
DEMONSTRATIO MATHEMATICA

Vol. XLV No 4 2012

Katarzyna Troczka-Pawelec

CONTINUITY OF SUBQUADRATIC SET-VALUED

FUNCTIONS

Abstract. Let X = (X,+) be an arbitrary topological group. The aim of the paper
is to prove a regularity theorem for set-valued subquadratic functions, that is solutions of
the inclusion

F (s+ t) + F (s− t) ⊂ 2F (s) + 2F (t), s, t ∈ X,

with values in a topological vector space.

1. Introduction

In the present paper subquadratic set-valued functions, defined on a topo-
logical group X, that is solutions of the inclusion

(1) F (s+ t) + F (s− t) ⊂ 2F (s) + 2F (t), s, t ∈ X,

with non-empty compact values in a topological vector space are studied.
If the sign of the inclusion in (1) is replaced by ” ⊃ ” then F is called
superquadratic set-valued function and if we have ” = ” instead of ” ⊂ ” in
(1) then we say that F is quadratic set-valued function. We investigate a
regularity theorem for subquadratic set-valued functions. It is proved here
that upper semi-continuity at a point zero with condition F (0) = {0} implies
the continuity of subquadratic set-valued function F everywhere in X. This
theorem generalizes some earlier results of this type obtained by D. Henney
[1], K. Nikodem [2] and W. Smajdor [5] for quadratic set-valued functions.
We start our consideration from basic properties for functions of this type,
which play a crucial role in the proof of this theorem, which is presented in
the third part. At the end of the second part of this paper we also present
some examples of subquadratic set-valued functions.

Let us start with the notation used in this paper. Throughout this paper
R stands for the set of reals. All vector spaces considered in this paper are
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real. Let Y be a topological vector space. Let n(Y ) denotes the family of all
non-empty subsets of Y , c(Y )-the family of all compact members of n(Y ),
cl(Y )-the family of all closed members of n(Y ) and Bcl(Y )-the family of all
bounded and closed sets from n(Y ). The term set-valued function will be
abbreviated in the form s.v.f.

Now we present here some definitions for the sake of completeness.

Definition 1.1. (cf. [5]) A s.v.f. F : X → n(Y ) is said to be upper
semi-continuous (abbreviated u.s.c.) at x ∈ X iff for every neighbourhood
V of zero in Y there exists a neighbourhood U of zero in X such that

F (x+ t) ⊂ F (x) + V

for every t ∈ U .

Definition 1.2. (cf. [5]) A s.v.f. F : X → n(Y ) is said to be lower
semi-continuous (abbreviated l.s.c.) at x ∈ X iff for every neighbourhood V

of zero in Y there exists a neighbourhood U of zero in X such that

F (x) ⊂ F (x+ t) + V

for every t ∈ U .

Definition 1.3. (cf. [5]) A s.v.f. F : X → n(Y ) is said to be continuous
at x ∈ X iff it is both u.s.c. and l.s.c. at x. It is said to be continuous iff it
is continuous at every point x ∈ X.

We adopt the following two definitions.

Definition 1.4. Let X be a topological group. A set A ⊂ X is bounded
in X iff for every neighbourhood U of zero in X there exists an n ∈ N∪ {0}
such that

A ⊂ 2nU.

Definition 1.5. Let X be a topological group and Y be a vector space.
A s.v.f. F : X → n(Y ) has the property (O) iff for every bounded set A in
X the set F (A) is bounded in Y .

We will use frequently the following well known lemma.

Lemma 1.6. (see [4]) Let Y be a topological vector space. Let A,B,C be

subsets of Y such that A+ C ⊂ B + C. If B is closed and convex and C is

bounded then A ⊂ B.

In our proofs we will often use three known lemmas (see Lemma 1.1,
Lemma 1.3 and Lemma 1.6 in [2]). The first lemma says that for a convex
subset A of an arbitrary real vector space Y the equality (s+ t)A = sA+ tA

holds for every s, t ≥ 0 ( or s, t ≤ 0 ). The second lemma says that for two
convex subsets A,B ⊂ Y the set A + B is also convex and the last lemma
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says that if A ⊂ Y is a closed set and B ⊂ Y is a compact set then the set
A+B is closed.

2. Basic properties

In this section we present some basic properties of subquadratic set-
valued functions.

Lemma 2.1. Let X be a group and Y be a topological vector space. If a

s.v.f. F : X → cl(Y ) is subquadratic and F (0) = {0}, then F has convex

values.

Proof. Putting t = 0 in (1) and using the condition F (0) = {0}, we get
F (s) + F (s) ⊂ 2F (s), for every s ∈ X. Since F (s) is closed, this implies
that it is convex.

Lemma 2.2. Let X be a group and Y be a topological vector space. If

F : X → n(Y ) with bounded, closed and convex values is a subquadratic

s.v.f., then

{0} ⊂ F (0)

and

F (nx) ⊂ n2F (x)

for every x ∈ X and n ∈ N.

Proof. Setting s = t = 0 in (1) by Lemma 1.1 in [2], we infer that

2F (0) ⊂ 2F (0) + 2F (0).

Hence

{0}+ 2F (0) ⊂ 2F (0) + 2F (0).

According to Lemma 1.6, we get

(2) {0} ⊂ F (0).

Putting s = t in (1), by Lemma 1.1 in [2], we obtain F (2t)+F (0) ⊂ 4F (t),
whence, by (2), we get

F (2t) ⊂ 4F (t), t ∈ X.

Assume now that

(3) F (kx) ⊂ k2F (x), x ∈ X, k ∈ {1, 2, . . . , n}

for some positive integer n.

Consider two cases. If n is even then n = 2k for some positive integer
k ≥ 1. Therefore

(1 + n)x = (1 + k)x+ kx and x = (1 + k)x− kx.
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According to (1) and (3) we get

F ((1 + n)x) + F (x) ⊂ 2(1 + k)2F (x) + 2k2F (x).

Since F is subquadratic s.v.f. with convex values, then by Lemma 1.1 in [2]

2(1 + k)2F (x) + 2k2F (x) = 2(1 + k)2F (x) + (2k2 − 1)F (x) + F (x)

= (1 + n)2F (x) + F (x).

Finally, we obtain

F ((1 + n)x) + F (x) ⊂ (1 + n)2F (x) + F (x).

If n is odd, then n+ 1 is even. Therefore, again by (1) and (2)

F ((n+ 1)x) + {0} ⊂ F

(
n+ 1

2
x+

n+ 1

2
x

)
+ F

(
n+ 1

2
x−

n+ 1

2
x

)

⊂ 2F

(
n+ 1

2
x

)
+ 2F

(
n+ 1

2
x

)
.

Using again Lemma 1.1 in [2] and (3), we get

2F

(
n+ 1

2
x

)
+ 2F

(
n+ 1

2
x

)
⊂ 4

(
n+ 1

2

)2

F (x) = (n+ 1)2F (x).

Finally,
F ((n+ 1)x) ⊂ (n+ 1)2F (x).

This ends the proof of Lemma 2.2.

Lemma 2.3. Let X be a topological group and Y be a topological vector

space. If a subquadratic s.v.f. F : X → Bcl(Y ) is u.s.c. at zero and F (0) =
{0}, then F has the property (O).

Proof. Let V be an arbitrary neighbourhood of zero in Y . We may choose
a neighbourhood U of zero in X such that

(4) F (U) ⊂ V.

Let A ⊂ X be a bounded set. There exists an n ∈ N ∪ {0} such that

(5) A ⊂ 2nU.

According to Lemma 2.1, F has convex values. By Lemma 2.2 and (5), we
have

(6) F (A) ⊂ F (2nU) ⊂ 4nF (U).

Hence, by (4) and (6)
1

4n
F (A) ⊂ V.

The proof is completed.

Now we present some examples of subquadratic set-valued functions.
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Example 2.4. The s.v. function F : R → n(R)

F (x) =| x | ·[0, 1], x ∈ R,

is subquadratic.

Example 2.5. The s.v. function F : R → n(R)

F (x) = (cx2 + b)[0, 1],

where c ∈ R and b ≥ 0, is subquadratic.

Example 2.6. Let X be a group. The s.v. function F : X → n(R)

F (x) = [g(x), f(x)],

where f, g : X → R are subquadratic and superquadratic s.v.f., respectively,
is also subquadratic.

3. The main result

Now we shall prove the main theorem of this paper. Let us start with
definition.

Definition 3.1. A topological group X is said to be locally bounded
group iff there exists in it a bounded neighbourhood of zero.

The idea of the proof of the next theorem is due to W. Smajdor (Theorem
4.3 in [5]).

Theorem 3.2. Let X be a 2-divisible locally bounded topological group and

Y be a locally convex topological space. If a subquadratic s.v.f. F : X → c(Y )
is u.s.c. at zero and F (0) = {0}, then it is continuous everywhere in X.

Proof. It suffices to prove that s.v.f. F is u.s.c. and l.s.c. in X. Suppose
that s.v.f. is not l.s.c. at z ∈ X. Then there exists a neighbourhood V

of zero in Y such that for every neighbourhood U of zero in X there exists
xu ∈ U such that

F (z) * F (z + xu) + V.

There exists a convex balanced neighbourhood W of zero in Y such that
W ⊂ V . Then

(7) F (z) * F (z + xu) +W.

We shall show by induction that

(8) F (z) + 2k(2k − 1)F (xu) * F (z + 2kxu) + 2kW

for k = 1, 2, . . . . For k = 0 (8) holds by (7). We assume that (8) holds for
some positive integer k ≥ 0. By Lemma 2.1 F has convex values. By Lemma
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2.2 and (1), we have

(9) F (z + 2k+1xu) + F (z) + 2k+1W

= F (z + 2kxu + 2kxu) + F (z + 2kxu − 2kxu) + 2k+1W

⊂ 2F (z + 2kxu) + 2F (2kxu) + 2k+1W

⊂ 2[F (z + 2kxu) + 2kW ] + 22k+1F (xu).

Since the sum of convex sets is convex and the sum of compact set and closed
set is also closed (Lemma 1.3 and 1.6 in [2]), then according to Lemma 1.6
and (8), we obtain

(10) 2[F (z) + 2k(2k − 1)F (xu)] + 22k+1F (xu)

* 2[F (z + 2kxu) + 2kW ] + 22k+1F (xu).

By (9) and (10) we have

2F (z)+ 2k+1(2k − 1)F (xu)+ 22k+1F (xu) * F (z+2k+1xu)+ 2k+1W +F (z).

By Lemma 1.1 in [2], we have

2F (z) + [2k+1(2k − 1) + 22k+1]F (xu) * F (z + 2k+1xu) + 2k+1W + F (z).

Using the equality

2k+1(2k − 1) + 22k+1 = 2k+1(2k+1 − 1),

we obtain

2F (z) + 2k+1(2k+1 − 1)F (xu) * F (z + 2k+1xu) + 2k+1W + F (z).

By convexity of the set F (z), we get

F (z) + F (z) + 2k+1(2k+1 − 1)F (xu) * F (z + 2k+1xu) + 2k+1W + F (z)

and finally

F (z) + 2k+1(2k+1 − 1)F (xu) * F (z + 2k+1xu) + 2k+1W.

Thus (8) is generally valid for all integer k ≥ 0.
There exists a bounded set U0 of zero in X. According to Lemma 2.3, F

has the property (O). There exists λ > 0 such that

(11) λF (z + x) ⊂ W, x ∈ U0.

Now we choose a k ∈ N so large that the inequality

(12) 2k >
3

λ

holds. Since F is u.s.c. at zero and F (0) = {0}, there exists a neighbourhood
U of zero in X such that

F (t) ⊂
1

λ2k(2k − 1)
W, t ∈ U
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and

U ⊂
1

2k
U0.

There exists xu ∈ U such that the condition (8) holds. Moreover

(13) 2kxu ∈ U0

and

(14) 2k(2k − 1)F (xu) ⊂
1

λ
W.

Let a ∈ F (z + 2kxu), b ∈ F (z) i c ∈ F (xu). Then by (11)− (14), we obtain

b+ 2k(2k − 1)c− a ∈ F (z) + 2k(2k − 1)F (xu)− F (z + 2kxu)

⊂
1

λ
W +

1

λ
W +

1

λ
W ⊂ 2kW.

Therefore

b+ 2k(2k − 1)c ∈ a+ 2kW

and

F (z) + 2k(2k − 1)F (xu) ⊂ F (z + 2kxu) + 2kW

in spite of (8).
Now we show that F is u.s.c. in X. Let x0 ∈ X and V0 be a neigh-

bourhood of zero in Y . We choose convex neighbourhood V of zero in Y

such that 3V ⊂ V0. Since F is u.s.c. at zero and F (0) = {0} there exists a
neighbourhood U of zero in X such that

(15) F (t) ⊂ V, t ∈ U.

In the first part of this proof we have proved that F is l.s.c. in X. There
exists a symmetric neighbourhood Ũ of zero in X such that

(16) F (x0) ⊂ F (x0 + t) + V, t ∈ Ũ

and

(17) F (x0) ⊂ F (x0 − t) + V, t ∈ Ũ .

Let t ∈ U1 ⊂ U ∩ Ũ , where U1 is a symmetric neighbourhood of zero in
X. Since F has convex values, by Lemma 1.1 in [2], (1), (15) and (17), we
obtain

F (x0 + t) + F (x0 − t) ⊂ 2F (x0) + 2F (t) = F (x0) + F (x0) + 2F (t)

⊂ F (x0 − t) + V + F (x0) + 2V

⊂ F (x0 − t) + F (x0) + 3V .

Since the sum of convex sets is convex and the sum of compact set and closed
set is also closed (Lemma 1.3 and 1.6 in [2]), then according to Lemma 1.6
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we have proved that

F (x0 + t) ⊂ F (x0) + 3V ⊂ F (x0) + V0, t ∈ U1.

The proof is completed.
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