

C. Carpintero, N. Rajesh, E. Rosas

***m*-PREOPEN SETS IN BIMINIMAL SPACES**

Abstract. The aim of this paper is to introduce and characterize the concepts of preopen sets and their related notions in biminimal spaces.

1. Introduction

In [4], Popa and Noiri introduced the notion of minimal structure which is a generalization of a topology on a given nonempty set. They also introduced the notion of m -continuous function as a function defined between a minimal structure and a topological space. They showed that the m -continuous functions have properties similar to those of continuous functions between topological spaces. Let X be a topological space and $A \subset X$. The closure of A and the interior of A are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. A subfamily m of the power set $P(X)$ of a nonempty set X is called a minimal structure [4] on X if \emptyset and X belong to m . By (X, m) , we denote a nonempty set X with a minimal structure m on X . The members of the minimal structure m are called m -open sets [4], and the pair (X, m) is called an m -space. The complement of m -open set is said to be m -closed [4]. In this paper we introduce and characterize the concepts of preopen sets in a biminimal space (X, m_1, m_2) , which is a set X with two arbitrary minimal structures m_1 and m_2 .

2. Preliminaries

In this section, we recall the m -structure and the m -operator notions. Also, we recall some important subsets associated to these concepts.

DEFINITION 2.1. [1] Let X be a nonempty set and let $m_X \subseteq P(X)$, where $P(X)$ denote the set of power of X . We say that m_X is an m -structure (or a minimal structure) on X , if \emptyset and X belong to m_X .

2000 *Mathematics Subject Classification*: 54D10.

Key words and phrases: biminimal spaces, (i, j) - m -preopen sets, (i, j) - m -preclosed sets.

The members of the minimal structure m_X are called m_X -open sets, and the pair (X, m_X) is called an m -space. The complement of an m_X -open set is said to be an m_X -closed set. Given $A \subseteq X$, we define m_X -interior of A abbreviate $m_X\text{-Int}(A)$ as $\bigcup\{W : W \in m_X, W \subseteq A\}$ and the m_X -closure of A abbreviate $m_X\text{-Cl}(A)$ as $\bigcap\{F : A \subseteq F, X \setminus F \in m_X\}$. An immediate consequence of the above definition is the following theorem.

THEOREM 2.2. [1, 4] *Let (X, m_X) be an m -space and A a subset of X . Then $x \in m_X\text{-Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x , and satisfying the following properties:*

- (1) $m_X\text{-Cl}(m_X\text{-Cl}(A)) = m_X\text{-Cl}(A)$.
- (2) $m_X\text{-Int}(m_X\text{-Int}(A)) = m_X\text{-Int}(A)$.
- (3) $m_X\text{-Int}(X \setminus A) = X \setminus (m_X\text{-Cl}(A))$.
- (4) $m_X\text{-Cl}(X \setminus A) = X \setminus (m_X\text{-Int}(A))$.
- (5) *If $A \subseteq B$ then $m_X\text{-Cl}(A) \subseteq m_X\text{-Cl}(B)$.*
- (6) $m_X\text{-Cl}(A \cup B) \subseteq m_X\text{-Cl}(A) \cup m_X\text{-Cl}(B)$.
- (7) $A \subseteq m_X\text{-Cl}(A)$ and $m_X\text{-Int}(A) \subseteq A$.

Observe that $m_X\text{-Cl}(A)$ is not necessarily an m_X -closed set. At this point arises a natural question. Do there exist any conditions on the set X or in the m -structure of X which guarantee that the $m_X\text{-Cl}(A)$ is an m_X -closed set. At this point we introduce the following property.

DEFINITION 2.3. [1] Let (X, m_X) be an m -space. We say that m_X has the property of Maki, if the union of any family of elements of m_X belongs to m_X .

Observe that any collection $\emptyset \neq \mathcal{J} \subseteq P(X)$, is always contained in an m -structure that have the property of Maki, as we know, $m_X(\mathcal{J}) = \{\emptyset, X\} \cup \{\bigcup_{M \in J} M : \emptyset \neq J \subseteq \mathcal{J}\}$. In particular, when $\mathcal{J} = m_X$, we denote by $m_X' = m_X(\mathcal{J})$. Clearly $m_X = m_X'$, if m_X have the property of Maki. Note that if m_X is an m -structure and $Y \subseteq X$, then $\{M \cap Y : M \in m_X\}$ is an m -structure on Y , and is denoted by $m_{X|Y}$, and the pair $(Y, m_{X|Y})$ is called an m -subspace of (X, m_X) .

In general, the m_X -open sets is not stable for the union. Nevertheless, for certain m_X -structure, the class of m_X -open sets is stable under union of sets, like it is demonstrated in the following lemma.

LEMMA 2.4. [1, 4] *Let m_X be an m -structure which satisfy the property of Maki. If $\{A_i : i \in I\}$ is a collection of m_X -open sets (resp., m_X -closed sets), then $\bigcup_{i \in I} A_i$ (resp., $\bigcap_{i \in I} A_i$) is an m_X -open set (resp., m_X -closed set).*

THEOREM 2.5. [1, 4] *Let (X, m_X) be an m -space and m_X satisfying the property of Maki. For a subset A of X , the following properties hold:*

- (1) $m_X\text{-Int}(A) \in m_X$ and $m_X\text{-Cl}(A)$ is m_X -closed.
- (2) $A \in m_X$ if and only if $m_X\text{-Int}(A) = A$.
- (3) A is m_X -closed if and only if $m_X\text{-Cl}(A) = A$.

DEFINITION 2.6. Let (X, m) be a space with a minimal structure m on X and $A \subset X$. Then a set A is called an m -preopen [2] set in X if $A \subset m\text{Int}(m\text{Cl}(A))$.

A set A is called an m -preclosed set if the complement of A is m -preopen. The family of all m -preopen (resp. m -preclosed) subsets of (X, m) is denoted by $mPO(X)$ (resp. $mPC(X)$).

DEFINITION 2.7. [2] Let $f : (X, m) \rightarrow (Y, \sigma)$ be a function between a space X with a minimal structure m and a topological space Y . Then f is said to be minimal precontinuous (briefly m -precontinuous) if for each x and each open set V containing $f(x)$, there exists an m -preopen set U containing x such that $f(U) \subset V$.

3. (i, j) -m-preopen sets

DEFINITION 3.1. A set X equipped with two m -spaces is called a biminimal space.

Let A be a subset of a biminimal space (X, m_1, m_2) . We denote the closure of A and the interior of A with respect to m_i by $m_i\text{-Cl}(A)$ and $m_i\text{-Int}(A)$, respectively.

DEFINITION 3.2. A subset A of a biminimal space (X, m_1, m_2) is said to be (i, j) -m-preopen if and only if $A \subset m_i\text{-Int}(m_j\text{-Cl}(A))$, where $i, j = 1, 2$ and $i \neq j$.

The family of all (i, j) -m-preopen sets of (X, m_1, m_2) is denoted by $PO(X, m_1, m_2)$ or (i, j) - $mPO(X)$. Also, the family of all (i, j) -m-preopen sets of (X, m_1, m_2) containing x is denoted by (i, j) - $mPO(X, x)$.

It is clear that every m_i -open sets is (i, j) -m-preopen but the converse is not true in general as it can be seen from the following example.

EXAMPLE 3.3. Let $X = \{a, b, c\}$, $m_1 = \{\emptyset, \{a\}, \{b\}, X\}$, $m_2 = \{\emptyset, \{a\}, X\}$. Then $\{a, b\}$ is $(1, 2)$ -m-preopen but is neither m_1 -open nor m_2 -open.

PROPOSITION 3.4. Let A be a subset of a biminimal space (X, m_1, m_2) and A be an (i, j) -m-preopen set. Then we have the following:

- (1) $m_j\text{-Cl}(m_i\text{-Int}(m_j\text{-Cl}(A))) = m_j\text{-Cl}(A)$.
- (2) $m_j\text{-Cl}(m_i\text{-Int}(m_j\text{-Cl}(A))) = m_j\text{-Cl}(A)$.

Proof. The proof is obvious. ■

REMARK 3.5. The intersection of two (i, j) - m -preopen sets need not be (i, j) - m -preopen as it can be seen from the following example.

EXAMPLE 3.6. Let $X = \{a, b, c\}$, $m_1 = \{\emptyset, \{a\}, \{c\}, X\}$, $m_2 = \{\emptyset, \{a, c\}, X\}$. Then the sets $\{a, b\}$ and $\{b, c\}$ are $(1, 2)$ - m -preopen sets of (X, m_1, m_2) but their intersection $\{b\}$ is not an $(1, 2)$ - m -preopen set of (X, m_1, m_2) .

THEOREM 3.7. If $\{A_\alpha\}_{\alpha \in \Omega}$ is a family of (i, j) - m -preopen sets in (X, m_1, m_2) , then $\bigcup_{\alpha \in \Omega} A_\alpha$ is (i, j) - m -preopen in (X, m_1, m_2) .

Proof. Since $\{A_\alpha : \alpha \in \Omega\} \subset (i, j)$ - $mPO(X)$, then $A_\alpha \subset m_i\text{-Int}(m_j\text{-Cl}(A_\alpha))$ for every $\alpha \in \Omega$. Thus, $\bigcup_{\alpha \in \Omega} A_\alpha \subset \bigcup_{\alpha \in \Omega} m_i\text{-Int}(m_j\text{-Cl}(A_\alpha)) \subset m_i\text{-Int}(\bigcup_{\alpha \in \Omega} m_j\text{-Cl}(A_\alpha)) = m_i\text{-Int}(\bigcup_{\alpha \in \Omega} (A_\alpha) \cup A_\alpha) = m_i\text{-Int}(m_j\text{-Cl}(\bigcup_{\alpha \in \Omega} A_\alpha))$. Therefore, we obtain $\bigcup_{\alpha \in \Omega} A_\alpha \subset m_i\text{-Int}(m_j\text{-Cl}(\bigcup_{\alpha \in \Omega} A_\alpha))$. Hence any union of (i, j) - m -preopen sets is (i, j) - m -preopen. ■

DEFINITION 3.8. Let (X, m_1, m_2) be a biminimal space. $A \subset X$ is said to be (i, j) - m -preclosed if $X \setminus A$ is (i, j) - m -preopen in X , for $i, j = 1, 2$ and $i \neq j$.

THEOREM 3.9. A is an (i, j) - m -preclosed set in a biminimal space (X, m_1, m_2) if and only if $m_i\text{-Cl}(m_j\text{-Int}(A)) \subset A$.

Proof. The proof follows from the definitions. ■

THEOREM 3.10. Arbitrary intersection of (i, j) - m -preclosed sets is always (i, j) - m -preclosed.

Proof. Follows from Theorems 3.7 and 3.9. ■

DEFINITION 3.11. Let (X, m_1, m_2) be a biminimal space, S a subset of X and x be a point of X . Then

- (i) x is called an (i, j) - m -preinterior point of S if there exists $V \in (i, j)$ - $mPO(X, m_1, m_2)$ such that $x \in V \subset S$.
- (ii) The set of all (i, j) - m -preinterior points of S is called (i, j) - m -preinterior of S and is denoted by (i, j) - $mp\text{Int}(S)$.

THEOREM 3.12. Let A and B be subsets of (X, m_1, m_2) . Then the following properties hold:

- (i) (i, j) - $mp\text{Int}(A) = \bigcup\{T : T \subset A \text{ and } A \in (i, j)$ - $mPO(X)\}$.
- (ii) (i, j) - $mp\text{Int}(A)$ is the largest (i, j) - m -preopen subset of X contained in A .
- (iii) A is (i, j) - m -preopen if and only if $A = (i, j)$ - $mp\text{Int}(A)$.
- (iv) (i, j) - $mp\text{Int}((i, j)$ - $mp\text{Int}(A)) = (i, j)$ - $mp\text{Int}(A)$.
- (v) If $A \subset B$, then (i, j) - $mp\text{Int}(A) \subset (i, j)$ - $mp\text{Int}(B)$.
- (vi) (i, j) - $mp\text{Int}(A) \cup (i, j)$ - $mp\text{Int}(B) \subset (i, j)$ - $mp\text{Int}(A \cup B)$.
- (vii) (i, j) - $mp\text{Int}(A \cap B) \subset (i, j)$ - $mp\text{Int}(A) \cap (i, j)$ - $mp\text{Int}(B)$.

Proof. (i). Let $x \in \cup\{T : T \subset A \text{ and } A \in (i, j)\text{-}mPO(X)\}$. Then, there exists $T \in (i, j)\text{-}mPO(X, x)$ such that $x \in T \subset A$ and hence $x \in (i, j)\text{-}mp\text{Int}(A)$. This shows that $\cup\{T : T \subset A \text{ and } A \in (i, j)\text{-}mPO(X)\} \subset (i, j)\text{-}mp\text{Int}(A)$. For the reverse inclusion, let $x \in (i, j)\text{-}mp\text{Int}(A)$. Then there exists $T \in (i, j)\text{-}mPO(X, x)$ such that $x \in T \subset A$. We obtain $x \in \cup\{T : T \subset A \text{ and } A \in (i, j)\text{-}mPO(X)\}$. This shows that $(i, j)\text{-}mp\text{Int}(A) \subset \cup\{T : T \subset A \text{ and } A \in (i, j)\text{-}mPO(X)\}$. Therefore, we obtain $(i, j)\text{-}mp\text{Int}(A) = \cup\{T : T \subset A \text{ and } A \in (i, j)\text{-}mPO(X)\}$.

The proof of (ii)-(v) are obvious.

(vi). Clearly, $(i, j)\text{-}mp\text{Int}(A) \subset (i, j)\text{-}mp\text{Int}(A \cup B)$ and $(i, j)\text{-}mp\text{Int}(B) \subset (i, j)\text{-}mp\text{Int}(A \cup B)$. Then by (v) we obtain $(i, j)\text{-}mp\text{Int}(A) \cup (i, j)\text{-}mp\text{Int}(B) \subset (i, j)\text{-}mp\text{Int}(A \cup B)$.

(vii). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (v), we have $(i, j)\text{-}mp\text{Int}(A \cap B) \subset (i, j)\text{-}mp\text{Int}(A)$ and $(i, j)\text{-}mp\text{Int}(A \cap B) \subset (i, j)\text{-}mp\text{Int}(B)$. By (v) $(i, j)\text{-}mp\text{Int}(A \cap B) \subset (i, j)\text{-}mp\text{Int}(A) \cap (i, j)\text{-}mp\text{Int}(B)$. ■

DEFINITION 3.13. Let (X, m_1, m_2) be a biminimal space, S a subset of X and x be a point of X . Then

- (i) x is called an $(i, j)\text{-}m$ -precluster point of S if $V \cap S \neq \emptyset$ for every $V \in (i, j)\text{-}mPO(X, x)$.
- (ii) The set of all $(i, j)\text{-}m$ -precluster points of S is called $(i, j)\text{-}m$ -preclosure of S and is denoted by $(i, j)\text{-}mp\text{Cl}(S)$.

THEOREM 3.14. Let A and B be subsets of (X, m_1, m_2) . Then the following properties hold:

- (i) $(i, j)\text{-}mp\text{Cl}(A) = \cap\{F : A \subset F \text{ and } F \in (i, j)\text{-}mPC(X)\}$.
- (ii) $(i, j)\text{-}mp\text{Cl}(A)$ is the smallest $(i, j)\text{-}m$ -preclosed subset of X containing A .
- (iii) A is $(i, j)\text{-}m$ -preclosed if and only if $A = (i, j)\text{-}mp\text{Cl}(A)$.
- (iv) $(i, j)\text{-}mp\text{Cl}((i, j)\text{-}mp\text{Cl}(A)) = (i, j)\text{-}mp\text{Cl}(A)$.
- (v) If $A \subset B$, then $(i, j)\text{-}mp\text{Cl}(A) \subset (i, j)\text{-}mp\text{Cl}(B)$.
- (vi) $(i, j)\text{-}mp\text{Cl}(A \cup B) = (i, j)\text{-}mp\text{Cl}(A) \cup (i, j)\text{-}mp\text{Cl}(B)$.
- (vii) $(i, j)\text{-}mp\text{Cl}(A \cap B) \subset (i, j)\text{-}mp\text{Cl}(A) \cap (i, j)\text{-}mp\text{Cl}(B)$.

Proof. (i). Suppose that $x \notin (i, j)\text{-}mp\text{Cl}(A)$. Then there exists $V \in (i, j)\text{-}mPO(X, x)$ such that $V \cap A = \emptyset$. Since $X \setminus V$ is $(i, j)\text{-}m$ -preclosed set containing A and $x \notin X \setminus V$, we obtain $x \notin \cap\{F : A \subset F \text{ and } F \in (i, j)\text{-}mPC(X)\}$. Suppose that $x \notin \cap\{F : A \subset F \text{ and } F \in (i, j)\text{-}mPC(X)\}$. Then there exists $F \in (i, j)\text{-}mPC(X)$ such that $A \subset F$ and $x \notin F$. Since $X \setminus F$ is $(i, j)\text{-}m$ -preopen set containing x , we obtain $(X \setminus F) \cap A = \emptyset$. This shows that $x \notin (i, j)\text{-}mp\text{Cl}(A)$. Therefore, we obtain $(i, j)\text{-}mp\text{Cl}(A) = \cap\{F : A \subset F \text{ and } F \in (i, j)\text{-}PC(X)\}$.

The other proofs are obvious. ■

THEOREM 3.15. *Let (X, m_1, m_2) be a biminimal space and $A \subset X$. Then the following properties hold:*

- (i) $(i, j)\text{-mp Int}(X \setminus A) = X \setminus (i, j)\text{-mp Cl}(A)$;
- (ii) $(i, j)\text{-mp Cl}(X \setminus A) = X \setminus (i, j)\text{-mp Int}(A)$.

Proof. (i). Let $x \notin (i, j)\text{-mp Cl}(A)$. There exists $V \in (i, j)\text{-mPO}(X, x)$ such that $V \cap A = \emptyset$; hence we obtain $x \in (i, j)\text{-mp Int}(X \setminus A)$. This shows that $X \setminus (i, j)\text{-mp Cl}(A) \subset (i, j)\text{-mp Int}(X \setminus A)$. Let $x \in (i, j)\text{-mp Int}(X \setminus A)$. Since $(i, j)\text{-mp Int}(X \setminus A) \cap A = \emptyset$, we obtain $x \notin (i, j)\text{-mp Cl}(A)$; hence $x \in X \setminus (i, j)\text{-mp Cl}(A)$. Therefore, we obtain $(i, j)\text{-mp Int}(X \setminus A) = X \setminus (i, j)\text{-mp Cl}(A)$.

(ii). Follows from (i). ■

DEFINITION 3.16. A subset B_x of a biminimal space (X, m_1, m_2) is said to be an $(i, j)\text{-m-pre neighbourhood}$ of a point $x \in X$ if there exists an $(i, j)\text{-m-preopen}$ set U such that $x \in U \subset B_x$.

THEOREM 3.17. *A subset of a biminimal space (X, m_1, m_2) is $(i, j)\text{-m-preopen}$ if and only if it is an $(i, j)\text{-m-pre neighbourhood}$ of each of its points.*

Proof. Let G be an $(i, j)\text{-m-preopen}$ set of X . Then by definition, it is clear that G is an $(i, j)\text{-m-pre neighbourhood}$ of each of its points, since for every $x \in G$, $x \in G \subset G$ and G is $(i, j)\text{-m-preopen}$. Conversely, suppose G is an $(i, j)\text{-m-pre neighbourhood}$ of each of its points. Then for each $x \in G$, there exists $S_x \in (i, j)\text{-mPO}(X)$ such that $S_x \subset G$. Then $G = \bigcup\{S_x : x \in G\}$. Since each S_x is $(i, j)\text{-m-preopen}$ and arbitrary union of $(i, j)\text{-m-preopen}$ sets is $(i, j)\text{-m-preopen}$, G is $(i, j)\text{-m-preopen}$ in (X, m_1, m_2) . ■

4. Pairwise m -precontinuous functions

DEFINITION 4.1. A function $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $(i, j)\text{-m-precontinuous}$ if the inverse image of every σ_i -open set is $(i, j)\text{-m-preopen}$ in (X, m_1, m_2) , where $i \neq j$, $i, j = 1, 2$.

PROPOSITION 4.2. *Every m_i -continuous function is $(i, j)\text{-m-precontinuous}$.*

Proof. The proof follows from the definitions. ■

However, the converse may be false.

EXAMPLE 4.3. Let $X = \{a, b, c\}$, $m_1 = \{\emptyset, \{a\}, \{b\}, X\}$, $m_2 = \{\emptyset, \{a\}, X\}$, $\sigma_1 = \{\emptyset, \{a, b\}, X\}$, $\sigma_2 = \{\emptyset, \{a, c\}, X\}$. Then the identity function $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j)\text{-precontinuous}$ but not m_i -precontinuous.

THEOREM 4.4. *For a function $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:*

- (i) *f is (i, j) -m-precontinuous.*
- (ii) *For each point x in X and each σ_i -open set F in Y such that $f(x) \in F$, there is a (i, j) -m-preopen set A in X such that $x \in A$, $f(A) \subset F$.*
- (iii) *The inverse image of each σ_i -closed set in Y is (i, j) -m-preclosed in X .*
- (iv) *For each subset A of X , $f((i, j)\text{-mp Cl}(A)) \subset \sigma_i\text{-Cl}(f(A))$.*
- (v) *For each subset B of Y , $(i, j)\text{-mp Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-Cl}(B))$.*
- (vi) *For each subset C of Y , $f^{-1}(\sigma_i\text{-Int}(C)) \subset (i, j)\text{-mp Int}(f^{-1}(C))$.*

Proof. (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_i -open set of Y containing $f(x)$. By (i), $f^{-1}(F)$ is (i, j) -m-preopen in X . Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.

(ii) \Rightarrow (i): Let F be σ_i -open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an (i, j) -m-preopen set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is (i, j) -m-preopen in X .

(i) \Leftrightarrow (iii): This follows due to the fact that for any subset B of Y , $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.

(iii) \Rightarrow (iv): Let A be a subset of X . Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\sigma_i\text{-Cl}(f(A)))$. Now, $(i, j)\text{-mp Cl}(f(A))$ is σ_i -closed in Y and hence $(i, j)\text{-mp Cl}(A) \subset f^{-1}(\sigma_i\text{-Cl}(f(A)))$, for $(i, j)\text{-mp Cl}(A)$ is the smallest (i, j) -m-preclosed set containing A . Then $f((i, j)\text{-mp Cl}(A)) \subset \sigma_i\text{-Cl}(f(A))$.

(iv) \Rightarrow (iii): Let F be any σ_i -closed subset of Y . Then $f((i, j)\text{-mp Cl}(f^{-1}(F))) \subset \sigma_i\text{-Cl}(f(f^{-1}(F))) \subset \sigma_i\text{-Cl}(F) = F$. Therefore, $(i, j)\text{-mp Cl}(f^{-1}(F)) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is (i, j) -m-preclosed in X .

(iv) \Rightarrow (v): Let B be any subset of Y . Now, $f((i, j)\text{-mp Cl}(f^{-1}(B))) \subset \sigma_i\text{-Cl}(f(f^{-1}(B))) \subset \sigma_i\text{-Cl}(B)$. Consequently, $(i, j)\text{-mp Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-Cl}(B))$.

(v) \Rightarrow (iv): Let $B = f(A)$ where A is a subset of X . Then, $(i, j)\text{-mp Cl}(A) \subset (i, j)\text{-mp Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-Cl}(B)) = f^{-1}(\sigma_i\text{-Cl}(f(A)))$. This shows that $f((i, j)\text{-mp Cl}(A)) \subset \sigma_i\text{-Cl}(f(A))$.

(i) \Rightarrow (vi): Let B be any subset of Y . Clearly, $f^{-1}(\sigma_i\text{-Int}(B))$ is (i, j) -m-preopen and we have $f^{-1}(\sigma_i\text{-Int}(B)) \subset (i, j)\text{-mp Int}(f^{-1}\sigma_i\text{-Int}(B)) \subset (i, j)\text{-mp Int}(f^{-1}B)$.

(vi) \Rightarrow (i): Let B be a σ_i -open set in Y . Then $\sigma_i\text{-Int}(B) = B$ and $f^{-1}(B) \subset f^{-1}(\sigma_i\text{-Int}(B)) \subset (i, j)\text{-mp Int}(f^{-1}(B))$. Hence we have $f^{-1}(B) = (i, j)\text{-mp Int}(f^{-1}(B))$. This shows that $f^{-1}(B)$ is (i, j) -m-preopen in X . ■

DEFINITION 4.5. The graph $G(f)$ of a function $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j) -m-preclosed in $X \times Y$ if for each $(x, y) \in$

$(X \times Y) \setminus G(f)$, there exists $U \in (i, j)\text{-}mPO(X, x)$ and a σ_i -open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

LEMMA 4.6. *The graph $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i, j) - m -preclosed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in (i, j)\text{-}mPO(X, x)$ and a σ_i -open set V of Y containing y such that $f(U) \cap V = \emptyset$.*

Proof. The proof is an immediate consequence of Definition 4.5. ■

THEOREM 4.7. *If $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an (i, j) - m -precontinuous function and (Y, σ_i) is T_2 , then $G(f)$ is (i, j) - m -preclosed.*

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$. Since (Y, σ_i) is T_2 , there exists a σ_i -open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is (i, j) - m -precontinuous, there exists $U \in (i, j)\text{-}mPO(X, x)$ such that $f(U) \subset V$. Therefore, $f(U) \cap V = \emptyset$. Therefore, by Lemma 4.6, $G(f)$ is (i, j) - m -preclosed. ■

DEFINITION 4.8. A biminimal space (X, m_1, m_2) is said to be an (i, j) - m -pre- T_2 space if for each pair of distinct points $x, y \in X$, there exist $U, V \in (i, j)\text{-}mPO(X)$ containing x and y , respectively, such that $U \cap V = \emptyset$.

THEOREM 4.9. *If $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an (i, j) - m -precontinuous injective function and (Y, σ_i) is a T_2 space, then (X, m_1, m_2) is a m -pre- T_2 space.*

Proof. The proof follows from the definitions. ■

THEOREM 4.10. *If $f : (X, m_1, m_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an injective (i, j) - m -precontinuous function with an (i, j) - m -preclosed graph, then X is an (i, j) - m -pre- T_2 space.*

Proof. Let x_1 and x_2 be any distinct points of X . Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. Since the graph $G(f)$ is (i, j) - m -preclosed, there exist an (i, j) - m -preopen set U containing x_1 and $V \in \tau$ containing $f(x_2)$ such that $f(U) \cap V = \emptyset$. Since f is (i, j) - m -precontinuous, $f^{-1}(V)$ is an (i, j) - m -preopen set containing x_2 such that $U \cap f^{-1}(V) = \emptyset$. Hence X is (i, j) - m -pre- T_2 . ■

DEFINITION 4.11. A biminimal space (X, m_1, m_2) is said to be (i, j) - m -preconnected if X cannot be expressed as the union of two nonempty disjoint (i, j) - m -preopen sets.

DEFINITION 4.12. A bitopological space (X, τ_1, τ_2) is said to be pairwise connected [3] if it cannot be expressed as the union of two nonempty disjoint sets U and V such that U is τ_i -open and V is τ_j -open, where $i, j = 1, 2$ and $i \neq j$.

THEOREM 4.13. *An (i, j) -*m*-precontinuous image of an (i, j) -*m*-preconnected space is pairwise connected.*

Proof. The proof is clear. ■

References

- [1] H. Maki, R. Chandrasekhara Rao, A. Nagoor Gani, *On generalizing semi-open sets and preopen sets*, Pure Appl. Math. Math. Sci. 49 (1999), 17–29.
- [2] W. K. Min, Y. K. Kim, *m*-preopen sets and *m*-precontinuity on spaces with minimal structures, Adv. Fuzzy Sets and Systems 4(3) (2009), 237–245.
- [3] W. J. Pervin, *Connectedness in bitopological spaces*, Ind. Math. 29 (1967), 369–372.
- [4] V. Popa, T. Noiri, *On the definition of some generalized forms of continuity under minimal conditions*, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 9–19.

C. Carpintero, E. Rosas:

DEPARTMENT OF MATHEMATICS
UNIVERSIDAD DE ORIENTE
NUCLEO DE SUCRE CUMANA, VENEZUELA
E-mail: ccarpintero@udo.edu.ve
ennisrafael@gmail.com

N. Rajesh:

DEPARTMENT OF MATHEMATICS
RAJAH SERFOJI GOVT. COLLEGE
THANJAVUR-613005
TAMILNADU, INDIA
E-mail: nrajesh_topology@yahoo.co.in

Received June 13, 2010; revised version March 17, 2011.