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Abstract. We study the geometric structures of parabolic geometries. A parabolic
geometry is defined by a parabolic subgroup of a simple Lie group corresponding to a
subset of the positive simple roots. We say that a parabolic geometry is fundamental if
it is defined by a subset corresponding to a single simple root. In this paper we will be
mainly concerned with such fundamental parabolic geometries.

Fundamental geometries for the Lie algebra of An type are Grassmann structures.
For Bn, Cn, Dn types, we investigate the geometric feature of the fundamental geometries
modeled after the quotients of the real simple groups of split type by the parabolic sub-
groups. We name such geometries Lie tensor product structures. Especially, we call Lie
tensor metric structure for Bn or Dn type and Lie tensor symplectic structure for Cn type.
For each manifold with a Lie tensor product structure, we give a unique normal Cartan
connection by the method due to Tanaka. Invariants of the structure are the curvatures
of the connection.

1. Introduction

The Parabolic Geometry is a geometry modeled after the homoge-
neous space G/P , where G is a simple Lie group and P is a parabolic
subgroup of G. Precisely, in this paper, we mean, by a parabolic geome-
try, the geometry associated with the simple graded Lie algebra in the sense
of N. Tanaka [Ta]. The geometric structures we will consider in this pa-
per are those parabolic geometries which are given by maximal parabolic
subgroups. Let G be a complex simple Lie group of rank n and Xn be its
Dynkin diagram. Then a parabolic subgroup can be described by fixing the
subset ∆1 of the simple root systems ∆n, which form the vertices of Xn, by
suitable choices of a Cartan subalgebra and a simple root system ∆n of the
Lie algebra g of G (see §2, cf. [Ya1], §3.3). Maximal parabolic subgroups
correspond to the cases when ∆1 consists of a single simple root, which is
usually described by the Dynkin diagram with one node marked black. We
call such parabolic geometries to be fundamental. Fundamental geometries
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for the Lie algebra of the An type is called Grassmann structure [MS] (see
§3 for other nominations).

In this paper, we further restrict ourselves to the case when we mark a
single node of the Dynkin diagram of classical simple Lie algebras of type
Bn, Cn, Dn. A notable difference from the case of An type is, in most cases,
the appearance of differential systems as the underlying geometries. We will
investigate the geometric feature of the fundamental geometries modeled
after the quotients of the real simple groups of split type by the parabolic
subgroups. We call Lie tensor metric structures for Bn and Dn types
and Lie tensor symplectic structures for Cn type. Most of them turn
out to be geometries of regular differential systems of some types.

In §2, we will recall the basic materials in simple Lie algebras and
parabolic geometries. Especially, to describe a parabolic subalgebra p of
the complex simple Lie algebra g, the natural gradation of g associated with
p will be explained. Previous studies for An type will be mentioned in §3.
In §4, for Bn and Dn types, we will describe, explicitly in matrices form,
the gradations associated with fundamental parabolic subalgebras. Here, a
little generally, we will describe the gradations of real simple Lie algebras
other than a split real form. Utilizing these matrices description, we will
describe the symbol algebras of underlying differential systems. In view of
the study in §4, we will introduce the notion of Lie tensor metric struc-

ture and give a basic structure theorem for these structures by virtue of
Tanaka theory in §5. In §6, for Cn type, we will describe, explicitly in matri-
ces form, the gradations associated with fundamental parabolic subalgebras.
Utilizing these matrices description, we will describe the symbol algebras of
underlying differential systems. In view of the study in §6, we will introduce
the notion of Lie tensor symplectic structure and give a basic structure
theorem for these structures by virtue of Tanaka theory in §7. Finally in §8,
we will give several examples of Lie tensor metric structures. Especially we
will show that the set of singular D-curves of a flat maximally nondegener-
ate distribution of rank n has the structure of (3, n − 1) Lie tensor metric
manifold with signature (2, 1).

The authors would like to thank Professors T. Mizutani and T. Inaba for
their valuable comments.

2. Parabolic geometries

Let g be a simple Lie algebra g over C and G a Lie group whose Lie
algebra is g. Choose a Cartan subalgebra h and fix a simple root system
∆ = {α1, . . . , αn} of g. Then the Dynkin diagram of g is a graph made
of white nodes corresponding to each simple roots with edges (or directed
multi-edges) connecting some nodes.
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We choose a subset ∆1 ⊂ ∆ and indicate ∆1 by marking the correspond-
ing nodes black in the Dynkin diagram.

A choice of ∆1 defines a parabolic subalgebra p of g as follows [Ya1, p.
444].

Let Φ = Φ+ ∪ Φ− be the set of positive and negative roots. An element
α ∈ Φ+ is written as α =

∑n
i=1 ni(α)αi, ni(α) ≥ 0. We have the root space

decomposition

g = h⊕
∑

α∈Φ+

(
gα ⊕ g−α

)
.

Associated with ∆1, for k ≥ 0, put

Φ+
k =

{
α =

n∑

i=1

ni(α)αi ∈ Φ+
∣∣∣
∑

αi∈∆1

ni(α) = k
}
.

Put µ = max {k | Φ+
k 6= ∅} and

g0 = h⊕
∑

α∈Φ+

0

(
gα ⊕ g−α

)
,

gk =
∑

α∈Φ+

k

gα, g−k =
∑

α∈Φ+

k

g−α for 1 ≤ k ≤ µ.

Further we put

p = g0 ⊕

µ∑

k=1

gk, m =

µ∑

k=1

g−k.

Then g = p ⊕ m and p is a parabolic subalgebra, that is, p contains the
Borel (=maximally solvable) subalgebra.

Let P ⊂ G be the parabolic Lie subgroup whose Lie algebra is equal
to p. The tangent space at the base point of the homogeneous space M =
G/P is isomorphic to the graded vector space m = g−µ ⊕ · · · ⊕ g−1. Such
homogeneous manifold M = G/P is called a generalized flag manifold (or
R-space). Since

[gi, gj] ⊂ gi+j, −µ ≤ i, j ≤ µ,

g and m have the graded Lie algebra structure.
As for Lie algebras over R, the above argument is valid when g is a

noncompact simple Lie algebra which is a split, or normal, real form. The
split real Lie algebra of the classical types is one of the following,

sl(n+ 1,R), so(n+ 1, n), sp(n,R), so(n, n).

This corresponds to the types An, Bn, Cn, Dn in this order. Corresponding
to the split Lie algebras, we choose Lie groups G to be SL(n+1,R), SO(n+
1, n), Sp(n,R) or SO(n, n). Especially, if we set all nodes black, then M =
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G/B where B is the maximal solvable subgroup (Borel subgroup) and M
is diffeomorphic to the maximal compact subgroup K of G. If we leave all
nodes white, then p = g and M = {pt}. Here we note that, for the model
space Mg = G/P of Tanaka theory for the parabolic geometry associated to
g = p ⊕ m, i.e., the geometry associated to the simple graded Lie algebra
g =

∑µ
p=−µ gp, G is defined as the adjoint group of g in [Ta]. Precisely our

G/P is a covering space over Mg.
In the following, we study the geometric structure of the real generalized

flag manifold G/P such that the Lie algebra g of G is a split real form of
semisimple Lie algebra of the classical types.

Let Xn be one of An, Bn, Cn, Dn. We denote by Xk
n the generalized flag

manifold G/P defined by setting one k-th node of Dynkin diagram black.
We follow [Bo] for the numbering of simple roots.

3. Ak
n type

Let G = SL(n + 1,R) and put Ak
n = G/P . Then the diagram for Ak

n is
given by

◦ — ◦ — · · · —
k
• — · · · — ◦

We have the diffeomorphism

Ak
n
∼= SO(n+ 1)/S (O(k)×O(n+ 1− k))

which is a Grassmann manifold. The geometric structures modeled af-
ter Grassmann manifolds are studied in [MS] under the correspondence in
twistor diagrams. The structures have been studied by many people with dif-
ferent namings; almost Grassmannian [Mikhailov 78], [Akivis, Goldberg 96],
Grassmannian spinor [Manin 88], tensor product [Hangan 66], [Ishihara 70],
paraconformal [Bailey, Eastwood 91], generalized conformal [Goncharov 87],
(k = 2) Segré [McKay 05], etc.

4. Bk
n and Dk

n types

Let G = O(n + 1, n) and put Bk
n = G/P . The parabolic group P is

represented by

◦ — ◦ — · · · —
k
• — · · · — ◦ =⇒ ◦ (n ≥ 3).

And let G = O(n, n) and put Dk
n = G/P . The parabolic group P is

represented by

◦
�

◦ — ◦ — · · · —
k
• — · · ·— ◦ (n ≥ 4).

�
◦
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We represent the Lie algebra g = o(n+ 1, n) or o(n, n) as follows. Let

K = Kℓ =



O 1

···

1 O




be the anti-diagonal unit ℓ × ℓ-matrix. The eigenvalues of Kℓ are 1 with
multiplicity n+1 (respectively n) and −1 with multiplicity n when ℓ = 2n+1
(respectively when ℓ = 2n).

We put

g = { X ∈ gl(ℓ,R) | tXK +KX = 0}.

Then g = o(n+ 1, n) when ℓ = 2n+ 1 and g = o(n, n) when ℓ = 2n.

For an r × s matrix Y ∈ M(r, s), write Y ′ = Ks
tY Kr ∈ M(s, r). Then,

when r = s, Y ′ is the “transposed" matrix with respect to the anti-diagonal
line.

We will introduce the gradation of g by subdividing X ∈ g as follows:

k p k

k

p

k



A −F ′ D

B G F

C −B′ −A′



,(1)

where C = −C ′, D = −D′ and G = −G′. Then, when k ≥ 2, the Lie algebra
g has the gradation

g = g−2 + g−1 + g0 + g1 + g2(2)

where

g−2 = 〈C〉, g−1 = 〈B〉, g0 = 〈A〉 ⊕ 〈G〉, g1 = 〈F 〉, g2 = 〈D〉.

Put m = g−2 ⊕ g−1 and p = g0 ⊕ g1 ⊕ g2. Then P is the Lie subgroup
of G corresponding to p ⊂ g. Hence, corresponding to g−1, the model space
Bk

n = G/P or Dk
n = G/P has the G-invariant differential system Dg and the

tangent space T0(M) at the base point of M = G/P is identified with m .

Thus, from (1) and (2), we have

dim g−2 =
k(k − 1)

2
, dim g−1 = pk,

where ℓ = p + 2k, p = 2(n − k) + 1 in case of type Bk
n and p = 2(n − k) in

case of type Dk
n. We put m = g−2 ⊕ g−1 = m1(p, k).

Here we first notice the following: In case p = 1, or equivalently in case
k = n and ℓ = 2n + 1, i.e., in case of type Bn

n , under the assumption
g−2 = [g−1, g−1], the Lie algebra structure of m = g−2 ⊕ g−1, such that
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dim g−1 = n and dim g−2 =
n(n−1)

2 , is unique and can be described as;

m = g−2 ⊕ g−1, g−2 = ∧2V and g−1 = V,

i.e., m = g−2⊕g−1 is the universal fundamental graded Lie algebra of second
kind [Ta]. In this case, when n ≥ 3, g = o(n + 1, n) is the prolongation of
m = g−2 ⊕ g−1 and g0 ∼= gl(V ) (cf. §5.3 in [Ya1]).

In the rest of this section, we assume k = 2 and p ≥ 3 or k ≥ 3 and
p ≥ 2. We also notice that, in case p = 2, or equivalently in case k = n− 1
and ℓ = 2n (n ≥ 4), the above gradation (2) is that of type Dn−1,n

n (see §4.4
in [Ya1]).

On Û = R2n+1 or R2n, we give an inner product (, ) by (x,y) = t
xKy

for x,y ∈ Rℓ. We write these inner product spaces by Rn+1,n and Rn,n since
the signature of the inner product are (n+ 1, n) and (n, n) respectively.

Here, a little generally, we will consider other real forms of o(ℓ,C). Put

Ŝ =




0 0 K

0 S 0

K 0 0


, where K = Kk is the anti-diagonal unit k × k matrix

and S =

(
Er 0

0 −Es

)
, where Er is the unit r× r matrix and p = r+ s. On

Û = Rℓ, we give an inner product (, ) by (x,y) = t
x Ŝy for x,y ∈ Rℓ. Then

the signature of (Û , (, )) is (k + r, k + s). Moreover, on U = Rp, we give an
inner product (, ) by (a,b) = t

aSb for a,b ∈ Rp. Then the signature of
(U, (, )) is (r, s).

We put

g = o(Û) = o(k + r, k + s) = { X ∈ gl(ℓ,R) | tXŜ + ŜX = 0}.

We will introduce the gradation of g = o(Û) again by subdividing X ∈ g

as follows:

k p k

k

p

k



A −F̂ D

B G F

C −B̂ −A′



,(3)

where C = −C ′, D = −D′, G ∈ o(r, s) B̂ = KtBS and F̂ = KtFS. Then,
when k ≥ 2, the Lie algebra g has the gradation

g = g−2 + g−1 + g0 + g1 + g2(4)

where

g−2 = 〈C〉, g−1 = 〈B〉, g0 = 〈A〉 ⊕ 〈G〉, g1 = 〈F 〉, g2 = 〈D〉.
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Put m = g−2 ⊕ g−1 and p = g0 ⊕ g1 ⊕ g2. Then P is the Lie subgroup of
G = O(Û) corresponding to p ⊂ g. Hence, corresponding to g−1, the model
space O(Û)/P has the G-invariant differential system Dg and the tangent

space T0(M) at the base point of M = O(Û)/P is identified with m .
Thus, from (3) and (4), we have

dim g−2 =
k(k − 1)

2
, dim g−1 = pk

where ℓ = p+ 2k, p = r + s. We put m = g−2 ⊕ g−1 = m1(Û).
Now we will describe the Lie algebra structure of m as in the following:

By utilizing the matrices description (1) (resp. (3)), we identify g−1 with
M(p, k) and g−2 with T = {C ∈ M(k, k) | C = −C ′}, and we calculate

[B1, B2] = −B′
1B2 +B′

2B1 (resp. = −B̂1B2 + B̂2B1) ∈ g−2 = T,

for B1, B2 ∈ g−1 = M(p, k). Moreover, identifying T with o(k) by T ∋ C 7→
−KC ∈ o(k), we get

[B1, B2] =
tB1KB2 −

tB2KB1 (resp. = tB1SB2 −
tB2SB1) ∈ o(k).

Now, identifying M(p, k) with Rp ⊗ Rk, we obtain

[a⊗ ei,b⊗ ej] = (a,b)(Eij −Eji) ∈ o(k),

where a,b ∈ Rp = M(p, 1), {e1, . . . , ek} is the natural basis of Rk = M(1, k),
(a,b) = t

aKb (resp. = t
aSb) is the inner product in U = Rp and Eij

denotes the matrix whose (i, j)-component is 1 and all of whose other com-
ponents are 0. Here a⊗ ei corresponds to the p × k matrix whose i-th row
is a and all of other rows are 0. Thus, finally, identifying o(k) with ∧2V ,
V = Rk, we obtain the following description of m = m1(p, k) or m1(Û) in
general

m1(U, V ) = g−2 ⊕ g−1, g−2 = ∧2V, g−1 = U ⊗ V,

where U is a vector space with the inner product (, ) of dimension p and V
is a vector space of dimension k. The bracket is defined by

[u1 ⊗ v1, u2 ⊗ v2] = (u1, u2)v1 ∧ v2, for u1, u2 ∈ U, v1, v2 ∈ V.

Thus if 2 ≤ k < n, dim g−2 = k(k−1)
2 > 0 and Dg is defined by k(k−1)

2
Pfaffian forms. We have the following coordinate description of the standard
differential system of type m1(p, k);

{
xij(1 ≤ i < j ≤ k), yαj (1 ≤ α ≤ p, 1 ≤ j ≤ k)

}

with 1-forms θij (1 ≤ i < j ≤ k) such that D = Ker{θij} and

θij = dxij +
1

2

p∑

α=1

(
yp+1−α,jdyαi − yαidyp+1−α,j

)
.
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In fact we have

dθij =

p∑

α=1

dyp+1−α,j ∧ dyαi.

Taking the dual frame { ∂
∂xij

(1 ≤ i < j ≤ k), Yαi(1 ≤ α ≤ p, 1 ≤ i ≤ k)} to

the coframe {θij(1 ≤ i < j ≤ k), dyαi(1 ≤ α ≤ p, 1 ≤ i ≤ k)}, we have

Yαi =
∂

∂yαi
−

1

2

k∑

j=1

yp+1−α,j
∂

∂xij
.

Here we put xij = −xji for 1 ≤ j < i ≤ k. Then we have

[Yαi, Yβj] = δα,p+1−β
∂

∂xij
.

Thus we obtain the coordinate description of the standard differential system
of type m1(p, k).

One interpretation is that we regard Bk
n as the set of all null k-planes in

the 2n+1 dimensional Euclidean space Rn+1,n with the signature (n+1, n).
Thus we have

Bk
n
∼= (SO(n+ 1)× SO(n)) /S (O(n− k + 1)×O(n− k)×∆O(k)) ,

dimBk
n =

k

2
(4n− 3k + 1).

For any k(1 ≤ k ≤ n−2), we can regard Dk
n as the set of all null k-planes

in Rn,n (for k = n− 1, see a little carefully §4.4 in [Ya1]). We have

Dk
n
∼= (SO(n)× SO(n)) /S (O(n− k)×O(n− k)×∆O(k)) .

For k = 1, we have g−2 = g2 = 0. Hence we have g = g−1 + g0 + g1. The

universal covering M̃ of M = G/P is diffeomorphic to Sn×Sn−1 which is the
conformal compactification of Rn−1,n in case of B1

n type and to Sn−1×Sn−1

which is a conformal compactification of Rn−1,n−1 in case of D1
n type.

For k ≥ n − 1, we have Dn−1
n = Dn

n. See a little carefully §4.4 in [Ya1].
Corresponding to Dn−1

n = Dn
n, the Lie algebra g has the gradation g =

g−1 + g0 + g1 such that

dim g−1 = dim g1 =
n(n− 1)

2
, dim g0 = n2.

5. Lie tensor metric structure

To investigate the structure of Bk
n, Dk

n or O(Û)/P , we introduce the
notion of Lie tensor metric structure.

First, we study vector spaces with tensor product structures.
A pk-dimensional vector space W is a (p, k) tensor product space if

there exists an isomorphism h : U ⊗ V → W , with dimU = p, dimV = k.
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The product group GL(U) × GL(V ) acts naturally on the (p, k) tensor
product space W .

A pk-dimensional vector space W is a (p, k) metric tensor product

space with signature (r, s) (p = r + s) if there exists an isomorphism
h : U ⊗ V → W , where U is a p-dimensional vector space with a non-
degenerate inner product (, ) of signature (r, s) and V is a q-dimensional
vector space.

The product group O(U) × GL(V ) acts naturally on the (p, k) metric
tensor product space W .

A linear transformation φ of a (p, q) metric tensor product space W is
called a metric tensor product transformation if it is expressed as an
action of an element in O(U)×GL(V ).

We have the exterior product representation

λ : GL(V ) → GL(∧2V ).

Define a homomorphism ρ : O(U)×GL(V ) → GL(m1(U, V )) by

ρ(A,B) =

(
λ(B) 0

0 A⊗B

)
, A ∈ O(U), B ∈ GL(V ),

where m1(U, V ) = g−2 ⊕ g−1, g−2 = ∧2V , g−1 = U ⊗ V . Then we see that,
through ρ, O(U)×GL(V ) acts as a graded Lie algebra automorphism group
of m1(U, V ).

Let G0 ⊂ O(Û) be the Lie subgroup whose Lie algebra is equal to g0 under
the decomposition (4) of g = o(Û). Under the identification of m1(U, V ) with
the tangent space at the base point of O(Û)/P , the group Im(ρ) coincides
with the image of the isotropy representation of G0 ⊂ P at the base point
of O(Û)/P .

Define a subgroup G♯
0 of GL(m1(U, V )) by

G♯
0 =

{(
λ(B) 0

C A⊗B

) ∣∣∣∣∣ A ∈ O(U), B ∈ GL(V ), C ∈ End(g−2, g−1)

}
.

A (p, k) matrix F and B ∈ GL(V ) defines a linear map µ(B,F ) : g−2 →
g−1 by the matrix multiplication: g−2 ∋ C 7→ FCB−1 ∈ g−1, where we
identify g−2 = T and g−1 = M(p, k) as in §4. We define a closed subgroup

G̃ of G♯
0 by

G̃ =

{(
λ(B) 0

µ(B,F ) A⊗B

) ∣∣∣∣∣ A ∈ O(U), B ∈ GL(V ), F ∈ M(p, k)

}
.

By calculating the adjoint representation of P on g = o(Û), we see that

the group G̃ is the linear isotropy representation of P at the base point of
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O(Û)/P . If k ≥ 3, then G̃  G♯
0.

Lie tensor metric structure

Let M be a

(
k(k − 1)

2
+ pk

)
-dimensional manifold M .

By a G♯
0-structure on M , we mean a reduction P of the frame bundle

F (M) to the group G♯
0. Then, on the frame bundle P , the value of the

canonical 1-form θ lies in m1(U, V ) = g−2 ⊕ g−1. So that M admits a distri-
bution D, which is defined on P by θ−2 = 0, where θi (i = −1,−2) is the
gi-component of the canonical 1-form θ.

A

(
k(k − 1)

2
+pk

)
-dimensional manifold M with a G♯

0-structure is called

a (p, k) Lie tensor metric manifold with signature (r, s) if the canonical
1-form θ satisfies

(C) dθ−2 +
1
2 [ θ−1, θ−1] ≡ 0 (mod θ−2).

Here the bracket [, ] is that of m1(U, V ). This condition (C) is equivalent to
the condition that D is a regular differential system of type m1(U, V ), i.e.,
the symbol algebra m(x) of (M,D) is isomorphic to m1(U, V ) at each x ∈ M
[Ta].

Example 5.1. If k = 2, then (p, 2) Lie tensor metric manifold M with sig-
nature (p, 0) is a 2p+1-dimensional Lie contact manifold defined in [SY1].

Example 5.2. The space B2
3 of the singular D-curve of B3

3 has the struc-
ture of (3, 2) Lie tensor contact metric manifold with signature (2, 1) (cf. §8).

We have

Proposition 5.1. For n ≥ 3, k ≥ 2, Bk
n has a structure of (2(n− k) +

1, k) Lie tensor metric manifold with signature (n− k + 1, n− k).
For n ≥ 4, 2 ≤ k ≤ n − 2, Dk

n has a structure of (2(n − k), k) Lie

tensor metric manifold with signature (n− k, n− k).
Moreover O(Û)/P has a structure of (p, k) Lie tensor metric manifold

with signature (r, s).

Tanaka theory

We review the Tanaka theory [Ta] which solves completely the equiv-
alence problem of parabolic geometries. N. Tanaka constructs the normal
Cartan connection uniquely whose curvature provides the all invariants of
each structure.

Definition of Cartan connection

Let G be a simple Lie group and let G/P be a generalized flag manifold.
Let Q be a P -principal bundle over a manifold M with dimM = dimG/P .
A g-valued 1-form θ on Q is a Cartan connection if
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(C1) X ∈ T (Q), θ(X) = 0 ⇒ X = 0,
(C2) θ(A∗) = A, A∗ is the vector field generated by A ∈ h,
(C3) Ra

∗θ = Ad(a−1)θ, a ∈ P.

The curvature K of a Cartan connection is given by

K = dθ + [θ, θ],

which is a g⊗ Λ2(m∗) valued function on Q. Put

K =
∑

p

Kp, Kp =
∑

ℓ<−1

gℓ+p+1 ⊗ Λ2
ℓ (m

∗)

where Λ2
ℓ (m

∗) =
∑

s+t=ℓ,s<0,t<0 g
∗
s ∧ g∗t . We have the boundary operators

∂ : g⊗Λq(m∗) → g⊗Λq+1(m∗), ∂∗ : g⊗Λq+1(m∗) → g⊗Λq(m∗).

A Cartan connection θ is normal if

(NC1) Kp = 0 (p < 0),
(NC2) ∂∗Kp = 0 (p ≥ 0).

A normal Cartan connection is called Tanaka normal connection.

In Theorem 5.3 [Ya1], relevant Spencer cohomology groups were calcu-
lated, which induces the prolongation condition necessary for the applica-
tions of Tanaka theory [Ta]. Precisely g = o(Û) is the prolongation of (m, g0),
when q = 2 and is the prolongation of m when q ≥ 3. The last statement
implies that ρ(O(U) × GL(V )) coincides with the full group of graded Lie
algebra automorphisms of m1(U, V ) when q ≥ 3. Hence a regular differential
system (M,D) of type m1(U, V ) admits the (p, q) Lie tensor metric struc-
ture when q ≥ 3. Thus the parabolic geometry modeled after O(Û)/P , when
q ≥ 3, is the geometry of regular differential systems of type m1(Û).

Tanaka theory implies that every G♯
0-structure further reduces to a G̃-

structure.
By using Tanaka theory [Ta] and Proposition 5.5 [Ya1] (see also Propo-

sition 6.2 [Ya2]), we obtain the following.

Theorem 5.2. Let M be a (p, q) Lie tensor metric manifold with signature

(r, s), p = r+s. Then there exists a principal P -bundle Q over M and unique

normal Cartan connection θ on Q.

(1) p = 1 and q = n ≥ 3, the curvature K has one component.

(2) q = 2 and p ≥ 3, the curvature K has 3 components if p = 4 and 2
components otherwise.

(3) q = 3 and p = 2, the curvature K has 2 components.

(4) q = 3 and p ≥ 3, the curvature K has one component.

(5) q ≥ 4 and p ≥ 2, the curvature always vanishes.
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The vanishing of the curvature is the condition that M is Lie metric

equivalent to the flat model in case (2) and (M,D) is equivalent to the flat

model (O(Û)/P,Dg) otherwise.

6. Ck
n type

Let G = Sp(n,R) and put Ck
n = G/P . The parabolic group P is repre-

sented by

◦ — ◦ — · · ·—
k
• — · · · — ◦ ⇐= ◦ (n ≥ 2).

We represent the Lie algebra g = sp(n,R) as follows. Let K = Kn be the

anti-diagonal unit n × n-matrix and put J =

(
O K

−K 0

)
. Then J2 = −1.

We have

g = sp(n,R) = { X ∈ gl(2n,R) | tXJ + JX = 0}.

Explicitly we can write
n n

g =

{
n

n

(
A D

C −A′

)
, D = D′, C = C ′

}
.

The simple roots of the Lie algebra g of type Cn are e1 − e2, e2 −
e3, · · · , en−1 − en, 2en. The generalized flag manifold Ck

n corresponds to
the following block decomposition of g;

k 2p k

k

2p

k



A F̂ D

B G F

C B̂ −A′



,(5)

where C = C ′, D = D′, B̂ = (B2
′,−B1

′) for B =

(
B1

B2

)
, F̂ = (−F2

′, F1
′)

for F =

(
F1

F2

)
, and G =

(
A2 D2

C2 −A2
′

)
∈ sp(p,R) for p = n − k. Then

corresponding to Ck
n, when 1 ≤ k < n, the Lie algebra g has the gradation

g = g−2 + g−1 + g0 + g1 + g2,(6)

where

g−2 = 〈C〉, g−1 = 〈B〉, g0 = 〈A〉 ⊕ 〈G〉, g1 = 〈F 〉, g2 = 〈D〉.

Put m = g−2 ⊕ g−1 and p = g0 ⊕ g1 ⊕ g2. Then P is the Lie subgroup
of G = Sp(n,R) corresponding to p ⊂ g. Hence, corresponding to g−1, the
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model space Ck
n = G/P has the G-invariant differential system Dg and the

tangent space T0(M) at the base point of M = Ck
n is identified with m.

Thus, from (5) and (6), we have

dim g−2 =
k(k + 1)

2
, dim g−1 = 2pk,

where p = n− k. We put m = g−2 ⊕ g−1 = m2(p, k).

Now, we will describe the Lie algebra structure of m = m2(p, k) as in
the following: By utilizing the matrices description (5), we identify g−1 with
M(2p, k) and g−2 with S = {C ∈ M(k, k) | C = C ′}, and we calculate

[B1, B2] = B̂1B2 − B̂2B1 ∈ g−2 = S for B1, B2 ∈ g−1 = M(2p, k).

Moreover, identifying S with Sym(k) by S ∋ C 7→ −KC ∈ Sym(k), we get

[B1, B2] =
tB1JB2 −

tB2JB1 ∈ Sym(k).

In fact, we calculate

−KB̂1B2 +KB̂2B1 = (−tC1K, tA1K)

(
A2

C2

)
+ (tC2K,−tA2K)

(
A1

C1

)

= (tA1,
tC1)

(
0 K

−K 0

)(
A2

C2

)
− (tA2,

tC2)

(
0 K

−K 0

)(
A1

C1

)

for B1 =

(
A1

C1

)
, B2 =

(
A2

C2

)
∈ g−1. Now, identifying M(2p, k) with

R2p ⊗ Rk, we obtain

[a⊗ ei,b⊗ ej] = 〈a,b〉(Eij +Eji) ∈ o(k),

where a,b ∈ R2p = M(2p, 1), {e1, . . . , ek} is the natural basis of Rk =
M(1, k) and 〈a,b〉 = t

aJb is the symplectic product in U = R2p. Here
a⊗ ei corresponds to the 2p× k matrix whose i-th row is a and all of other
rows are 0. Thus, finally, identifying Sym(k) with the symmetric product
S2(V ) of V = Rk, we obtain the following description of m2(p, k) = m2(U, V )

m2(U, V ) = g−2 ⊕ g−1, g−2 = S2(V ), g−1 = U ⊗ V,

where U is a symplectic vector space with the symplectic product 〈, 〉 of
dimension 2p and V is a vector space of dimension k. The bracket is defined
by

[u1 ⊗ v1, u2 ⊗ v2] = 〈u1, u2〉v1 ⊚ v2, for u1, u2 ∈ U, v1, v2 ∈ V.

Thus if 1 ≤ k < n, dim g2 = k(k+1)
2 > 0 and Dg is defined by k(k+1)

2
Pfaffian forms. We have the following coordinate description of the standard
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differential system of type m2(p, k);
{
xij(1 ≤ i ≤ j ≤ k), yαj (1 ≤ α ≤ 2p, 1 ≤ j ≤ k)

}

with symplectic forms ωj for 1 ≤ j ≤ k on {yαj , 1 ≤ α ≤ 2p};

ωj = 2

p∑

α=1

(
dy2p+1−α,j ∧ dyαj

)
,

and 1-forms θij (1 ≤ i ≤ j ≤ k) such that D = Ker{θij} and

θij = dxij

+
1

2

p∑

α=1

(
y2p+1−α,idyαj − yαidy2p+1−α,j + y2p+1−α,jdyαi − yαjdy2p+1−α,i

)
.

In fact we have

dθij =

p∑

α=1

(
dy2p+1−α,i ∧ dyαj + dy2p+1−α,j ∧ dyαi

)
.

Taking the dual frame { ∂
∂xij

(1 ≤ i ≤ j ≤ k), Yαi, Y2p+1−α,i(1 ≤ α ≤ p, 1 ≤

i ≤ k)} to the coframe {θij(1 ≤ i ≤ j ≤ k), dyαi, dy2p+1−α,i(1 ≤ α ≤ p, 1 ≤
i ≤ k)}, we have

Yαi =
∂

∂yαi
−

1

2

k∑

j=1

y2p+1−α,j
∂

∂xij
−

1

2
y2p+1−α,i

∂

∂xii
,

Y2p+1−α,i =
∂

∂y2p+1−α,i
+

1

2

k∑

j=1

yαj
∂

∂xij
+

1

2
yαi

∂

∂xii
,

for 1 ≤ α ≤ p. Here we put xij = xji for 1 ≤ j < i ≤ k. Then we have

[Yαi, Yβj ] = [Y2p+1−α,i, Y2p+1−β,j] = 0,

[Yαi, Y2p+1−β,i] = 2δαβ
∂

∂xii
, [Yαi, Y2p+1−β,j] = δαβ

∂

∂xij
(i 6= j),

for 1 ≤ α ≤ p and 1 ≤ i, j ≤ k. Thus we obtain the coordinate description
of the standard differential system of type m2(p, k).

We may regard Ck
n as the set of all isotropic k-planes in symplectic R2n.

We have

Ck
n
∼= U(n)/ (U(n− k)× SO(k)) .

If k = n, then g−1 = g1 = 0 and g = g−2 + g0 + g2. We have a diffeomor-
phism Cn

n
∼= U(n)/SO(n) which is the set of Lagrangian subspaces of the

symplectic R2n.
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7. Lie tensor symplectic structure

A 2pq-dimensional vector space W is a (p, q) symplectic tensor prod-

uct space if there exist a 2p-dimensional vector space U with a symplectic
form ω, a q-dimensional vector space V and an isomorphism h : U⊗V → W .

Let Sp(U) ∼= Sp(p,R) be the set of linear transformations of U which
preserve the symplectic form ω invariant. The product group Sp(U)×GL(V )
acts naturally on the (p, q) symplectic tensor product space W .

A linear transformation φ of a (p, q) symplectic tensor product space W
is called a symplectic tensor product transformation if it is expressed
as an action of an element in Sp(U)×GL(V ).

Let S2(V ) ⊂ V ⊗ V be the symmetric products of V . We have the
symmetric product representation

σ : GL(V ) → GL(S2(V )).

Define a homomorphism ρ : Sp(U)×GL(V ) → GL(m2(U, V )) by

ρ(A,B) =

(
σ(B) 0

0 A⊗B

)
, A ∈ Sp(U), B ∈ GL(V ),

where m2(U, V ) = g−2 ⊕ g−1, g−2 = S2(V ), g−1 = U ⊗ V . Then we see
that, through ρ, Sp(U)×GL(V ) acts as a graded Lie algebra automorphism
group of m2(U, V ).

Let G0 ⊂ Sp(n,R), n = p+ k, be the Lie subgroup whose Lie algebra is
equal to g0 under the decomposition (6) of g = sp(n,R). Under the identifi-
cation of m2(U, V ) with the tangent space at the base point of Ck

n, the group
Im(ρ) coincides with the image of the isotropy representation of G0 ⊂ P at
the base point of Sp(n,R)/P = Ck

n.

Define a subgroup G♯
0 of GL(m2(U, V )) by

G♯
0 =

{(
σ(B) 0

C A⊗B

) ∣∣∣∣∣ A ∈ Sp(U), B ∈ GL(V ), C ∈ End(g−2, g−1)

}
.

A 2p×q matrix F and B ∈ GL(V ) defines a linear map µ(B,F ) : g−2 →
g−1 by the matrix multiplication: g−2 ∋ C 7→ FCB−1 ∈ g−1, where we
identify g−2 = S and g−1 = M(2p, k) as in §6. We define a closed subgroup

G̃ of G♯
0 by

G̃ =

{(
σ(B) 0

µ(B,F ) A⊗B

) ∣∣∣∣∣ A ∈ Sp(U), B ∈ GL(V ), F ∈ M(2p, q)

}
.

By calculating the adjoint representation of P on g = sp(n,R), we see that

the group G̃ is the linear isotropy representation of P at the base point of
Sp(n,R)/P = Ck

n. If q ≥ 2, then G̃  G♯
0.
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Lie Tensor symplectic structure

A

(
q(q + 1)

2
+ 2pq

)
-dimensional manifold M with a G♯

0-structure is

called a (p, q) Lie tensor symplectic manifold if the canonical 1-form
θ satisfies

(C) dθ−2 +
1
2 [ θ−1, θ−1] ≡ 0 (mod θ−2).

Here the bracket [, ] is that of m2(U, V ). The Lie tensor symplectic manifold
M carries a distribution D ⊂ TM , which is defined by θ−2 = 0, where θ−2 is
the g−2-component of θ so that rankD = dim g−1. Then the condition (C)
is equivalent to the condition that (M,D) is a regular differential system
of type m2(U, V ), i.e., the symbol algebra m(x) of (M,D) is isomorphic to
m2(U, V ) at each x ∈ M [Ta].

We have

Proposition 7.1. For 1 ≤ k < n, 2 ≤ n, the generalized flag manifold

Ck
n has a structure of (n− k, k) Lie tensor symplectic manifold.

The generalized flag manifold C1
n is a contact manifold and the auto-

morphism group is of infinite dimension. If we give it a projective con-

tact structure, the automorphism group of the structure is isomorphic to
Sp(n,R) and is of finite dimension.

Furthermore, when 2 ≤ k < n, from Theorem 5.3 [Ya1], it follows that
g = sp(n,R) is the prolongation of m2(n−k, k). This implies that ρ(S(U)×
GL(V )) coincides with the full group of graded Lie algebra automorphisms
of m2(U, V ). Hence, a regular differential system (M,D) of type m2(U, V )
admits the (n − k, k) Lie tensor symplectic structure. Thus the parabolic
geometry modeled after Ck

n, when 2 ≤ k < n, is the geometry of regular
differential systems of type m2(n− k, k).

By Tanaka theory [Ta] and Proposition 5.5 [Ya1], we have the following;

Theorem 7.2. For p ≥ 1, q ≥ 2, let M be a (p, q) Lie tensor symplectic

manifold, i.e., M carries a regular differential system D of type m2(p, q).
Write Cq

p+q = Sp(p+ q,R)/P together with the invariant differential system

Dg. Then there exists a principal P -bundle Q over M and unique normal

Cartan connection θ on Q. If p ≥ 2 and q ≥ 3, the curvature always vanishes.

When q = 2, the curvature K has two components if p = 1 and has one

component if p ≥ 2. When p = 1 and q ≥ 3, the curvature K has one

component. The vanishing of the curvature is the condition that (M,D) is

equivalent to the flat model (Cq
p+q, Dg).
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8. Examples

We show that the unit tangent bundle of semi-Riemannian manifolds are
example of Lie tensor metric structure.

Let (M, g) be a semi-Riemannian manifold of index (r, s) such that r+s =
n = dimM . A non-zero vector z ∈ TpM is called spacelike, null, timelike

if g(z, z) T 0 respectively and non null if g(z, z) 6= 0.

Put S+
p (M) = {z ∈ TpM | g(z, z) = 1} ⊂ TpM . Then S+M =⋃

p∈M S+
p M is called the unit spacelike bundle. Put S−

p (M) = {z ∈ TpM |

g(z, z) = −1} ⊂ TpM . Then S−M =
⋃

p∈M S−
p M is called the unit timelike

bundle. Then we have (cf. [SY1])

Theorem 8.1. The unit spacelike bundle S+M of semi-Riemannian man-

ifold of signature (r, s), r+s = n = dimM has the structure of (n−1, 2) Lie

tensor metric structure with signature (r, s − 1). The unit timelike bundle

S−M of semi-Riemannian manifold of signature (r, s), r + s = n = dimM
has the structure of (n − 1, 2) Lie tensor metric structure with signature

(r − 1, s).

For Bk
n, if k = n, we have

dim g−2 =
n(n− 1)

2
, dim g−1 = n.

The manifold Bn
n is diffeomorphic to SO(n + 1), which is diffeomorphic to

the oriented orthonormal frame bundle of Sn. We have dimDg = n. Since
D+[D,D] = Γ(TM), Dg gives a maximally nondegenerate structure on Bn

n .

If k = n−1, dim g−2 =
(n− 1)(n− 2)

2
, dim g−1 = 3(n−1). The manifold

Bn−1
n is diffeomorphic to (SO(n+ 1)× SO(n)) / (SO(2)×∆SO(n− 1)).

For a manifold M with a distribution D ⊂ TM , a curve γ is called a
D-curve if tangent vectors of γ are contained in D. A D-curve γ in M
is called singular (= irregular) if it is a critical point of the endpoint map
end : Ω(x0, D) → M (see [Mo, p.83]).

Proposition 8.2. The manifold Bn−1
n is a set of singular D-curves of Bn

n .

Proof. Let Bn−1,n
n denote the generalized flag manifold defined by choos-

ing the subset ∆1 of the set of simple roots ∆ of G = O(n + 1, n) as

∆1 = {αn−1, αn}. Then Bn−1,n
n is diffeomorphic to (SO(n+ 1)× SO(n)) /

∆SO(n− 1), which in turn is naturally diffeomorphic to the set of oriented

D-lines of the manifold (Bn
n , D). The tangent space m = T0B

n−1,n
n has the

decomposition

m = g−4 + g−3 + g−2 + g−1
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whose dimensions are given

n2 + 3n− 2

2
=

n2 − 3n+ 2

2
+ (n− 1) + (n− 1) + n.

The n-dimensional space g−1 is equal to the restriction to Bn−1,n
n of the

tautological distribution of the Grassmann bundle consisting of oriented
lines of Bn

n . The set of vectors g 1
−1 tangent to the fiber of the fibration

pn : Bn−1,n
n → Bn

n is (n − 1)-dimensional subspace of g−1. The set of vec-

tors g 2
−1 tangent to the fiber of the fibration pn−1 : Bn−1,n

n → Bn−1
n is

1-dimensional subspace of g−1 transversal to g 1
−1 such that g−1 = g 1

−1⊕g 2
−1.

In the Lie algebra (1), put

vp,q = En+p,q −E2n+2−q,n+2−p,

where Ei,j denotes the matrix whose (i, j) component is equal to 1 and others
0. Let e ∈ Bn

n be the base point and let x ∈ De ⊂ TeB
n
n . By the action of

G, we may assume that x = {v1,n} ∈ TeB
n
n . Denote by 〈x〉+ the oriented

line generate by x. Then T〈x〉+B
n−1,n
n is equal to a subspace of (1) so that

g 1
−1 = 〈 v0,j | 1 ≤ j ≤ n− 1 〉, g 2

−1 = 〈 v1,n 〉.

Put v = v1,n. Then v is mapped by pn∗ to x and is tangent to the fiber of the
projection pn−1. We will show that x is the projection of a characteristic
direction at some λ ∈ D⊥. Denote by λp,q the dual basis of vp,q in (1). Then
D = 〈 v1,q | 1 ≤ q ≤ n 〉 and D⊥ is equal to 〈λp,q | 2 ≤ p, 1 ≤ q ≤ n 〉. Let
λ = λp,q ∈ D⊥ such that 3 ≤ p. By an easy calculation, we have λ([x, y]) = 0
for any y ∈ D. Let w : D⊥ → ∧2D∗ be the dual curvature [Mo, 4.2]. Then
w(λ)(x, y) = λ(−[x, y]) for y ∈ D. Thus we conclude that x is the projection
of a characteristic direction.
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