

Mohammad S. Sarsak

WEAKLY μ -COMPACT SPACES

Abstract. We introduce and study weakly μ -compact μ -space, i.e. μ -space (X, μ) in which every cover of X by μ -open sets has a finite subfamily the union of the μ -closures of whose members covers X .

1. Introduction and preliminaries

A generalized topology (briefly GT) [1] μ on a nonempty set X is a collection of subsets of X such that $\emptyset \in \mu$ and μ is closed under arbitrary unions. Elements of μ will be called μ -open sets, and a subset A of (X, μ) will be called μ -closed if $X \setminus A$ is μ -open. Clearly, a subset A of (X, μ) is μ -open if and only if for each $x \in A$, there exists $U_x \in \mu$ such that $x \in U_x \subset A$, or equivalently, A is the union of μ -open sets. The pair (X, μ) will be called generalized topological space (briefly GTS). By a space X or (X, μ) , we will always mean a GTS. A space (X, μ) is called a μ -space [9] if $X \in \mu$. (X, μ) is called a quasi-topological space [3] if μ is closed under finite intersections. Clearly, every topological space is a quasi-topological space, every quasi-topological space is a GTS, and a space (X, μ) is a topological space if and only if (X, μ) is both μ -space and quasi-topological space.

If A is a subset of a space (X, μ) , then the μ -closure of A [2], $c_\mu(A)$, is the intersection of all μ -closed sets containing A and the μ -interior of A [2], $i_\mu(A)$, is the union of all μ -open sets contained in A . It was pointed out in [2] that each of the operators c_μ and i_μ are monotonic [4], i.e. if $A \subset B \subset X$, then $c_\mu(A) \subset c_\mu(B)$ and $i_\mu(A) \subset i_\mu(B)$, idempotent [4], i.e. if $A \subset X$, then $c_\mu(c_\mu(A)) = c_\mu(A)$ and $i_\mu(i_\mu(A)) = i_\mu(A)$, c_μ is enlarging [4], i.e. if $A \subset X$, then $c_\mu(A) \supset A$, i_μ is restricting [4], i.e. if $A \subset X$, then $i_\mu(A) \subset A$, A is μ -open if and only if $A = i_\mu(A)$, and $c_\mu(A) = X \setminus i_\mu(X \setminus A)$.

2000 *Mathematics Subject Classification*: Primary 54A05, 54A10, 54D20.

Key words and phrases: μ -open, μ -closed, μ -regular open, μ -regular closed, generalized topology, μ -space, $w\mu$ -compact space, $w\mu$ -compact set.

Clearly, A is μ -closed if and only if $A = c_\mu(A)$, $c_\mu(A)$ is the smallest μ -closed set containing A , $i_\mu(A)$ is the largest μ -open set contained in A , $x \in c_\mu(A)$ if and only if any μ -open set containing x intersects A , and $x \in i_\mu(A)$ if and only if there exists a μ -open set U such that $x \in U \subset A$. For the concepts and terminology not defined here, we refer the reader to [6].

Concluding this section, we recall the following definitions and facts for their importance in the material of our paper.

DEFINITION 1.1. [2] Let A be a subset of a space (X, μ) . Then A is called

- (i) μ -semi-open if $A \subset c_\mu(i_\mu(A))$,
- (ii) μ -preopen if $A \subset i_\mu(c_\mu(A))$,
- (iii) μ - β -open if $A \subset c_\mu(i_\mu(c_\mu(A)))$,
- (iv) μ - α -open if $A \subset i_\mu(c_\mu(i_\mu(A)))$.

PROPOSITION 1.2. [2] Let A be a subset of a space (X, μ) . Then

- (i) if A is μ -open, then A is μ - α -open,
- (ii) A is μ - α -open if and only if A is both μ -semi-open and μ -preopen,
- (iii) if A is μ -semi-open, then A is μ - β -open,
- (iv) if A is μ -preopen, then A is μ - β -open.

DEFINITION 1.3. [12] A function $f : (X, \mu) \rightarrow (Y, \kappa)$ is called (μ, κ) -continuous if the inverse image of each κ -open set is μ -open.

DEFINITION 1.4. [13] Let A be a nonempty subset of a space (X, μ) . The generalized subspace topology on A is the collection $\{U \cap A : U \in \mu\}$, and will be denoted by μ_A . The generalized subspace A is the generalized topological space (A, μ_A) .

REMARK 1.5. [13] Let A be a nonempty subset of a μ -space (X, μ) . Then (A, μ_A) is a μ_A -space.

DEFINITION 1.6. [13] Let (X_α, μ_α) be a generalized topological space for each $\alpha \in \Lambda$, where $\{X_\alpha : \alpha \in \Lambda\}$ is a disjoint family of sets. We define the collection μ of subsets of $\bigcup X_\alpha$ as follows:

$$\mu = \left\{ U \subset \bigcup X_\alpha : U \cap X_\alpha \in \mu_\alpha, \forall \alpha \in \Lambda \right\}.$$

PROPOSITION 1.7. [13] Let (X_α, μ_α) be a generalized topological space for each $\alpha \in \Lambda$, where $\{X_\alpha : \alpha \in \Lambda\}$ is a disjoint family of sets, and let μ be as in Definition 1.6. Then μ is a generalized topology on $\bigcup X_\alpha$. The generalized topological space $(\bigcup X_\alpha, \mu)$ will be called the generalized topological sum of $X_\alpha, \alpha \in \Lambda$, and will be denoted by $\oplus X_\alpha$.

REMARK 1.8. [13] Let (X_α, μ_α) be a μ_α -space for each $\alpha \in \Lambda$, and let $(\oplus X_\alpha, \mu)$ be the generalized topological sum of (X_α, μ_α) , $\alpha \in \Lambda$. Then $(\oplus X_\alpha, \mu)$ is a μ -space.

PROPOSITION 1.9. [13] Let (X_α, μ_α) be a generalized topological space for each $\alpha \in \Lambda$, and let $(\oplus X_\alpha, \mu)$ be the generalized topological sum of (X_α, μ_α) , $\alpha \in \Lambda$. Then

- (i) $\bigcup \mu_\alpha \subset \mu$,
- (ii) $\mu_{X_\alpha} = \mu_\alpha$ for each $\alpha \in \Lambda$.

PROPOSITION 1.10. [13] Let (X, μ) and (Y, κ) be generalized topological spaces, and let $\mathcal{U} = \{U \times V : U \in \mu, V \in \kappa\}$. Then \mathcal{U} generates a generalized topology σ on $X \times Y$, called the generalized product topology on $X \times Y$, that is,

$$\sigma = \{\text{all possible unions of members of } \mathcal{U}\}.$$

REMARK 1.11. [13] Let (X, μ) be a μ -space, (Y, κ) be a κ -space, and σ be the generalized product topology on $X \times Y$. Then $(X \times Y, \sigma)$ is a σ -space.

PROPOSITION 1.12. [13] Let (X, μ) be a μ -space, (Y, κ) be a κ -space, and σ be the generalized product topology on $X \times Y$. Then the projection function $P_X : (X \times Y, \sigma) \rightarrow (X, \mu)$ (resp. $P_Y : (X \times Y, \sigma) \rightarrow (Y, \kappa)$) is (σ, μ) -continuous (resp. (σ, κ) -continuous).

DEFINITION 1.13. [13] A subset A of a μ -space (X, μ) is called μ -compact if any cover of A by μ -open subsets of X has a finite subcover of A .

DEFINITION 1.14. [13] A μ -space (X, μ) is called μ -compact if any μ -open cover of X has a finite subcover.

2. Weakly μ -compact spaces

DEFINITION 2.1. A μ -space (X, μ) is called weakly μ -compact (briefly $w\mu$ -compact) if any cover of X by μ -open sets has a finite subfamily, the union of the μ -closures of whose members covers X .

It is clear that every μ -compact space (X, μ) is $w\mu$ -compact. However, the converse is not true as shown by the following example.

EXAMPLE 2.2. Let $\kappa\mathbb{N}$ be the Katetov extension of the set of natural numbers \mathbb{N} (see e.g. [10]). It was pointed out in Example 2.5 (i) of [5], that if μ is the set of all preopen subsets of $\kappa\mathbb{N}$ (i.e. sets that are contained in the interior of its closure, see [8]), then $(\kappa\mathbb{N}, \mu)$ is $w\mu$ -compact but not μ -compact.

DEFINITION 2.3. Let A be a subset of a space (X, μ) . Then A is called

- (i) μ -regular closed if $A = c_\mu(i_\mu(A))$,
- (ii) μ -regular open if $X \setminus A$ is μ -regular closed,
- (iii) μ -semi-closed if $X \setminus A$ is μ -semi-open,
- (iv) μ -preclosed if $X \setminus A$ is μ -preopen,
- (v) μ - β -closed if $X \setminus A$ is μ - β -open,

(vi) μ - α -closed if $X \setminus A$ is μ - α -open.

The proofs of the following two lemmas are straightforward and thus omitted.

LEMMA 2.4. *Let A be a subset of a space (X, μ) . Then*

- (i) *A is μ -semi-closed if and only if $i_\mu(c_\mu(A)) \subset A$,*
- (ii) *A is μ -preclosed if and only if $c_\mu(i_\mu(A)) \subset A$,*
- (iii) *A is μ -regular open if and only if $A = i_\mu(c_\mu(A))$,*
- (iv) *A is μ - β -closed if and only if $i_\mu(c_\mu(i_\mu(A))) \subset A$,*
- (v) *A is μ - α -closed if and only if $c_\mu(i_\mu(c_\mu(A))) \subset A$,*
- (vi) *A is μ -regular open if and only if $A = i_\mu(B)$ for some μ -closed set B ,*
- (vii) *A is μ -regular closed if and only if $A = c_\mu(B)$ for some μ -open set B .*

LEMMA 2.5. *For a subset A of a space (X, μ) , the following are equivalent:*

- (i) *A is μ -regular open,*
- (ii) *A is μ -open and μ -semi-closed,*
- (iii) *A is μ -open and μ - β -closed,*
- (iv) *A is μ - α -open and μ - β -closed,*
- (v) *A is μ - α -open and μ -semi-closed,*
- (vi) *A is μ -preopen and μ -semi-closed.*

COROLLARY 2.6. *For a subset A of a space (X, μ) , the following are equivalent:*

- (i) *A is μ -regular closed,*
- (ii) *A is μ -closed and μ -semi-open,*
- (iii) *A is μ -closed and μ - β -open,*
- (iv) *A is μ - α -closed and μ - β -open,*
- (v) *A is μ - α -closed and μ -semi-open,*
- (vi) *A is μ -preclosed and μ -semi-open.*

PROPOSITION 2.7. *A μ -space (X, μ) is $w\mu$ -compact if and only if any cover of X by μ -regular open sets has a finite subfamily, the union of the μ -closures of whose members covers X .*

Proof. The necessity is clear. Suppose that $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ is a cover of X by μ -open sets. Then by Lemma 2.4 (vi), $\mathcal{V} = \{i_\mu(c_\mu(U_\alpha)) : \alpha \in \Lambda\}$ is a cover of X by μ -regular open sets. Thus by assumption, there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Lambda$ such that $X = \bigcup_{i=1}^n c_\mu(i_\mu(c_\mu(U_{\alpha_i})))$. By Lemma 2.4 (vii), $c_\mu(U_{\alpha_i})$ is regular closed for each i , and thus, $X = \bigcup_{i=1}^n c_\mu(U_{\alpha_i})$. Hence, (X, μ) is $w\mu$ -compact. ■

The proof of the following result is straightforward and thus omitted.

PROPOSITION 2.8. *For a μ -space (X, μ) , the following are equivalent:*

- (i) X is $w\mu$ -compact,
- (ii) for any family $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ of μ -closed subsets of X such that $\bigcap \{U_\alpha : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\bigcap \{i_\mu(U_\alpha) : \alpha \in \Lambda_0\} = \emptyset$,
- (iii) for any family $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ of μ -regular closed subsets of X such that $\bigcap \{U_\alpha : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\bigcap \{i_\mu(U_\alpha) : \alpha \in \Lambda_0\} = \emptyset$.

DEFINITION 2.9. Let A be a subset of a μ -space (X, μ) . A point $x \in X$ is said to be a θ_μ -accumulation point of A if $c_\mu(U) \cap A \neq \emptyset$ for every μ -open subset U of X that contains x . The set of all θ_μ -accumulation points of A is called the θ_μ -closure of A and is denoted by $(c_\mu)_\theta(A)$. A is said to be μ_θ -closed if $(c_\mu)_\theta(A) = A$. The complement of a μ_θ -closed set is called μ_θ -open.

It is clear that A is μ_θ -open if and only if for each $x \in A$, there exists a μ -open set U such that $x \in U \subset c_\mu(U) \subset A$.

DEFINITION 2.10. A μ -space (X, μ) is called μ -regular if for each μ -open subset U of X and for each $x \in U$, there exists a μ -open subset V of X and a μ -closed subset F of X such that $x \in V \subset F \subset U$.

The following lemma can be easily established.

LEMMA 2.11. *Let A be a subset of a μ -space (X, μ) . Then*

- (i) *if A is μ_θ -open, then A is the union of μ -regular open sets,*
- (ii) *(X, μ) is μ -regular if and only if every μ -open subset of X is μ_θ -open,*
- (iii) *if A is μ -clopen, i.e. μ -open and μ -closed, then A is μ_θ -closed,*
- (iv) $c_\mu(A) \subset (c_\mu)_\theta(A)$,
- (v) *if A is μ -open, then $c_\mu(A) = (c_\mu)_\theta(A)$.*

PROPOSITION 2.12. *If a μ -space (X, μ) is $w\mu$ -compact, then every cover of X by μ_θ -open sets has a finite subcover.*

Proof. Suppose that (X, μ) is $w\mu$ -compact and let $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ be a cover of X by μ_θ -open sets. Then for each $x \in X$, there exists $\alpha_x \in \Lambda$ such that $x \in U_{\alpha_x}$. Since U_{α_x} is μ_θ -open, there exists a μ -open set V_x such that $x \in V_x \subset c_\mu(V_x) \subset U_{\alpha_x}$, but X is $w\mu$ -compact, so there exist $x_1, x_2, \dots, x_n \in X$ such that $X = \bigcup_{i=1}^n c_\mu(V_{x_i}) = \bigcup_{i=1}^n U_{\alpha_{x_i}}$. ■

The following example shows that the converse of Proposition 2.12 is not true.

EXAMPLE 2.13. Let \mathbb{Z} be the Khalimsky line [7] (= the digital line), i.e. the set of integers equipped with the topology τ having for a subbase $\mathcal{S} = \{\{2n-1, 2n, 2n+1\} : n \in \mathbb{Z}\}$. It was shown in [11], that if μ is the set

of all open (preopen) subsets of \mathbb{Z} , then every cover of \mathbb{Z} by μ_θ -open sets has a finite subcover, but (\mathbb{Z}, μ) is not $w\mu$ -compact.

COROLLARY 2.14. *Let (X, μ) be a μ -regular space. Then (X, μ) is $w\mu$ -compact if and only if (X, μ) is μ -compact.*

Proof. Follows from Lemma 2.11 (ii) and Proposition 2.12. ■

DEFINITION 2.15. A filter base \mathcal{F} on a μ -space (X, μ) is said to θ_μ -converge to a point $x \in X$ if for each μ -open subset U of X such that $x \in U$, there exists $F \in \mathcal{F}$ such that $F \subset c_\mu(U)$. \mathcal{F} is said to θ_μ -accumulate at $x \in X$ if $(c_\mu(U)) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$ and for every μ -open subset U of X such that $x \in U$.

Observe that if a filter base \mathcal{F} θ_μ -converges to a point $x \in X$, then \mathcal{F} θ_μ -accumulates at x . On the other hand, it is easy to see that a maximal filter base \mathcal{F} θ_μ -converges to a point $x \in X$ if and only if \mathcal{F} θ_μ -accumulates at x .

PROPOSITION 2.16. *For a μ -space (X, μ) , the following are equivalent:*

- (i) X is $w\mu$ -compact,
- (ii) every maximal filter base on X θ_μ -converges to some point of X ,
- (iii) every filter base on X θ_μ -accumulates at some point of X .

Proof. (i)→(ii): Let \mathcal{F} be a maximal filter base on X such that \mathcal{F} does not θ_μ -converge to any point of X . Since \mathcal{F} is maximal, \mathcal{F} does not θ_μ -accumulate at any point of X . Thus, for each $x \in X$, there exists $F_x \in \mathcal{F}$ and a μ -open subset U_x of X such that $x \in U_x$ and $(c_\mu(U_x)) \cap F_x = \emptyset$, but X is $w\mu$ -compact, so there exist $x_1, x_2, \dots, x_n \in X$ such that $X = \bigcup_{i=1}^n c_\mu(U_{x_i})$. Since \mathcal{F} is a filter base on X , there exists $F \in \mathcal{F}$ such that $F \subset \bigcap_{i=1}^n F_{x_i}$, but $(c_\mu(U_{x_i})) \cap F_{x_i} = \emptyset$ for each $i \in \{1, 2, \dots, n\}$, so $(c_\mu(U_{x_i})) \cap F = \emptyset$ for each $i \in \{1, 2, \dots, n\}$, i.e. $(\bigcup_{i=1}^n c_\mu(U_{x_i})) \cap F = X \cap F = F = \emptyset$, a contradiction.

(ii)→(iii): Let \mathcal{F} be a filter base on X . Then \mathcal{F} is contained in a maximal filter base \mathcal{H} on X . By (ii), \mathcal{H} θ_μ -converges to some point x of X , thus \mathcal{H} θ_μ -accumulates at x , but $\mathcal{F} \subset \mathcal{H}$, so \mathcal{F} θ_μ -accumulates at x .

(iii)→(i): Suppose that X is not $w\mu$ -compact. Then by Proposition 2.8, there exists a cover $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ of X by μ -open sets such that for any finite subset Λ_0 of Λ , $\bigcap \{i_\mu(X \setminus U_\alpha) : \alpha \in \Lambda_0\} \neq \emptyset$. For each finite subset Λ_0 of Λ , let $F_{\Lambda_0} = \bigcap \{i_\mu(X \setminus U_\alpha) : \alpha \in \Lambda_0\}$. Then $\mathcal{F} = \{F_{\Lambda_0} : \Lambda_0 \text{ is a finite subset of } \Lambda\}$ is a filter base on X . Thus by (iii), \mathcal{F} θ_μ -accumulates at some point x of X . Since \mathcal{U} is a cover of X , there exists $\alpha_0 \in \Lambda$ such that $x \in U_{\alpha_0}$, but \mathcal{F} θ_μ -accumulates at x , so $(c_\mu(U_{\alpha_0})) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$. Let $F = i_\mu(X \setminus U_{\alpha_0})$. Then $F \in \mathcal{F}$ and thus $(c_\mu(U_{\alpha_0})) \cap (i_\mu(X \setminus U_{\alpha_0})) \neq \emptyset$, a contradiction. ■

3. Weakly μ -compact subsets

DEFINITION 3.1. A subset A of a μ -space (X, μ) is called weakly μ -compact (briefly $w\mu$ -compact) if any cover of A by μ -open subsets of X has a finite subfamily, the union of the μ -closures of whose members covers A .

We observe that every μ -compact subset of a μ -space (X, μ) is $w\mu$ -compact.

PROPOSITION 3.2. *A subset A of a μ -space (X, μ) is $w\mu$ -compact if and only if any cover of A by μ -regular open subsets of X has a finite subfamily, the union of the μ -closures of whose members covers A .*

PROPOSITION 3.3. *For a subset A of a μ -space (X, μ) , the following are equivalent:*

- (i) *A is $w\mu$ -compact,*
- (ii) *for any family $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ of μ -closed subsets of X such that $[\bigcap \{U_\alpha : \alpha \in \Lambda\}] \cap A = \emptyset$, there exists a finite subset Λ_0 of Λ such that $[\bigcap \{i_\mu(U_\alpha) : \alpha \in \Lambda_0\}] \cap A = \emptyset$,*
- (iii) *for any family $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ of μ -regular closed subsets of X such that $[\bigcap \{U_\alpha : \alpha \in \Lambda\}] \cap A = \emptyset$, there exists a finite subset Λ_0 of Λ such that $[\bigcap \{i_\mu(U_\alpha) : \alpha \in \Lambda_0\}] \cap A = \emptyset$.*

PROPOSITION 3.4. *Let A be a $w\mu$ -compact subset of a μ -space (X, μ) . Then every cover of A by μ_θ -open subsets of X has a finite subcover of A .*

COROLLARY 3.5. *Let (X, μ) be a μ -regular μ -space. Then a subset A of (X, μ) is $w\mu$ -compact if and only if A is μ -compact.*

PROPOSITION 3.6. *For a subset A of a μ -space (X, μ) , the following are equivalent:*

- (i) *A is $w\mu$ -compact,*
- (ii) *every maximal filter base on X , each of whose members meets A , θ_μ -converges to some point of A ,*
- (iii) *every filter base on X , each of whose members meets A , θ_μ -accumulates at some point of A .*

PROPOSITION 3.7. *Let A, B be subsets of a μ -space (X, μ) . If A is μ_θ -closed and B is $w\mu$ -compact, then $A \cap B$ is $w\mu$ -compact.*

Proof. Let $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ be a cover of $A \cap B$ by μ -open sets. Then $\mathcal{U} \cup \{X \setminus A\}$ is a cover of B . Since $X \setminus A$ is μ_θ -open, for each $x \notin A$, there exists a μ -open set U_x such that $x \in U_x \subset c_\mu(U_x) \subset X \setminus A$. Thus $\mathcal{U} \cup \{U_x : x \in X \setminus A\}$ is a cover of B by μ -open sets, but B is $w\mu$ -compact, so there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Lambda$ and there exist $x_1, x_2, \dots, x_m \in X \setminus A$ such that $B \subset (\bigcup_{i=1}^n c_\mu(U_{\alpha_i})) \cup (\bigcup_{i=1}^m c_\mu(U_{x_i}))$, but $c_\mu(U_{x_i}) \subset X \setminus A$, so $A \cap B \subset \bigcup_{i=1}^n c_\mu(U_{\alpha_i})$. Hence, $A \cap B$ is $w\mu$ -compact. ■

COROLLARY 3.8. *Let A be a μ_θ -closed subset of a $w\mu$ -compact space (X, μ) . Then A is $w\mu$ -compact.*

The following example shows that if every proper μ_θ -closed subset A of a μ -space (X, μ) is $w\mu$ -compact, then (X, μ) is not necessarily $w\mu$ -compact.

EXAMPLE 3.9. Let \mathbb{Z} be the Khalimsky line. It was also shown in [11], that if μ is the set of all open (preopen) subsets of \mathbb{Z} , then every proper μ_θ -closed subset of (\mathbb{Z}, μ) is $w\mu$ -compact, but (\mathbb{Z}, μ) is not $w\mu$ -compact.

COROLLARY 3.10. *Let A be a μ -clopen subset of a $w\mu$ -compact space (X, μ) . Then A is $w\mu$ -compact.*

Proof. Follows from Lemma 2.11 (iii) and Corollary 3.8. ■

The proof of the following lemma is straightforward and thus omitted.

LEMMA 3.11. *Let A and B be subsets of a space (X, μ) such that $A \subset B$. Then*

$$c_{\mu_B}(A) = c_\mu(A) \cap B.$$

PROPOSITION 3.12. *Let A and B be subsets of a μ -space (X, μ) such that $A \subset B$. If A is $w\mu_B$ -compact, then A is $w\mu$ -compact.*

Proof. Suppose that A is $w\mu_B$ -compact and let $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ be a cover of A by μ -open sets. Then $\mathcal{U}^B = \{U_\alpha \cap B : \alpha \in \Lambda\}$ is a cover of A by μ_B -open sets, but A is $w\mu_B$ -compact, so there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Lambda$ such that $A \subset \bigcup_{i=1}^n c_{\mu_B}(U_{\alpha_i} \cap B)$. By Lemma 3.11, $c_{\mu_B}(U_{\alpha_i} \cap B) = (c_\mu(U_{\alpha_i} \cap B)) \cap B \subset c_\mu(U_{\alpha_i})$. Hence, A is $w\mu$ -compact. ■

COROLLARY 3.13. *Let A be a subset of a μ -space (X, μ) . If A is $w\mu_A$ -compact, then A is $w\mu$ -compact.*

The proof of the following proposition is straightforward and thus omitted.

PROPOSITION 3.14. *The finite union of subsets of a μ -space (X, μ) , each of which is $w\mu$ -compact, is $w\mu$ -compact.*

COROLLARY 3.15. *If a μ -space (X, μ) is the finite union of subsets A_n , each of which is $w\mu_{A_n}$ -compact, then X is $w\mu$ -compact.*

Proof. Follows from Corollary 3.13 and Proposition 3.14. ■

DEFINITION 3.16. A μ -space (X, μ) is called μ -connected if X can not be expressed as the union of two disjoint nonempty μ -open sets. In the opposite case, (X, μ) is called μ -disconnected, or equivalently, (X, μ) has a proper nonempty μ -clopen set.

PROPOSITION 3.17. *Let (X, μ) be a μ -disconnected μ -space. Then (X, μ) is $w\mu$ -compact if and only if every μ -clopen set is $w\mu$ -compact.*

Proof. Necessity. Follows from Corollary 3.10.

Sufficiency. Since (X, μ) is μ -disconnected, X has a partition $\{A, B\}$ such that A is μ -clopen and B is μ -clopen. By assumption, A and B are $w\mu$ -compact. Thus by Proposition 3.14, (X, μ) is $w\mu$ -compact. ■

COROLLARY 3.18. Let $(\bigoplus X_i, \mu)$ be the finite generalized topological sum of $w\mu_i$ -compact spaces (X_i, μ_i) , $i = 1, 2, \dots, n$. Then $(\bigoplus X_i, \mu)$ is $w\mu$ -compact.

Proof. Observe first by Remark 1.8 that since (X_i, μ_i) is a μ_i -space, then $(\bigoplus X_i, \mu)$ is a μ -space. The result follows from Proposition 1.9 (ii) and Corollary 3.15. ■

PROPOSITION 3.19. If every proper μ -regular closed subset of a μ -space (X, μ) is $w\mu$ -compact, then (X, μ) is $w\mu$ -compact.

Proof. Suppose that $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ is a cover of X by μ -open sets. Pick $\alpha_0 \in \Lambda$ such that $U_{\alpha_0} \neq \emptyset$. Then by Lemma 2.4 (vi), $X \setminus i_\mu(c_\mu(U_{\alpha_0}))$ is a proper μ -regular closed set. Thus by assumption, there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Lambda$ such that $X \setminus i_\mu(c_\mu(U_{\alpha_0})) \subset \bigcup_{i=1}^n c_\mu(U_{\alpha_i})$. Therefore,

$$\begin{aligned} X &= \left(\bigcup_{i=1}^n c_\mu(U_{\alpha_i}) \right) \cup i_\mu(c_\mu(U_{\alpha_0})) \\ &= \left(\bigcup_{i=1}^n c_\mu(U_{\alpha_i}) \right) \cup (c_\mu(U_{\alpha_0})) = \bigcup_{i=0}^n c_\mu(U_{\alpha_i}). \end{aligned}$$

Hence, X is $w\mu$ -compact. ■

The proof of the following lemma is straightforward and thus omitted.

LEMMA 3.20. Let $f : (X, \mu) \rightarrow (Y, \kappa)$ be a function. Then the following are equivalent:

- (i) f is (μ, κ) -continuous,
- (ii) for every $x \in X$ and for every κ -open set V containing $f(x)$, there exists a μ -open set U containing x such that $f(U) \subset V$,
- (iii) $f(c_\mu(A)) \subset c_\kappa(f(A))$ for every subset A of X ,
- (iv) $c_\mu(f^{-1}(B)) \subset f^{-1}(c_\kappa(B))$ for every subset B of Y .

PROPOSITION 3.21. Let $f : (X, \mu) \rightarrow (Y, \kappa)$ be a (μ, κ) -continuous function, where (X, μ) is a μ -space and (Y, κ) is a κ -space. If A is a $w\mu$ -compact subset of X , then $f(A)$ is $w\kappa$ -compact.

Proof. Let $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ be a cover of $f(A)$ by κ -open sets. Since f is (μ, κ) -continuous, $\mathcal{V} = \{f^{-1}(U_\alpha) : \alpha \in \Lambda\}$ is a cover of A by μ -open sets, but A is $w\mu$ -compact, so there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Lambda$ such that $A \subset \bigcup_{i=1}^n c_\mu(f^{-1}(U_{\alpha_i}))$. Thus $f(A) \subset \bigcup_{i=1}^n f(c_\mu(f^{-1}(U_{\alpha_i})))$. Since f is (μ, κ) -continuous, it follows from Lemma 3.20 that

$$f(c_\mu(f^{-1}(U_{\alpha_i}))) \subset c_\kappa(f(f^{-1}(U_{\alpha_i}))) \subset c_\kappa(U_{\alpha_i}).$$

Hence, $f(A)$ is $w\kappa$ -compact. ■

COROLLARY 3.22. *Let $f : (X, \mu) \rightarrow (Y, \kappa)$ be a (μ, κ) -continuous surjection, where (X, μ) is a μ -space and (Y, κ) is a κ -space. If X is $w\mu$ -compact, then Y is $w\kappa$ -compact.*

COROLLARY 3.23. *Let (X, μ) be a μ -space, (Y, κ) be a κ -space, and σ be the generalized product topology on $X \times Y$. If $X \times Y$ is $w\sigma$ -compact, then (X, μ) is $w\mu$ -compact and (Y, κ) is $w\kappa$ -compact.*

Proof. Observe first by Remark 1.11 that since (X, μ) is a μ -space and (Y, κ) is a κ -space, then $(X \times Y, \sigma)$ is a σ -space. The result follows from Proposition 1.12 and Corollary 3.22. ■

References

- [1] Á. Császár, *Generalized topology, generalized continuity*, Acta Math. Hungar. 96 (2002), 351–357.
- [2] Á. Császár, *Generalized open sets in generalized topologies*, Acta Math. Hungar. 106(1-2) (2005), 53–66.
- [3] Á. Császár, *Further remarks on the formula for γ -interior*, Acta Math. Hungar. 113 (2006), 325–332.
- [4] Á. Császár, *Remarks on quasi topologies*, Acta Math. Hungar. 119(1-2) (2008), 197–200.
- [5] J. Dontchev, M. Ganster, T. Noiri, *On p -closed spaces*, Internat. J. Math. Math. Sci. 24(3) (2000), 203–212.
- [6] R. Engelking, *General Topology*, Second edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
- [7] E. D. Khalimsky, R. Kopperman, P. R. Meyer, *Computer graphics and connected topologies on finite ordered sets*, Topology Appl. 36 (1990), 1–17.
- [8] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [9] T. Noiri, *Unified characterizations for modifications of R_0 and R_1 topological spaces*, Rend. Circ. Mat. Palermo (2) 55 (2006), 29–42.
- [10] J. R. Porter, R. G. Woods, *Extentions and Absolutes of Hausdorff Spaces*, Springer Verlag, New York, 1988.
- [11] M. S. Sarsak, *An answer to some questions of Dontchev, Ganster and Noiri on p -closed spaces*, Questions Answers Gen. Topology 28(1) (2010), 97–103.
- [12] M. S. Sarsak, *Weak separation axioms in generalized topological spaces*, Acta Math. Hungar. 131(1-2) (2011), 110–121.
- [13] M. S. Sarsak, *On μ -compact sets in μ -spaces*, submitted.

DEPARTMENT OF MATHEMATICS
 FACULTY OF SCIENCE
 THE HASHEMITE UNIVERSITY
 P.O. BOX 150459, ZARQA 13115, JORDAN
 E-mail: sarsak@hu.edu.jo

Received December 15, 2010.