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WEAKLY µ-COMPACT SPACES

Abstract. We introduce and study weakly µ-compact µ-space, i.e. µ-space (X,µ) in
which every cover of X by µ-open sets has a finite subfamily the union of the µ-closures
of whose members covers X.

1. Introduction and preliminaries

A generalized topology (breifly GT) [1] µ on a nonempty set X is a
collection of subsets of X such that ∅ ∈ µ and µ is closed under arbi-
trary unions. Elements of µ will be called µ-open sets, and a subset A

of (X,µ) will be called µ-closed if X\A is µ-open. Clearly, a subset A of
(X,µ) is µ-open if and only if for each x ∈ A, there exists Ux ∈ µ such
that x ∈ Ux ⊂ A, or equivalently, A is the union of µ-open sets. The
pair (X,µ) will be called generalized topological space (breifly GTS). By a
space X or (X,µ), we will always mean a GTS. A space (X,µ) is called
a µ-space [9] if X ∈ µ. (X,µ) is called a quasi-topological space [3] if
µ is closed under finite intersections. Clearly, every topological space is a
quasi-topological space, every quasi-topological space is a GTS, and a space
(X,µ) is a topological space if and only if (X,µ) is both µ-space and quasi-
topological space.

If A is a subset of a space (X,µ), then the µ-closure of A [2], cµ (A), is
the intersection of all µ-closed sets containing A and the µ-interior of A [2],
iµ (A), is the union of all µ-open sets contained in A. It was pointed out in [2]
that each of the operators cµ and iµ are monotonic [4], i.e. if A ⊂ B ⊂ X,
then cµ (A) ⊂ cµ (B) and iµ (A) ⊂ iµ (B), idempotent [4], i.e. if A ⊂ X,
then cµ (cµ (A)) = cµ (A) and iµ (iµ (A)) = iµ (A), cµ is enlarging [4], i.e. if
A ⊂ X, then cµ (A) ⊃ A, iµ is restricting [4], i.e. if A ⊂ X, then iµ (A) ⊂ A,
A is µ-open if and only if A = iµ (A), and cµ (A) = X\iµ (X\A).
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Clearly, A is µ-closed if and only if A = cµ (A), cµ (A) is the smallest
µ-closed set containing A, iµ (A) is the largest µ-open set contained in A,
x ∈ cµ (A) if and only if any µ-open set containing x intersects A, and
x ∈ iµ (A) if and only if there exists a µ-open set U such that x ∈ U ⊂ A.
For the concepts and terminology not defined here, we refer the reader to [6].

Concluding this section, we recall the following definitions and facts for
their importance in the material of our paper.

Definition 1.1. [2] Let A be a subset of a space (X,µ). Then A is called
(i) µ-semi-open if A ⊂ cµ (iµ (A)),
(ii) µ-preopen if A ⊂ iµ (cµ (A)),
(iii) µ-β-open if A ⊂ cµ (iµ (cµ (A))),
(iv) µ-α-open if A ⊂ iµ (cµ (iµ (A))).

Proposition 1.2. [2] Let A be a subset of a space (X,µ). Then
(i) if A is µ-open, then A is µ-α-open,
(ii) A is µ-α-open if and only if A is both µ-semi-open and µ-preopen,
(iii) if A is µ-semi-open, then A is µ-β-open,
(iv) if A is µ-preopen, then A is µ-β-open.

Definition 1.3. [12] A function f : (X,µ) → (Y, κ) is called (µ, κ)-
continuous if the inverse image of each κ-open set is µ-open.

Definition 1.4. [13] Let A be a nonempty subset of a space (X,µ).
The generalized subspace topology on A is the collection {U ∩A : U ∈ µ},
and will be denoted by µA. The generalized subspace A is the generalized
topological space (A, µA).

Remark 1.5. [13] Let A be a nonempty subset of a µ-space (X,µ). Then
(A, µA) is a µA-space.

Definition 1.6. [13] Let (Xα, µα) be a generalized topological space for
each α ∈ Λ, where {Xα : α ∈ Λ} is a disjoint family of sets. We define the
collection µ of subsets of

⋃

Xα as follows:

µ =
{

U ⊂
⋃

Xα : U ∩Xα ∈ µα, ∀α ∈ Λ
}

.

Proposition 1.7. [13] Let (Xα, µα) be a generalized topological space for
each α ∈ Λ, where {Xα : α ∈ Λ} is a disjoint family of sets, and let µ be as
in Definition 1.6. Then µ is a generalized topology on

⋃

Xα. The generalized
topological space (

⋃

Xα, µ) will be called the generalized topological sum of
Xα, α ∈ Λ, and will be denoted by ⊕Xα.

Remark 1.8. [13] Let (Xα, µα) be a µα-space for each α ∈ Λ, and let
(⊕Xα, µ) be the generalized topological sum of (Xα, µα), α ∈ Λ. Then
(⊕Xα, µ) is a µ-space.
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Proposition 1.9. [13] Let (Xα, µα) be a generalized topological space for
each α ∈ Λ, and let (⊕Xα, µ) be the generalized topological sum of (Xα, µα),
α ∈ Λ. Then
(i)

⋃

µα ⊂ µ,
(ii) µXα

= µα for each α ∈ Λ.

Proposition 1.10. [13] Let (X,µ) and (Y, κ) be generalized topological
spaces, and let U = {U × V : U ∈ µ, V ∈ κ}. Then U generates a generalized
topology σ on X × Y , called the generalized product topology on X × Y , that
is,

σ = {all possible unions of members of U} .

Remark 1.11. [13] Let (X,µ) be a µ-space, (Y, κ) be a κ-space, and σ be
the generalized product topology on X × Y . Then (X × Y, σ) is a σ-space.

Proposition 1.12. [13] Let (X,µ) be a µ-space, (Y, κ) be a κ-space,
and σ be the generalized product topology on X × Y . Then the projection
function PX : (X × Y, σ) → (X,µ) (resp. PY : (X × Y, σ) → (Y, κ)) is
(σ, µ)-continuous (resp. (σ, κ)-continuous).

Definition 1.13. [13] A subset A of a µ-space (X,µ) is called µ-compact
if any cover of A by µ-open subsets of X has a finite subcover of A.

Definition 1.14. [13] A µ-space (X,µ) is called µ-compact if any µ-open
cover of X has a finite subcover.

2. Weakly µ-compact spaces

Definition 2.1. A µ-space (X,µ) is called weakly µ-compact (briefly
wµ-compact) if any cover of X by µ-open sets has a finite subfamily, the
union of the µ-closures of whose members covers X.

It is clear that every µ-compact space (X,µ) is wµ-compact. However,
the converse is not true as shown by the following example.

Example 2.2. Let κN be the Katetov extension of the set of natural
numbers N (see e.g. [10]). It was pointed out in Example 2.5 (i) of [5],
that if µ is the set of all preopen subsets of κN (i.e. sets that are contained
in the interior of its closure, see [8]), then (κN, µ) is wµ-compact but not
µ-compact.

Definition 2.3. Let A be a subset of a space (X,µ). Then A is called
(i) µ-regular closed if A = cµ (iµ (A)),
(ii) µ-regular open if X\A is µ-regular closed,
(iii) µ-semi-closed if X\A is µ-semi-open,
(iv) µ-preclosed if X\A is µ-preopen,
(v) µ-β-closed if X\A is µ-β-open,
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(vi) µ-α-closed if X\A is µ-α-open.

The proofs of the following two lemmas are straightforward and thus
omitted.

Lemma 2.4. Let A be a subset of a space (X,µ). Then

(i) A is µ-semi-closed if and only if iµ (cµ (A)) ⊂ A,

(ii) A is µ-preclosed if and only if cµ (iµ (A)) ⊂ A,

(iii) A is µ-regular open if and only if A = iµ (cµ (A)),

(iv) A is µ-β-closed if and only if iµ (cµ (iµ (A))) ⊂ A,

(v) A is µ-α-closed if and only if cµ (iµ (cµ (A))) ⊂ A,

(vi) A is µ-regular open if and only if A = iµ (B) for some µ-closed set B,

(vii) A is µ-regular closed if and only if A = cµ (B) for some µ-open set B.

Lemma 2.5. For a subset A of a space (X,µ), the following are equivalent:

(i) A is µ-regular open,

(ii) A is µ-open and µ-semi-closed,

(iii) A is µ-open and µ-β-closed,

(iv) A is µ-α-open and µ-β-closed,

(v) A is µ-α-open and µ-semi-closed,

(vi) A is µ-preopen and µ-semi-closed.

Corollary 2.6. For a subset A of a space (X,µ), the following are equiv-
alent:

(i) A is µ-regular closed,

(ii) A is µ-closed and µ-semi-open,

(iii) A is µ-closed and µ-β-open,

(iv) A is µ-α-closed and µ-β-open,

(v) A is µ-α-closed and µ-semi-open,

(vi) A is µ-preclosed and µ-semi-open.

Proposition 2.7. A µ-space (X,µ) is wµ-compact if and only if any cover
of X by µ-regular open sets has a finite subfamily, the union of the µ-closures
of whose members covers X.

Proof. The necessity is clear. Suppose that U = {Uα : α ∈ Λ} is a cover
of X by µ-open sets. Then by Lemma 2.4 (vi), V = {iµ (cµ (Uα)) : α ∈ Λ}
is a cover of X by µ-regular open sets. Thus by assumption, there exist
α1, α2, ..., αn ∈ Λ such that X =

⋃n
i=1

cµ (iµ (cµ (Uαi
))). By Lemma 2.4

(vii), cµ (Uαi
) is regular closed for each i, and thus, X =

⋃n
i=1

cµ (Uαi
).

Hence, (X,µ) is wµ-compact.

The proof of the following result is straightforward and thus omitted.



Weakly µ-compact spaces 933

Proposition 2.8. For a µ-space (X,µ), the following are equivalent:
(i) X is wµ-compact,
(ii) for any family U = {Uα : α ∈ Λ} of µ-closed subsets of X such that

⋂

{Uα : α ∈ Λ} = ∅, there exists a finite subset Λ0 of Λ such that
⋂

{iµ (Uα) : α ∈ Λ0} = ∅,
(iii) for any family U = {Uα : α ∈ Λ} of µ-regular closed subsets of X such

that
⋂

{Uα : α ∈ Λ} = ∅, there exists a finite subset Λ0 of Λ such that
⋂

{iµ (Uα) : α ∈ Λ0} = ∅.

Definition 2.9. Let A be a subset of a µ-space (X,µ). A point x ∈ X is
said to be a θµ-accumulation point of A if cµ (U) ∩ A 6= ∅ for every µ-open
subset U of X that contains x. The set of all θµ-accumulation points of
A is called the θµ-closure of A and is denoted by (cµ)θ (A). A is said to
be µθ-closed if (cµ)θ (A) = A. The complement of a µθ-closed set is called
µθ-open.

It is clear that A is µθ-open if and only if for each x ∈ A, there exists a
µ-open set U such that x ∈ U ⊂ cµ (U) ⊂ A.

Definition 2.10. A µ-space (X,µ) is called µ-regular if for each µ-open
subset U of X and for each x ∈ U , there exists a µ-open subset V of X and
a µ-closed subset F of X such that x ∈ V ⊂ F ⊂ U .

The following lemma can be easily established.

Lemma 2.11. Let A be a subset of a µ-space (X,µ). Then
(i) if A is µθ-open, then A is the union of µ-regular open sets,
(ii) (X,µ) is µ-regular if and only if every µ-open subset of X is µθ-open,
(iii) if A is µ-clopen, i.e. µ-open and µ-closed, then A is µθ-closed,
(iv) cµ (A) ⊂ (cµ)θ (A),
(v) if A is µ-open, then cµ (A) = (cµ)θ (A).

Proposition 2.12. If a µ-space (X,µ) is wµ-compact, then every cover
of X by µθ-open sets has a finite subcover.

Proof. Suppose that (X,µ) is wµ-compact and let U = {Uα : α ∈ Λ} be
a cover of X by µθ-open sets. Then for each x ∈ X, there exists αx ∈ Λ
such that x ∈ Uαx

. Since Uαx
is µθ-open, there exists a µ-open set Vx

such that x ∈ Vx ⊂ cµ (Vx) ⊂ Uαx
, but X is wµ-compact, so there exist

x1, x2, ..., xn ∈ X such that X =
⋃n

i=1
cµ (Vxi

) =
⋃n

i=1
Uαxi

.

The following example shows that the converse of Proposition 2.12 is not
true.

Example 2.13. Let Z be the Khalimsky line [7] (= the digital line),
i.e. the set of integers eqquiped with the topology τ having for a subbase
S = {{2n− 1, 2n, 2n+ 1} : n ∈ Z}. It was shown in [11], that if µ is the set
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of all open (preopen) subsets of Z, then every cover of Z by µθ-open sets has
a finite subcover, but (Z, µ) is not wµ-compact.

Corollary 2.14. Let (X,µ) be a µ-regular space. Then (X,µ) is wµ-
compact if and only if (X,µ) is µ-compact.

Proof. Follows from Lemma 2.11 (ii) and Proposition 2.12.

Definition 2.15. A filter base F on a µ-space (X,µ) is said to θµ-converge
to a point x ∈ X if for each µ-open subset U of X such that x ∈ U , there
exists F ∈ F such that F ⊂ cµ (U). F is said to θµ-accumulate at x ∈ X if
(cµ (U)) ∩ F 6= ∅ for every F ∈ F and for every µ-open subset U of X such
that x ∈ U .

Observe that if a filter base F θµ-converges to a point x ∈ X, then F
θµ-accumulates at x. On the other hand, it is easy to see that a maximal
filter base F θµ-converges to a point x ∈ X if and only if F θµ-accumulates
at x.

Proposition 2.16. For a µ-space (X,µ), the following are equivalent:

(i) X is wµ-compact,

(ii) every maximal filter base on X θµ-converges to some point of X,

(iii) every filter base on X θµ-accumulates at some point of X.

Proof. (i)→(ii): Let F be a maximal filter base on X such that F does
not θµ-converge to any point of X. Since F is maximal, F does not θµ-
accumulate at any point of X. Thus, for each x ∈ X, there exists Fx ∈ F
and a µ-open subset Ux of X such that x ∈ Ux and (cµ (Ux))∩Fx = ∅, but X
is wµ-compact, so there exist x1, x2, ..., xn ∈ X such that X =

⋃n
i=1

cµ (Uxi
).

Since F is a filter base on X, there exists F ∈ F such that F ⊂
⋂n

i=1
Fxi

, but
(cµ (Uxi

)) ∩ Fxi
= ∅ for each i ∈ {1, 2, ..., n}, so (cµ (Uxi

)) ∩ F = ∅ for each
i ∈ {1, 2, ..., n}, i.e. (

⋃n
i=1

cµ (Uxi
)) ∩ F = X ∩ F = F = ∅, a contradiction.

(ii)→(iii): Let F be a filter base on X. Then F is contained in a maximal
filter base H on X. By (ii), H θµ-converges to some point x of X, thus H
θµ-accumulates at x, but F ⊂ H, so F θµ-accumulates at x.

(iii)→(i): Suppose that X is not wµ-compact. Then by Proposition 2.8,
there exists a cover U = {Uα : α ∈ Λ} of X by µ-open sets such that for any
finite subset Λ0 of Λ,

⋂

{iµ (X\Uα) : α ∈ Λ0} 6= ∅. For each finite subset
Λ0 of Λ, let FΛ0

=
⋂

{iµ (X\Uα) : α ∈ Λ0}. Then F = {FΛ0
: Λ0 is a finite

subset of Λ} is a filter base on X. Thus by (iii), F θµ-accumulates at some
point x of X. Since U is a cover of X, there exists α0 ∈ Λ such that x ∈ Uα0

,
but F θµ-accumulates at x, so (cµ (Uα0

)) ∩ F 6= ∅ for every F ∈ F . Let
F = iµ (X\Uα0

). Then F ∈ F and thus (cµ (Uα0
)) ∩ (iµ (X\Uα0

)) 6= ∅, a
contradiction.
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3. Weakly µ-compact subsets

Definition 3.1. A subset A of a µ-space (X,µ) is called weakly µ-compact
(briefly wµ-compact) if any cover of A by µ-open subsets of X has a finite
subfamily, the union of the µ-closures of whose members covers A.

We observe that every µ-compact subset of a µ-space (X,µ) is wµ-
compact.

Proposition 3.2. A subset A of a µ-space (X,µ) is wµ-compact if and
only if any cover of A by µ-regular open subsets of X has a finite subfamily,
the union of the µ-closures of whose members covers A.

Proposition 3.3. For a subset A of a µ-space (X,µ), the following are
equivalent:

(i) A is wµ-compact,
(ii) for any family U = {Uα : α ∈ Λ} of µ-closed subsets of X such that

[
⋂

{Uα : α ∈ Λ}] ∩A = ∅, there exists a finite subset Λ0 of Λ such that
[
⋂

{iµ (Uα) : α ∈ Λ0}] ∩A = ∅,
(iii) for any family U = {Uα : α ∈ Λ} of µ-regular closed subsets of X such

that [
⋂

{Uα : α ∈ Λ}] ∩A = ∅, there exists a finite subset Λ0 of Λ such
that [

⋂

{iµ (Uα) : α ∈ Λ0}] ∩A = ∅.

Proposition 3.4. Let A be a wµ-compact subset of a µ-space (X,µ).
Then every cover of A by µθ-open subsets of X has a finite subcover of A.

Corollary 3.5. Let (X,µ) be a µ-regular µ-space. Then a subset A of
(X,µ) is wµ-compact if and only if A is µ-compact.

Proposition 3.6. For a subset A of a µ-space (X,µ), the following are
equivalent:

(i) A is wµ-compact,
(ii) every maximal filter base on X, each of whose members meets A, θµ-

converges to some point of A,
(iii) every filter base on X, each of whose members meets A, θµ-accumulates

at some point of A.

Proposition 3.7. Let A,B be subsets of a µ-space (X,µ). If A is µθ-
closed and B is wµ-compact, then A ∩B is wµ-compact.

Proof. Let U = {Uα : α ∈ Λ} be a cover of A ∩ B by µ-open sets. Then
U∪{X\A} is a cover of B. Since X\A is µθ-open, for each x 6∈ A,
there exists a µ-open set Ux such that x ∈ Ux ⊂ cµ (Ux) ⊂ X\A. Thus
U∪{Ux : x ∈ X\A} is a cover of B by µ-open sets, but B is wµ-compact,
so there exist α1, α2, ..., αn ∈ Λ and there exist x1, x2, ..., xm ∈ X\A
such that B ⊂ (

⋃n
i=1

cµ (Uαi
)) ∪ (

⋃m
i=1

cµ (Uxi
)), but cµ (Uxi

) ⊂ X\A, so
A ∩B ⊂

⋃n
i=1

cµ (Uαi
). Hence, A ∩B is wµ-compact.
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Corollary 3.8. Let A be a µθ-closed subset of a wµ-compact space (X,µ).
Then A is wµ-compact.

The following example shows that if every proper µθ-closed subset A of
a µ-space (X,µ) is wµ-compact, then (X,µ) is not necessarily wµ-compact.

Example 3.9. Let Z be the Khalimsky line. It was also shown in [11], that
if µ is the set of all open (preopen) subsets of Z, then every proper µθ-closed
subset of (Z, µ) is wµ-compact, but (Z, µ) is not wµ-compact.

Corollary 3.10. Let A be a µ-clopen subset of a wµ-compact space
(X,µ). Then A is wµ-compact.

Proof. Follows from Lemma 2.11 (iii) and Corollary 3.8.

The proof of the following lemma is straightforward and thus omitted.

Lemma 3.11. Let A and B be subsets of a space (X,µ) such that A ⊂ B.
Then

cµB
(A) = cµ (A) ∩B.

Proposition 3.12. Let A and B be subsets of a µ-space (X,µ) such that
A ⊂ B. If A is wµB-compact, then A is wµ-compact.

Proof. Suppose that A is wµB-compact and let U = {Uα : α ∈ Λ} be a cover
of A by µ-open sets. Then UB = {Uα ∩B : α ∈ Λ} is a cover of A by µB-
open sets, but A is wµB-compact, so there exist α1, α2, ..., αn ∈ Λ such that
A ⊂

⋃n
i=1

cµB
(Uαi

∩B). By Lemma 3.11, cµB
(Uαi

∩B) = (cµ (Uαi
∩B)) ∩

B ⊂ cµ (Uαi
). Hence, A is wµ-compact.

Corollary 3.13. Let A be a subset of a µ-space (X,µ). If A is wµA-
compact, then A is wµ-compact.

The proof of the following proposition is straightforward and thus omit-
ted.

Proposition 3.14. The finite union of subsets of a µ-space (X,µ), each
of which is wµ-compact, is wµ-compact.

Corollary 3.15. If a µ-space (X,µ) is the finite union of subsets An,
each of which is wµAn

-compact, then X is wµ-compact.

Proof. Follows from Corollary 3.13 and Proposition 3.14.

Definition 3.16. A µ-space (X,µ) is called µ-connected if X can not
be expressed as the union of two disjoint nonempty µ-open sets. In the
opposite case, (X,µ) is called µ-disconnected, or equivalently, (X,µ) has a
proper nonempty µ-clopen set.

Proposition 3.17. Let (X,µ) be a µ-disconnected µ-space. Then (X,µ)
is wµ-compact if and only if every µ-clopen set is wµ-compact.
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Proof. Necessity. Follows from Corollary 3.10.
Sufficiency. Since (X,µ) is µ-disconnected, X has a partition {A,B}

such that A is µ-clopen and B is µ-clopen. By assumption, A and B are
wµ-compact. Thus by Proposition 3.14, (X,µ) is wµ-compact.

Corollary 3.18. Let (⊕Xi, µ) be the finite generalized topological sum of
wµi-compact spaces (Xi, µi), i = 1, 2, ..., n. Then (⊕Xi, µ) is wµ-compact.

Proof. Observe first by Remark 1.8 that since (Xi, µi) is a µi-space, then
(⊕Xi, µ) is a µ-space. The result follows from Proposition 1.9 (ii) and Corol-
lary 3.15.

Proposition 3.19. If every proper µ-regular closed subset of a µ-space
(X,µ) is wµ-compact, then (X,µ) is wµ-compact.

Proof. Suppose that U = {Uα : α ∈ Λ} is a cover of X by µ-open sets. Pick
α0 ∈ Λ such that Uα0

6= ∅. Then by Lemma 2.4 (vi), X\iµ (cµ (Uα0
)) is a

proper µ-regular closed set. Thus by assumption, there exist α1, α2, ..., αn ∈
Λ such that X\iµ (cµ (Uα0

)) ⊂
⋃n

i=1
cµ (Uαi

). Therefore,

X =
(

⋃n

i=1
cµ (Uαi

)
)

∪ iµ (cµ (Uα0
))

=
(

⋃n

i=1
cµ (Uαi

)
)

∪ (cµ (Uα0
)) =

⋃n

i=0
cµ (Uαi

) .

Hence, X is wµ-compact.

The proof of the following lemma is straightforward and thus omitted.

Lemma 3.20. Let f : (X,µ) → (Y, κ) be a function. Then the following
are equivalent:

(i) f is (µ, κ)-continuous,
(ii) for every x ∈ X and for every κ-open set V containing f (x), there

exists a µ-open set U containing x such that f (U) ⊂ V ,
(iii) f (cµ (A)) ⊂ cκ (f (A)) for every subset A of X,
(iv) cµ

(

f−1 (B)
)

⊂ f−1 (cκ (B)) for every subset B of Y .

Proposition 3.21. Let f : (X,µ) → (Y, κ) be a (µ, κ)-continuous func-
tion, where (X,µ) is a µ-space and (Y, κ) is a κ-space. If A is a wµ-compact
subset of X, then f (A) is wκ-compact.

Proof. Let U = {Uα : α ∈ Λ} be a cover of f (A) by κ-open sets. Since
f is (µ, κ)-continuous, V =

{

f−1 (Uα) : α ∈ Λ
}

is a cover of A by µ-open
sets, but A is wµ-compact, so there exist α1, α2, ..., αn ∈ Λ such that
A ⊂

⋃n
i=1

cµ
(

f−1 (Uαi
)
)

. Thus f (A) ⊂
⋃n

i=1
f
(

cµ
(

f−1 (Uαi
)
))

. Since f

is (µ, κ)-continuous, it follows from Lemma 3.20 that

f
(

cµ
(

f−1 (Uαi
)
))

⊂ cκ
(

f
(

f−1 (Uαi
)
))

⊂ cκ (Uαi
) .

Hence, f (A) is wκ-compact.
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Corollary 3.22. Let f : (X,µ) → (Y, κ) be a (µ, κ)-continuous surjec-
tion, where (X,µ) is a µ-space and (Y, κ) is a κ-space. If X is wµ-compact,
then Y is wκ-compact.

Corollary 3.23. Let (X,µ) be a µ-space, (Y, κ) be a κ-space, and σ be
the generalized product topology on X × Y . If X × Y is wσ-compact, then
(X,µ) is wµ-compact and (Y, κ) is wκ-compact.

Proof. Observe first by Remark 1.11 that since (X,µ) is a µ-space and
(Y, κ) is a κ-space, then (X × Y, σ) is a σ-space. The result follows from
Proposition 1.12 and Corollary 3.22.
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