
3
√
9 yn +

3
√
81 zn,

where

x0 = 3, y0 = z0 = 0,

x1 = y1 = z1 = 0,

x2 = z2 = 0, y2 = 2,

and, we have

xn+3 = xn + 9 zn+1,

yn+3 = yn + xn+1,

zn+3 = zn + yn+1.

Moreover, one can deduce the following relation:

(2.7) S∗
n =

(

3

√

cos(β)

cos(2β)

(

2 cos(β)
)2
)n

+
(

3

√

cos(2β)

cos(4β)

(

2 cos(2β)
)2
)n

+

+
(

3

√

cos(4β)

cos(β)

(

2 cos(4β)
)2
)n
,

where S∗
0 = 3, S∗

1 = 0, S∗
2 = 14 3

√
9. Furthermore

(2.8) S∗
n+3 = 7

3
√
9S∗

n+1 + S∗
n.

Likewise, the following relation can be generated

(2.9) S∗
n = x∗n +

3
√
9 y∗n +

3
√
81 z∗n,
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where

x∗0 = 3, y∗0 = z∗0 = 0,

x∗1 = y∗1 = z∗1 = 0,

x∗2 = z∗2 = 0, y∗2 = 14,

and, by (2.8), we have

x∗n+3 = x∗n + 63 z∗n+1,

y∗n+3 = y∗n + 7x∗n+1,

z∗n+3 = z∗n + 7 y∗n+1.

Let us present one more identity derived by using Lemma 5.4 (see also
the equation (10) from [9]):

3
√
2√
3

(

3
√

sin(2β)− 3
√

sin(β)− 3
√

sin(4β)
)

= 3

√

2
3
√
3
+

3

√

1− 3
√
9 +

3

√

2− 3
√
9,

since
2
∏

k=0

(

X− (−1)k 2 sin
(

2kβ
)

)

= X
3 − 3X+

√
3.

3. The argument
2π

7
3.1. The first identity. The notation α will be consistently used for 2π

7 .

The following identity holds

(3.1) sinn(α) 3

√

sin(4α)

sin(α)
+ sinn(2α) 3

√

sin(α)

sin(2α)
+ sinn(4α) 3

√

sin(2α)

sin(4α)

= an
3

√

4− 3
3
√
7 + bn

3

√

11− 3
3
√
49,

where a0 = 1, b0 = 0, a1 = − 6
√
7/2, b1 = 0, a2 = 0, b2 =

3
√
7/4 (see [7]), and

(3.2) xn+1 =
√
7
(

xn − xn−2

)

,

for every x ∈ {a, b}, n = 2, 3, 4, . . .. We note that

(3.3) bn =
3
√
7

4

(

4
√
7
)3+(−1)n

γn,

where γ0 = γ1 = 0, γ2 = 1/7,

(3.4) γn+1 =
(
√
7
)1+(−1)n (

γn − γn−2

)

,

and γn, n = 6, 7, 8, . . ., are all integers (see Table 1). Moreover, let us remind



Ramanujan type trigonometric formulae 785

that (see [7, 14]):

X
3 −

√
7X2 +

√
7 =

2
∏

k=0

(

X− 2 sin(2k α)
)

,

which implies the relation (3.2).

3.2. The second identity. We have the following identity

(3.5) cscn(2α) 3
√

2 cos(α) + cscn(4α) 3
√

2 cos(2α) + cscn(α) 3
√

2 cos(4α)

= cn
3

√

5− 3
3
√
7 + dn

3

√

2 + 3
3
√
49,

where c0 = 1, d0 = 0, c1 = −2/ 6
√
7, d1 = 0, c2 = 0, d2 = −4/ 3

√
7, and

(3.6) xn+2 = xn −
√
7

7
xn−1,

for every x ∈ {c, d}, n = 1, 2, 3, . . ..

On the other hand, by (4.32) from [7] we have

(3.7)
(

−
√
7

2

)n(

cscn(α) 3
√

2 cos(4α) + cscn(2α) 3
√

2 cos(2α)

+cscn(4α) 3
√

2 cos(α)
)

= 3

√

w∗
3n + 67n − 3

3
√
2

(

3

√

S +
√
T +

3

√

S −
√
T

)

,

where

S = (−1)n−1 y3n−1

(

73n/2w∗
3n + 675n/2

)

− 6 72nw∗
3n − 9 73n,

T = 73n (w∗
3n)

2 y23n−1 − 4 (−
√
7)9n y33n−1 − 4 73n (w∗

3n)
3

+ 18 (−7
√
7)3nw∗

3n y3n−1 − 27 76n,

where

w∗
n+3 − 3w∗

n+1 − w∗
n = z2n+1 + z2n−1 − z2n − z2n−1,(3.8)

zn+6 − 7 zn+4 + 14 zn+2 − 7 zn = 0,(3.9)

yn = zn+2 − 3 zn,(3.10)

for n ∈ N and z0 = y0 =
√
7, z1 = 7 and w∗

0 = −1 (see Tables 3 and 4 in [7]).
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We note that

zn =
(

2 sin(2π7 )
)n+1

+
(

2 sin(4π7 )
)n+1

+
(

2 sin(8π7 )
)n+1

,(3.11)

yn = 2 sin(8π7 )
(

2 sin(2π7 )
)n

+ 2 sin(2π7 )
(

2 sin(4π7 )
)n

(3.12)

+ 2 sin(4π7 )
(

2 sin(8π7 )
)n
,

w∗
n = 2 cos(2π7 )

(

4 sin(2π7 ) sin(8π7 )
)n

(3.13)

+ 2 cos(4π7 )
(

4 sin(2π7 ) sin(4π7 )
)n

+ 2 cos(8π7 )
(

4 sin(4π7 ) sin(8π7 )
)n
,

(see A079309 [5] for the sequence {z2n/
√
7}).

3.3. The next identities. Moreover, by using formula (4.10) from [7] we
get

(3.14)
2

∑

k=0

3

√

2 cos(2kα)
(

2 sin(2kα)
)n

=
6
√
7n

3

√

An
3
√
49 +Bn

3
√
7 + Cn

= an
3

√

5− 3
3
√
7 + bn

3

√

5 + 3
3
√
7− 3

3
√
49

= a∗n
3

√

5 + 3
3
√
7− 3

3
√
49 + b∗n

3

√

(

2− 3
√
7
)2

+ c∗n
3

√

(

4− 3
3
√
7
)2
,

where

a0 = 1, a1 = − 6
√
7, a2 = 0,

b0 = 0, b1 = 0, b2 =
3
√
7,

a∗1 =
3
√
7, a∗2 = 0, a∗3 = 0,

b∗1 = 0, b∗2 = − 3
√
2
√
7, b∗3 = 0,

c∗1 = 0, c∗2 = 0, c∗3 = − 3
√
49,

and

(3.15) xn+3 −
√
7xn+2 +

√
7xn = 0,

for every n ∈ Z and x ∈ {a, b, a∗, b∗, c∗};
A0 = A1 = 0, A2 = −3, An+3 −An+2 − 2An+1 +An = 0, n ∈ Z,(3.16)

B0 = −3, B1 = B2 = 3, Bn+3 − 2Bn+2 −Bn+1 +Bn = 0, n ∈ Z,(3.17)

Cn = (
√
7)−n u3n + 6 (−1)n, n ∈ Z,(3.18)

and finally

(3.19) u0 = −1, u1 =
√
7, u2 = 0, un+3 −

√
7un+2 +

√
7un = 0, n ∈ Z.
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Additionally, we note that for every n ∈ Z we have

(3.20) un =

2
∑

k=0

2 cos(2kα)
(

2 sin(2kα)
)n
.

Remark 3.1. Furthermore, we get the following formula

(3.21)
2

∑

k=0

(

2 sin(2kα) +
6
√
7
)

3

√

2 cos(2kα) = 0.

By formula (4.11) from [7] we receive

(3.22) 3
√

2 cos(2α)
(

2 sin(α)
)n

+ 3
√

2 cos(α)
(

2 sin(4α)
)n

+ 3
√

2 cos(4α)
(

2 sin(2α)
)n

= − 6
√
7n

3

√

An
3
√
49 +Bn

3
√
7 + Cn

= an
3

√

5− 3
3
√
7 + bn

3

√

3
√
7
(

3 + (1 +
3
√
7)2

)

+ cn
3

√

63
(

1 +
3
√
7
)

,

where

a0 = 1, a1 = 0, a2 = 0,

b0 = 0, b1 = −1, b2 = 0,

c0 = 0, c1 = 0, c2 = −1,

and

(3.23) xn+3 −
√
7xn+2 +

√
7xn = 0,

for n ∈ Z and x ∈ {a, b, c};

A0 = 0, A1 = 3, A2 = 0, An+3 −An+2 − 2An+1 −An = 0, n ∈ Z,(3.24)

B0 = 3, B1 = 6, B2 = 9, Bn+3 − 2Bn+2 −Bn+1 +Bn = 0, n ∈ Z,(3.25)

Cn = −(
√
7)−nv3n − 6(−1)n, n ∈ Z,(3.26)

and where

(3.27)
v0 = −1, v1 = −2

√
7, v2 = −7,

vn+3 −
√
7 vn+2 +

√
7 vn = 0, n ∈ Z.

Let us note that for every n ∈ Z we have

(3.28) vn = 2 cos(2α)
(

2 sin(α)
)n

+ 2 cos(α)
(

2 sin(4α)
)n

+ 2 cos(4α)
(

2 sin(2α)
)n
.
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By formula (4.12) from [7] we obtain

(3.29) 3
√

2 cos(4α)
(

2 sin(α)
)n

+ 3
√

2 cos(α)
(

2 sin(2α)
)n

+ 3
√

2 cos(2α)
(

2 sin(4α)
)n

=
6
√
7n

3

√

An
3
√
49−Bn

3
√
7 + Cn

= an
3

√

5− 3
3
√
7 + bn

3

√√
7
(

− 5− 3
3
√
7 + 3

3
√
49

)

+ cn
3

√

21
(

2− 3
√
7
)2

= a∗n
3

√

21
(

2− 3
√
7
)2

+ b∗n
√
7

3

√

(

3
3
√
7− 4

)2

+ c∗n
3

√

147
(

(2
3
√
7− 5)2 +

3
√
7
)

,

where

a0 = 1, a1 = 0, a2 = 0,

b0 = 0, b1 = 1, b2 = 0,

c0 = 0, c1 = 0, c2 = 1,

a∗2 = 1, a∗3 = 0, a∗4 = 0,

b∗2 = 0, b∗3 = 1, b∗4 = 0,

c∗2 = 0, c∗3 = 0, c∗4 = 1,

and

(3.30) xn+3 −
√
7xn+2 +

√
7xn = 0,

for every n ∈ Z and x ∈ {a, b, c, a∗, b∗, c∗};

A0 = 0, A1 = A2 = 3, An+3 −An+2 − 2An+1 +An = 0, n ∈ Z,(3.31)

B0 = B1 = 3, B2 = 12, Bn+3 − 2Bn+2 −Bn+1 +Bn = 0, n ∈ Z,(3.32)

Cn = (
√
7)−nw3n + 6 (−1)n, n ∈ Z,(3.33)

and

(3.34) w0 = −1, w1 = w2 = 0, wn+3 −
√
7wn+2 +

√
7wn = 0, n ∈ Z.

Let us note that for every n ∈ Z we have

(3.35) wn = 2 cos(4α)
(

2 sin(α)
)n

+ 2 cos(α)
(

2 sin(2α)
)n

+ 2 cos(2α)
(

2 sin(4α)
)n
.

Remark 3.2. Multiplying (36) by (51) (from [9]) we get the following
equality
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(3.36)
(

(

2 cos(α)
)−2/3

+
(

2 cos(2α)
)−2/3

+
(

2 cos(4α)
)−2/3

)

×
(

2 cos(α)
(

2 cos(4α)
)−1/3

+ 2 cos(2α)
(

2 cos(α)
)−1/3

+ 2 cos(4α)
(

2 cos(2α)
)−1/3

)

= 3,

i.e.,

(3.37) 3

√

cos(α)

cos(4α)
+ 3

√

cos(2α)

cos(α)
+ 3

√

cos(4α)

cos(2α)
+

cos(2α)

cos(α)
+

cos(4α)

cos(2α)

+
cos(α)

cos(4α)
+ 2 cos(4α) 3

√

cos(4α)

cos(α)
+ 2 cos(α) 3

√

cos(α)

cos(2α)

+ 2 cos(2α) 3

√

cos(2α)

cos(4α)
= 3,

which, by (37) and (41) from [9], is equivalent to the equality

(3.38)
cos(2α)

cos(α)
+

cos(4α)

cos(2α)
+

cos(α)

cos(4α)
= 3.

Similarly, multiplying (48) by (49) from [9] we get

(3.39)
( 3

√

cos(α)

cos(2α)
+

3

√

cos(2α)

cos(4α)
+

3

√

cos(4α)

cos(α)

)

×
(

3

√

cos(α)

cos2(4α)
+ 3

√

cos(2α)

cos2(α)
+ 3

√

cos(4α)

cos2(2α)

)

= 12,

which, by (37) and (41) from [9], is equivalent to

(3.40) scs2(α) + scs2(2α) + scs2(4α) = 24.

4. Generalizations of some Berndt-Zhang
and Liu trigonometric identities

Now we will present the generalizations of equations (1.1)–(1.5) discussed
in [2] (the elementary proof of the identities shall be given in [15]).

Let us set

κn =
22n+1

√
7

2
∑

k=0

sin
(

2k α
)

sin2n
(

2k+1 α
)

(4.1)

=
22n+1

√
7

2
∑

k=0

sin
(

2k+2 α
)

sin2n
(

2k α
)

,
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λn = −22n−1

√
7

2
∑

k=0

csc
(

2k+1 α
)

sin2n
(

2k α
)

,(4.2)

τn =
22n−1

√
7

2
∑

k=0

csc
(

2k+2 α
)

sin2n
(

2k α
)

.(4.3)

Then we have

κ0 = 1, κ1 = 2, κ2 = 7,

λ0 = 0, λ1 = 1, λ2 = 5,

τ0 = 0, τ1 = 0, τ2 = 1,

and

(4.4) xn+3 − 7xn+2 + 14xn+1 − 7xn = 0,

for every x ∈ {κ, λ, τ} and n ∈ N0.

Furthermore, let us set

µn =
22n+1

√
3

2
∑

k=0

(−1)k sin
(

2k β
)

sin2n
(

2k+1 β
)

(4.5)

=
22n+1

√
3

2
∑

k=0

(−1)k sin
(

2k+2 β
)

sin2n
(

2k β
)

,

νn = −22n−1

√
3

2
∑

k=0

(−1)k csc
(

2k+1 β
)

sin2n
(

2k β
)

,(4.6)

ξn =
22n−1

√
3

2
∑

k=0

(−1)k csc
(

2k+2 β
)

sin2n
(

2k β
)

.(4.7)

Then we have

µ0 = 0, µ1 = 3, µ2 = 12,

ν0 = 1, ν1 = 3, ν2 = 12,

ξ0 = 1, ξ1 = 3, ξ2 = 9,

and

(4.8) xn+3 − 6xn+2 + 9xn+1 − 3xn = 0,

for every x ∈ {µ, ν, ξ} and n ∈ N0.
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5. Discussion of the initial values for (2.1) and (2.2)

Let us set

fn = 2n+1
(

cos(β)
(

cos(2β)
)n

+ cos(2β)
(

cos(4β)
)n
+(5.1)

+ cos(4β)
(

cos(β)
)n
)

,

gn = 2n+1
(

cos(4β)
(

cos(2β)
)n

+ cos(β)
(

cos(4β)
)n

(5.2)

+ cos(2β)
(

cos(β)
)n
)

,

hn = 2n+1
(

(

cos(β)
)n+1

+
(

cos(2β)
)n+1

+
(

cos(4β)
)n+1

)

,(5.3)

for every n = 0, 1, 2, . . . .

Lemma 5.1. We have

f0 = g0 = h0 = 0, f1 = g1 = −3 and h1 = 6,










fn+1 = fn − hn−1,

gn+1 = hn − hn−1,

hn+1 = gn + 2hn−1,

for every n ∈ N. Elements of any of the following three sequences: {fn}∞n=0,

{gn}∞n=0 and {hn}∞n=0 satisfy the same recurrence relation

(5.4) xn+3 − 3xn+1 + xn = 0, n = 0, 1, . . .

Proof. We have

hn+1 = gn + 2hn−1 = hn−1 − hn−2 + 2hn−1,

i.e.,

hn+1 − 3hn−1 + hn−2 = 0.

Similar relation holds for the sequence {gn}∞n=0 since

g3 − 3 g1 + g0 = h2 − h1 + 9 = g1 + 2h0 − 6 + 9 = 0,

g4 − 3 g2 + g1 = h3 − h2 − 3 (h1 − h0)− 3 = g2 + 2h1 − 18 =

= 3h1 − h0 − 18 = 0

and

gn+1 = hn − hn−1, n ∈ N.

Moreover, we find

f2 = f1 − h0 = −3, f3 = f2 − h1 = −9,

f3 − 3 f1 + f0 = 0,
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and the induction step runs as follows

fn+4 − 3 fn+2 + fn+1 = fn+3 − hn+2 − 3
(

fn+1 − hn
)

+ fn − hn−1 = 0.

The first twelve elements of the sequences {fn}∞n=0, {gn}∞n=0 and {hn}∞n=0

are given in Table 1.

Furthermore, let us set

an =
(

4 cos(β) cos(2β)
)n

+
(

4 cos(β) cos(4β)
)n

(5.5)

+
(

4 cos(2β) cos(4β)
)n
,

bn = 2 cos(β)
(

4 cos(β) cos(2β)
)n

+ 2 cos(4β)
(

4 cos(β) cos(4β)
)n

(5.6)

+ 2 cos(2β)
(

4 cos(2β) cos(4β)
)n
,

cn = 2 cos(β)
(

4 cos(2β) cos(4β)
)n

+ 2 cos(2β)
(

4 cos(β) cos(4β)
)n

(5.7)

+ 2 cos(4β)
(

4 cos(β) cos(2β)
)n
,

dn = 2 cos(β)
(

4 cos(β) cos(4β)
)n

+ 2 cos(2β)
(

4 cos(β) cos(2β)
)n

(5.8)

+ 2 cos(4β)
(

4 cos(2β) cos(4β)
)n
,

for every n = 0, 1, 2, . . . .

Lemma 5.2. The following relations are satisfied

(5.9)























an+1 =
1
2

(

h2n − h2n+1

)

= bn − an,

bn+1 = 2 an − bn + dn,

cn+1 = −an,
dn+1 = −an + bn − dn,

for every n = 0, 1, . . .. Additionally, all four sequences {an}∞n=0, {bn}∞n=0,

{cn}∞n=0 and {dn}∞n=0 satisfy the recurrence relation of the form

(5.10) xn+3 + 3xn+2 − xn = 0, n ∈ N.

Proof. The relations (5.9) from simple trigonometric considerations follow,
for example:

bn+1 = 8 cos2(β) cos(2β)
(

4 cos(β) cos(2β)
)n

+ 8 cos(β) cos2(4β)
(

4 cos(β) cos(4β)
)n

+ . . .

=
(

4 cos(2β) + 4 cos2(2β)
) (

4 cos(β) cos(2β)
)n

+
(

4 cos(β) + 4 cos2(β)
) (

4 cos(β) cos(4β)
)n

+ . . .



Ramanujan type trigonometric formulae 793

=
(

4 cos(2β) + 2 + 2 cos(4β)
) (

4 cos(β) cos(2β)
)n

+
(

4 cos(β) + 2 + 2 cos(2β)
) (

4 cos(β) cos(4β)
)n

+ . . .

(2.3)
=

(

2 cos(2β) + 2− 2 cos(β)
) (

4 cos(β) cos(2β)
)n

+
(

2 cos(β) + 2− 2 cos(4β)
) (

4 cos(β) cos(4β)
)n

+ . . .

= 2 an − bn + dn.

From (5.9) (more precisely from the first to the last identity of the system
of equation (5.9)) it can be deduced the relations

bn = an+1 + an,(5.11)

an+2 + an+1 = 2 an − an+1 − an + dn,

i.e.,

dn = an+2 + 2 an+1 − an,(5.12)

dn+1 + dn = −an + bn = an+1(5.13)

and at last

an+3 + 2 an+2 − an+1 + an+2 + 2 an+1 − an = an+1,

i.e.,

(5.14) an+3 + 3 an+2 − an = 0.

Hence and from identities: cn+1 = −an, (5.11) and (5.12) the relation (5.10)
follows.

Theorem 5.3. The following decompositions of polynomials hold
(

X−
(

2 cos(β)
)n) (

X−
(

2 cos(2β)
)n) (

X−
(

2 cos(4β)
)n)

= X
3 − hn−1X

2 + anX+ (−1)n+1,

(5.15)
(

X− 2 cos(β)
(

2 cos(2β)
)n) (

X− 2 cos(2β)
(

2 cos(4β)
)n)

×
(

X− 2 cos(4β)
(

2 cos(β)
)n)

= X
3 − fnX

2 + (cn − an)X+ (−1)n

= X
3 − fnX

2 − bn−1X+ (−1)n,

(5.16)
(

X− 2 cos(β)
(

2 cos(4β)
)n) (

X− 2 cos(2β)
(

2 cos(β)
)n)

×
(

X− 2 cos(4β)
(

2 cos(2β)
)n)

= X
3 − gnX

2 + (dn − an)X+ (−1)n

= X
3 − gnX

2 − dn−1X+ (−1)n,

(

X− 2 cos(β)
(

4 cos(β) cos(2β)
)n) (

X− 2 cos(4β)
(

4 cos(β) cos(4β)
)n)

×
(

X− 2 cos(2β)
(

4 cos(2β) cos(4β)
)n)

= X
3 − bn X

2 + (−1)n (fn − hn−1)X+ 1,
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(

X− 2 cos(β)
(

4 cos(2β) cos(4β)
)n) (

X− 2 cos(2β)
(

4 cos(β) cos(4β)
)n)

×
(

X− 2 cos(4β)
(

4 cos(β) cos(2β)
)n)

= X
3 − cnX

2 + (−1)n (gn − hn−1)X+ 1,

(

X− 2 cos(β)
(

4 cos(β) cos(4β)
)n) (

X− 2 cos(2β)
(

4 cos(β) cos(2β)
)n)

×
(

X− 2 cos(4β)
(

4 cos(2β) cos(4β)
)n)

= X
3 − dnX

2 + (−1)n (hn − hn−1)X+ 1.

Proof. The respective formulas can be easily deduced from definitions of all
sequences: {fn}–{hn}, {an}–{dn} and Lemmas 5.1 and 5.2.

The following result finishes the preparatory investigations.

Lemma 5.4. Let f(z) ∈ R[z] and f(z) = z3 + p z2 + q z + r = (z − ξ1) (z −
ξ2) (z − ξ3). Suppose that ξ1, ξ2, ξ3 ∈ R. Then we have

(5.17)
3
√
A = 3

√

ξ1 +
3
√

ξ2 +
3
√

ξ3

= 3

√

−p− 6 3
√
r − 3

3
√
2

(

3

√

S +
√
T +

3

√

S −
√
T
)

,

where

S := p q + 6 q 3
√
r + 6 p

3
√
r2 + 9 r,

T := p2 q2 − 4 q3 − 4 p3 r + 18 p q r − 27 r2.

Moreover, if T ≥ 0 then we can assume that all the roots appearing here are

real.

Proof. See Section 3 of the paper [9].

Now let us describe how the initial values of recurrence sequences (2.1)
and (2.2) could be generated.

The value of Ψ0 follows from (5.15) for n = 2 (then from Table 1 we
obtain p = 3, q = −6, r = 1) and from Lemma 5.4 (then we obtain S = −27,
T = 272). The value of Φ0 follows from (5.16) for n = 2 (then by Table 1 we
have p = −6, q = 3, r = 1) and from Lemma 5.4 (then we deduce S = −27,
T = 36).

The value of Ψ1 follows from (5.15) for n = 5 (then from Table 1 we
obtain p = 24, q = 129 and r = −1) and from Lemma 5.4 (then we deduce

S = 27 · 91, T = 36 · 372, S ±
√
T =

{123·2
36·2 ). The value of Φ1 follows

from (5.16) for n = 5 (then from Table 1 we get p = 33, q = −105 and
r = −1) and from Lemma 5.4 (then we deduce S = −27 · 98, T = 66 · 192,
S ±

√
T =

{ 36·2
−153·2).
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The value of Ψ2 follows from (5.15) for n = 8 (then from Table 1 we
obtain p = 3, q = −3084 and r = 1) and from Lemma 5.4 (then we deduce

S = −27 · 1027, T = 34 · 380732, S ±
√
T =

{−2·(3·19)3

24·39
). At last, the value

of Φ2 can be obtained from (5.16) for n = 8 (then from Table 1 we get
p = −249, q = 2514 and r = 1) and from Lemma 5.4 (then we deduce

S = −27 · 22681, T = 26 · 192 · 11172, 3
√

S ±
√
T =

{−3·28· 3
√
2

−27· 3
√
2

).

Table 1. The first twelve values of some recurrent sequences discussed in the paper

n 0 1 2 3 4 5 6 7 8 9 10 11

Ψn 0 3 0 9 −3 27 −18 84 −81 270 −327 891

Φn −1 1 −4 4 −13 16 −43 61 −145 226 −496 823

γn 0 0 1/7 1/7 1 6/7 5 4 22 17 91 69

κn 1 2 7 28 112 441 1715 6615 25382 97069 370440 1411788

λn 0 1 5 21 84 329 1274 4900 18767 71687 273371 1041348

τn 0 0 1 7 35 154 637 2548 9996 38759 149205 571781

µn 0 3 12 45 171 657 2538 9828 38097 147744 573075 2223045

νn 1 3 12 48 189 738 2871 11151 43281 167940 651564 2527767

ξn 1 3 9 30 108 405 1548 5967 23085 89451 346842 1345248

fn 0 −3 −3 −9 −6 −24 −9 −66 −3 −189 57 −564

gn 0 −3 6 −9 21 −33 72 −120 249 −432 867 −1545

hn 0 6 −3 18 −15 57 −63 186 −246 621 −924 2109

an 3 −3 9 −24 69 −198 570 −1641 4725 −13605 39174 −112797

bn 0 6 −15 45 −129 372 −1071 3084 −8880 25569 −73623 211989

cn 0 −3 3 −9 24 −69 198 −570 1641 −4725 13605 −39174

dn 0 −3 12 −36 105 −303 873 −2514 7239 −20844 60018 −172815
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