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LIE TENSOR PRODUCT MANIFOLDS

Abstract. We study the geometric structures of parabolic geometries. A parabolic
geometry is defined by a parabolic subgroup of a simple Lie group corresponding to a
subset of the positive simple roots. We say that a parabolic geometry is fundamental if
it is defined by a subset corresponding to a single simple root. In this paper we will be
mainly concerned with such fundamental parabolic geometries.

Fundamental geometries for the Lie algebra of A, type are Grassmann structures.
For B,,, C,, D, types, we investigate the geometric feature of the fundamental geometries
modeled after the quotients of the real simple groups of split type by the parabolic sub-
groups. We name such geometries Lie tensor product structures. Especially, we call Lie
tensor metric structure for B, or D,, type and Lie tensor symplectic structure for C,, type.
For each manifold with a Lie tensor product structure, we give a unique normal Cartan
connection by the method due to Tanaka. Invariants of the structure are the curvatures
of the connection.

1. Introduction

The Parabolic Geometry is a geometry modeled after the homoge-
neous space G/P, where G is a simple Lie group and P is a parabolic
subgroup of G. Precisely, in this paper, we mean, by a parabolic geome-
try, the geometry associated with the simple graded Lie algebra in the sense
of N. Tanaka |Ta|. The geometric structures we will consider in this pa-
per are those parabolic geometries which are given by maximal parabolic
subgroups. Let G be a complex simple Lie group of rank n and X,, be its
Dynkin diagram. Then a parabolic subgroup can be described by fixing the
subset A1 of the simple root systems A,,, which form the vertices of X,,, by
suitable choices of a Cartan subalgebra and a simple root system A,, of the
Lie algebra g of G (see §2, cf. [Yal], §3.3). Maximal parabolic subgroups
correspond to the cases when Aj consists of a single simple root, which is
usually described by the Dynkin diagram with one node marked black. We
call such parabolic geometries to be fundamental. Fundamental geometries
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for the Lie algebra of the A, type is called Grassmann structure [MS]| (see
§3 for other nominations).

In this paper, we further restrict ourselves to the case when we mark a
single node of the Dynkin diagram of classical simple Lie algebras of type
B,, C,, D,. A notable difference from the case of A, type is, in most cases,
the appearance of differential systems as the underlying geometries. We will
investigate the geometric feature of the fundamental geometries modeled
after the quotients of the real simple groups of split type by the parabolic
subgroups. We call Lie tensor metric structures for B, and D, types
and Lie tensor symplectic structures for C,, type. Most of them turn
out to be geometries of regular differential systems of some types.

In §2, we will recall the basic materials in simple Lie algebras and
parabolic geometries. Especially, to describe a parabolic subalgebra p of
the complex simple Lie algebra g, the natural gradation of g associated with
p will be explained. Previous studies for A, type will be mentioned in §3.
In §4, for B, and D, types, we will describe, explicitly in matrices form,
the gradations associated with fundamental parabolic subalgebras. Here, a
little generally, we will describe the gradations of real simple Lie algebras
other than a split real form. Utilizing these matrices description, we will
describe the symbol algebras of underlying differential systems. In view of
the study in §4, we will introduce the notion of Lie tensor metric struc-
ture and give a basic structure theorem for these structures by virtue of
Tanaka theory in §5. In §6, for C), type, we will describe, explicitly in matri-
ces form, the gradations associated with fundamental parabolic subalgebras.
Utilizing these matrices description, we will describe the symbol algebras of
underlying differential systems. In view of the study in §6, we will introduce
the notion of Lie tensor symplectic structure and give a basic structure
theorem for these structures by virtue of Tanaka theory in §7. Finally in §8,
we will give several examples of Lie tensor metric structures. Especially we
will show that the set of singular D-curves of a flat maximally nondegener-
ate distribution of rank n has the structure of (3,n — 1) Lie tensor metric
manifold with signature (2,1).

The authors would like to thank Professors T. Mizutani and T. Inaba for
their valuable comments.

2. Parabolic geometries

Let g be a simple Lie algebra g over C and G a Lie group whose Lie
algebra is g. Choose a Cartan subalgebra h and fix a simple root system
A = {ai,...,a,} of g. Then the Dynkin diagram of g is a graph made
of white nodes corresponding to each simple roots with edges (or directed
multi-edges) connecting some nodes.
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We choose a subset A; C A and indicate Ay by marking the correspond-
ing nodes black in the Dynkin diagram.

A choice of A; defines a parabolic subalgebra p of g as follows [Yal, p.
444].

Let ® = ®* U ®~ be the set of positive and negative roots. An element
a € ®F is written as o =Y | ni(a)ay, ni(a) > 0. We have the root space

decomposition
g=ho Z (ga@gfa)-
acdt

Associated with Ay, for k£ > 0, put

o = {oz = zn:ni(a)ai cot ‘ Z ni(a) = k}
1=1

(M€A1
Put p = max {k | ®; # 0} and

go=bho j{: (90569g—a)7

aeég
Gk= D Gay 8k= ) ga for 1<k<p
aEd) acd)

Further we put
1 H
P=00®) gk M=) g
k=1 k=1

Then g = p @ m and p is a parabolic subalgebra, that is, p contains the
Borel (—=maximally solvable) subalgebra.

Let P C G be the parabolic Lie subgroup whose Lie algebra is equal
to p. The tangent space at the base point of the homogeneous space M =
G/ P is isomorphic to the graded vector space m = g_, @ --- @ g_1. Such
homogeneous manifold M = G/P is called a generalized flag manifold (or
R-space). Since

9i:95] C 9itjs  —n<ij<p,
g and m have the graded Lie algebra structure.

As for Lie algebras over R, the above argument is valid when g is a
noncompact simple Lie algebra which is a split, or normal, real form. The
split real Lie algebra of the classical types is one of the following,

sl(n +1,R), so(n+1,n), sp(n,R), so(n,n).
This corresponds to the types A, Bn, Cp, D, in this order. Corresponding

to the split Lie algebras, we choose Lie groups G to be SL(n+1,R), SO(n+
1,n), Sp(n,R) or SO(n,n). Especially, if we set all nodes black, then M =
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G /B where B is the maximal solvable subgroup (Borel subgroup) and M
is diffeomorphic to the maximal compact subgroup K of G. If we leave all
nodes white, then p = g and M = {pt}. Here we note that, for the model
space My = G /P of Tanaka theory for the parabolic geometry associated to
g = p Pdm, ie., the geometry associated to the simple graded Lie algebra
g= Z:_ 1 O G is defined as the adjoint group of g in [Ta]. Precisely our
G/ P is a covering space over M.

In the following, we study the geometric structure of the real generalized
flag manifold G/P such that the Lie algebra g of G is a split real form of
semisimple Lie algebra of the classical types.

Let X,, be one of A,,, By, Cy, D,. We denote by X,]f the generalized flag
manifold G/P defined by setting one k-th node of Dynkin diagram black.
We follow |Bo| for the numbering of simple roots.

3. A* type
Let G = SL(n + 1,R) and put A¥ = G/P. Then the diagram for A” is
given by

O— 0O — +++ — @ — ++o+ — O
We have the diffeomorphism
AR >~ 80(n+1)/S(0O(k) x O(n+1—k))

which is a Grassmann manifold. The geometric structures modeled af-
ter Grassmann manifolds are studied in [MS| under the correspondence in
twistor diagrams. The structures have been studied by many people with dif-
ferent namings; almost Grassmannian [Mikhailov 78|, [Akivis, Goldberg 96|,
Grassmannian spinor [Manin 88|, tensor product |[Hangan 66|, [Ishihara 70|,
paraconformal |Bailey, Eastwood 91|, generalized conformal [Goncharov 87/,
(k = 2) Segré [McKay 05], etc.

4. BF and DF types
Let G = O(n + 1,n) and put B = G/P. The parabolic group P is
represented by

oioi...fﬁf...foﬁo (n>3).

And let G = O(n,n) and put DF = G/P. The parabolic group P is
represented by

O— Q0 — ++¢ — @ — «se— O (7?/24)
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We represent the Lie algebra g = o(n + 1,n) or o(n,n) as follows. Let
O 1
K=K, = :
1 )

be the anti-diagonal unit ¢ x f-matrix. The eigenvalues of K, are 1 with
multiplicity n+1 (respectively n) and —1 with multiplicity n when ¢ = 2n+1
(respectively when ¢ = 2n).
We put
g={Xcgl({,R)|'XK + KX =0}.
Then g = o(n +1,n) when £ =2n+ 1 and g = o(n,n) when ¢ = 2n.

For an r x s matrix Y € M(r, s), write Y/ = K'Y K, € M(s,r). Then,
when r = s, Y’ is the “transposed" matrix with respect to the anti-diagonal
line.

We will introduce the gradation of g by subdividing X € g as follows:

kE p k
kK (A —-F' D
(1) ;
p|B G F
k\C -B" -A
where C = —C’, D = —D’ and G = —G’. Then, when k > 2, the Lie algebra
g has the gradation

(2) g=g-2+0-1+00+0g1+92

where
g2 =(C), g-1=(B), go = (A) ©(G), g1 = (F), g2 = (D).

Putm=g o®g_1and p = go ® g1 & go. Then P is the Lie subgroup
of G corresponding to p C g. Hence, corresponding to g_1, the model space
BE = G/P or DF = G/P has the G-invariant differential system D, and the
tangent space Tp(M) at the base point of M = G/P is identified with m .

Thus, from (1) and (2), we have
kE(k—1)

2
where £ = p + 2k, p = 2(n — k) + 1 in case of type B¥ and p = 2(n — k) in
case of type DY, Weput m =g o @ g_1 = m!(p, k).

Here we first notice the following: In case p = 1, or equivalently in case
k = mn and ¢ = 2n + 1, i.e., in case of type B], under the assumption
g—2 = [g-1,9-1], the Lie algebra structure of m = g_o @ g_;, such that

dimg_o = ,dimg_, = pk,
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dimg_; =n and dimg_o = n(n2_1), is unique and can be described as;

m=g o®g_1, g2=AV and g1 =V,

ie, m=g_o@®g_1 is the universal fundamental graded Lie algebra of second
kind [Tal. In this case, when n > 3, g = o(n + 1,n) is the prolongation of
m=g_o®g_1 and go = gl(V) (cf. §5.3 in [Yal]).

In the rest of this section, we assume £ = 2 and p > 3 or k£ > 3 and
p > 2. We also notice that, in case p = 2, or equivalently in case k =n — 1
and £ = 2n (n > 4), the above gradation (2) is that of type Dj~ "™ (see §4.4
in [Yal]).

On U = R¥"+1 or R?" we give an inner product (,) by (z,y) = 'z Ky
for x,y € RY. We write these inner product spaces by R"*1" and R™" since
the signature of the inner product are (n + 1,n) and (n,n) respectively.

Here, a little generally, we will consider other real forms of o(¢,C). Put

0 0 K
S=10 S 0], where K = K}, is the anti-diagonal unit k£ x k& matrix
K 0 0

E, 0
and § = ( 0 P ), where FE, is the unit r X r matrix and p =r+s. On
— s
U =R’ we give an inner product (,) by (z,y) = tx Sy for «,y € R’. Then
the signature of (U, (,)) is (k + r,k + s). Moreover, on U = RP, we give an
inner product (,) by (a,b) = taSb for a,b € RP. Then the signature of
(U, (,)) is (r,s).
We put
g=00)=o(k+rk+s)={Xegl(l,R)|* XS+ SX =0}.

We will introduce the gradation of g = o(U) again by subdividing X € g
as follows:

kK p k

k(A —F D
(3) ,
p|B G F

k\C —-B -—-A

where C = —C', D = —D', G € o(r,s) B=K'BS and F' = K'FS. Then,
when k > 2, the Lie algebra g has the gradation

(4) g=g-2+0-1+80+01+02

where

g2 =(C), g-1=(B), go=(4) ®(G), ;1 =(F), g2 = (D).
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Putm=g_ o®g_1 and p =goP® g1 ®ge. Then P is the Lie subgroup of
G= O(U ) corresponding to p C g. Hence, corresponding to g_i, the model
space O(U)/P has the G-invariant differential system Dy and the tangent
space To(M) at the base point of M = O(U)/P is identified with m .

Thus, from (3) and (4), we have

k(k—1)

2
where  =p+2k, p=r+s. Weput m=g_o®g_, = m!(0).

Now we will describe the Lie algebra structure of m as in the following:
By utilizing the matrices description (1) (resp. (3)), we identify g_; with
M(p, k) and g_o with T'= {C € M(k,k) | C = —C"}, and we calculate

[B1, Bs] = —B{Bs + ByBy (vesp. = —B1By+ BayBy) € g_o =T,

for By, By € g—1 = M(p, k). Moreover, identifying 7" with o(k) by T'> C' +—
—KC € o(k), we get

[B1, Bo] = 'B1K By — 'Bo KBy (vesp. = 'B1SBy —'B2SBy) € o(k).
Now, identifying M (p, k) with RP? @ R, we obtain

la®e;,b®ej] = (a,b)(Eiyj — Eji) € o(k),

where a,b € R? = M(p, 1), {e1,...,ex} is the natural basis of R¥ = M (1, k),
(a,b) = 'aKb (resp. = 'aSb) is the inner product in U = R and Ej;
denotes the matrix whose (¢, j)-component is 1 and all of whose other com-
ponents are 0. Here a ® e; corresponds to the p x k matrix whose ¢-th row
is a and all of other rows are 0. Thus, finally, identifying o(k) with {\QV7
V = RF, we obtain the following description of m = m!(p, k) or m'(U) in
general

dimg_o = ,dimg_, = pk

m (U, V) =g 2@g1, g2=AV, g1 =UQRY,

where U is a vector space with the inner product (,) of dimension p and V'
is a vector space of dimension k. The bracket is defined by

[u1 ® v, us @ va] = (u1,u2)v1 A v, for uy,uz € U,vy,v2 € V.
Thus if 2 < k < n, dimg_y = @ > 0 and Dy is defined by —k(kgl)

Pfaffian forms. We have the following coordinate description of the standard
differential system of type m!(p, k);

{xij(lﬁz'<j§k); Yoy (1Sa§p’ 1§j§k)}
with 1-forms ;5 (1 <i < j < k) such that D = Ker{6;;} and

1 p
0;j = dx;j + 3 Z (Ypt+1-0,j Wai — YaidYpri—a)-

a=1
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In fact we have ,
dbij = dypr1-a,j A dYai.
a=1
Taking the dual frame {%(1 <i<j<k)LYau(l<a<pl<i<k)}to
the coframe {6;;(1 <i < j <k),dyai(1 <a<p,1<i<kEk)}, wehave

k
0 1 0

Yos = > prtay

ai ayai 2 =~ Yp+1—a,j (9.1'@'3'

Here we put x;; = —x; for 1 < j <i < k. Then we have

0
[Yai, Ygs] = 5‘“’“7587@'

Thus we obtain the coordinate description of the standard differential system
of type m'(p, k).

One interpretation is that we regard Bﬁ as the set of all null k-planes in
the 2n + 1 dimensional Euclidean space R" ™" with the signature (n+1,n).
Thus we have

BF =~ (SO(n+1) x SO(n)) /S (O(n —k+1) x O(n — k) x AO(k)),
dim BF = g(zm -3k +1).

For any k(1 < k < n—2), we can regard D¥ as the set of all null k-planes

in R™" (for k =n — 1, see a little carefully §4.4 in [Yal]). We have
DE = (SO(n) x SO(n)) /S (O(n — k) x O(n — k) x AO(k)) .

For k =1, we have g_9 = go = 0. Hence we have g = g_1 4+ g0+ g1. The
universal covering Mof M =G /P is diffeomorphic to S™ x S"~! which is the
conformal compactification of R~ in case of B]. type and to S"~1 x §7~1
which is a conformal compactification of R*~%"~1 in case of D} type.

For k > n — 1, we have D1 = D7. See a little carefully §4.4 in [Yal].
Corresponding to D?~! = D7 the Lie algebra g has the gradation g =
g—1 + go + 91 such that
n(n—1)

2 )

dim go = n®.

dimg_1 = dimgl =
5. Lie tensor metric structure
To investigate the structure of BY, D¥ or O(U)/P, we introduce the
notion of Lie tensor metric structure.
First, we study vector spaces with tensor product structures.
A pk-dimensional vector space W is a (p, k) tensor product space if
there exists an isomorphism h:U ® V — W, with dimU = p, dimV = k.
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The product group GL(U) x GL(V) acts naturally on the (p, k) tensor
product space W.

A pk-dimensional vector space W is a (p, k) metric tensor product
space with signature (r,s) (p = r + s) if there exists an isomorphism
h:U®V — W, where U is a p-dimensional vector space with a non-
degenerate inner product (,) of signature (r,s) and V is a ¢-dimensional
vector space.

The product group O(U) x GL(V) acts naturally on the (p, k) metric
tensor product space W.

A linear transformation ¢ of a (p,q) metric tensor product space W is
called a metric tensor product transformation if it is expressed as an
action of an element in O(U) x GL(V).

We have the exterior product representation

A GL(V) = GL(A*V).
Define a homomorphism p : O(U) x GL(V) — GL(m(U,V)) by

P4 B) = (Mf) A;)B

where m' (U, V) =g 2@ g 1,9 2=A*V, g1 =U®V. Then we see that,
through p, O(U) x GL(V) acts as a graded Lie algebra automorphism group
of mY(U, V).

Let Gog C O(ﬁ) be the Lie subgroup whose Lie algebra is equal to gg under
the decomposition (4) of g = o(U). Under the identification of m!(U, V) with
the tangent space at the base point of O(U)/P, the group Im(p) coincides
with the image of the isotropy representation of Gg C P at the base point
of O(U)/P.

Define a subgroup Gg of GL(m!'(U,V)) by

(B o
0 C A®B

A (p, k) matrix F and B € GL(V') defines a linear map (B, F) : g_o —
g_1 by the matrix multiplication: g o > C — FCB~! € g_1, where we
identify g_o =T and g_1 = M (p, k) as in §4. We define a closed subgroup
G of G by

s a2s)
W(B,F) A®B

By calculating the adjoint representation of P on g = o(U), we see that

) ., AeOo(U), BeGL(V),

Ae O(U),B S GL(V),C S End(g_g,g_l)} .

AeOU),BeGL(V),F ¢ M(p,k)}.

the group G is the linear isotropy representation of P at the base point of
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O(U)/P. If k > 3, then G ¢ G5,
Lie tensor metr}gclftrlllcture
Let M be a (% + pk:) -dimensional manifold M.

By a Gg—structure on M, we mean a reduction P of the frame bundle
F(M) to the group G(ﬁ). Then, on the frame bundle P, the value of the
canonical 1-form @ lies in m' (U, V) = g_» @ g_1. So that M admits a distri-
bution D, which is defined on P by 6#_9 = 0, where 0; (i = —1,—2) is the
g;-component of the canonical 1-form 6.

k(k—1
A <¥+ pk> -dimensional manifold M with a Gﬂo—structure is called

a (p, k) Lie tensor metric manifold with signature (r, s) if the canonical
1-form @ satisfies

(©) df_s + 3 [0-1,0-1] = 0 (mod 0_5).

Here the bracket [,] is that of m!(U, V). This condition (C) is equivalent to
the condition that D is a regular differential system of type m!(U, V), i.e.,
the symbol algebra m(z) of (M, D) is isomorphic to m! (U, V) at each x € M
[Tal.

ExAMPLE 5.1. If £ = 2, then (p, 2) Lie tensor metric manifold M with sig-
nature (p,0) is a 2p+ 1-dimensional Lie contact manifold defined in [SY1].

EXAMPLE 5.2. The space B§ of the singular D-curve of Bg’ has the struc-
ture of (3, 2) Lie tensor contact metric manifold with signature (2,1) (cf. §8).

We have

PROPOSITION 5.1. Forn >3, k> 2, B has a structure of (2(n—k) +
1,k) Lie tensor metric manifold with signature (n —k + 1,n — k).

Forn >4, 2 <k <n—2, DF has a structure of (2(n — k), k) Lie
tensor metric manifold with signature (n — k,n — k).

Moreover O(U)/P has a structure of (p,k) Lie tensor metric manifold
with signature (r,s).

Tanaka theory

We review the Tanaka theory [Ta| which solves completely the equiv-
alence problem of parabolic geometries. N. Tanaka constructs the normal
Cartan connection uniquely whose curvature provides the all invariants of
each structure.

Definition of Cartan connection

Let G be a simple Lie group and let G/P be a generalized flag manifold.
Let @ be a P-principal bundle over a manifold M with dim M = dim G/ P.
A g-valued 1-form 6 on () is a Cartan connection if
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(Cl) XeT(@), 0(X) =0 =X =0,
(C2) 6(A*)=A, A*is the vector field generated by A € b,
(C3) R,*0=Ad(a )0, acP.

The curvature K of a Cartan connection is given by
K =df+[0,6],
which is a g ® A?(m*) valued function on Q. Put

K:ZKP7 szzge+p+1®A§(m*)
p 1<—~1

where AZ(m*) = > sti=t.s<0.4<0 95 A\ 87- We have the boundary operators
0:g@A(m*) —» g AT (m*), 9" :g@A(m*) - g A(m*).
A Cartan connection 6 is normal if

(NC1) KP =0 (p <0),
(NC2) I*KP =0 (p>0).

A normal Cartan connection is called Tanaka normal connection.

In Theorem 5.3 [Yal], relevant Spencer cohomology groups were calcu-
lated, which induces the prolongation condition necessary for the applica-
tions of Tanaka theory |Ta|. Precisely g = o(U) is the prolongation of (m, go),
when ¢ = 2 and is the prolongation of m when ¢ > 3. The last statement
implies that p(O(U) x GL(V)) coincides with the full group of graded Lie
algebra automorphisms of m! (U, V) when ¢ > 3. Hence a regular differential
system (M, D) of type m!(U,V) admits the (p,q) Lie tensor metric struc-
ture when ¢ > 3. Thus the parabolic geometry modeled after O(U7)/ P, when
q > 3, is the geometry of regular differential systems of type ml(U ).

Tanaka theory implies that every Gg—structure further reduces to a G-
structure.

By using Tanaka theory [Ta] and Proposition 5.5 [Yal| (see also Propo-
sition 6.2 [Ya2|), we obtain the following.

THEOREM 5.2. Let M be a (p,q) Lie tensor metric manifold with signature
(r,s), p=r+s. Then there exists a principal P-bundle Q over M and unique
normal Cartan connection 8 on Q.

(1) p=1 and g = n > 3, the curvature K has one component.

(2) ¢ = 2 and p > 3, the curvature K has 3 components if p = 4 and 2
components otherwise.

(3) ¢ =3 and p = 2, the curvature K has 2 components.

(4) ¢ =3 and p > 3, the curvature K has one component.

(5) ¢ > 4 and p > 2, the curvature always vanishes.
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The vanishing of the curvature is the condition that M is Lie metric
equivalent to the flat model in case (2) and (M, D) is equivalent to the flat
model (O(U)/P, Dy) otherwise.

6. C’f{ type
Let G = Sp(n,R) and put C*¥ = G/P. The parabolic group P is repre-
sented by

oioi...fﬁf.-.—o:o (n>2).

We represent the Lie algebra g = sp(n, R) as follows. Let K = K,, be the

0O K

anti-diagonal unit n X n-matrix and put J = ( O) . Then J? = —1.

We have
g=sp(n,R)={ X €gl(2n,R) | 'XJ + JX = 0}.

Explicitly we can write

n n

A D
g=1{" . pD=D,c=cC\

n\C —A

The simple roots of the Lie algebra g of type C), are e; — es, eg —

€3, ,en_1 — €n, 2en. The generalized flag manifold C’,f corresponds to
the following block decomposition of g;
kK 2p k
k (A F D
(5) ;
2p | B G F
k\C B -A
’ P / / B, n / /
WhereC’:C,D:D,B:(B2,—Bl)forB: B ,F:(—FQ,Fl)
2
F A D
for F' = ! ,and G = ° 2, € sp(p,R) for p = n — k. Then
F2 02 —A2
corresponding to C%, when 1 < k < n, the Lie algebra g has the gradation
(6) g=g-2+0-1+g0+ 01+ 02

where

g2=(C), g-1=(B), go=A)d(G), a=(F), g=(D).

Putm=g o®g_1and p =gg® g1 ®ge. Then P is the Lie subgroup
of G = Sp(n,R) corresponding to p C g. Hence, corresponding to g_i, the
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model space C’,’f = G/P has the G-invariant differential system Dy and the
tangent space Ty(M) at the base point of M = C¥ is identified with m.
Thus, from (5) and (6), we have
E(k+1)
— 5
where p=n—k. Weput m=g_o®g_1 = m?(p, k).
Now, we will describe the Lie algebra structure of m = m?(p, k) as in

the following: By utilizing the matrices description (5), we identify g_; with
M(2p, k) and g_o with S = {C € M(k,k) | C = C'}, and we calculate

[B1,By] = BiBy — ByB1 €g_o =S for By,By € g_1 = M(2p, k).
Moreover, identifying S with Sym(k) by S > C — —KC € Sym(k), we get
[B1, Bo] = 'By1JBy —'BoJ By € Sym(k).

dimg o = dimg_1 = 2pk,

In fact, we calculate

. . A A
—~KB\By+ KByBy = (-'C1K, A K) (;) + (*OLK, J@K)( 1)
2 1

= (*A1,tCh) <_OK lg) (gz) — (*As,1Cy) <_OK ]0(> <gi>

A A
for By = <01>, By = < 2) € g_1. Now, identifying M(2p, k) with
1

R? @ R¥, we obtain

[a ®e;,b® eﬂ == <a, b> (Eij + Eji) S O(k?),
where a,b € R* = M(2p,1), {e1,...,ex} is the natural basis of R¥ =
M(1,k) and (a,b) = aJb is the symplectic product in U = R?’. Here
a ® e corresponds to the 2p x k matrix whose i-th row is a and all of other

rows are 0. Thus, finally, identifying Sym(k) with the symmetric product
S2(V) of V = RF, we obtain the following description of m?(p, k) = m?(U, V)

m* (U, V) =g_o®g-1, g2 =5(V), g1 =UV,

where U is a symplectic vector space with the symplectic product (,) of
dimension 2p and V is a vector space of dimension k. The bracket is defined

by
[u1 ® vy, ug @ V2] = (U1, ug)v1 © va, for uy,up € Uv1,v2 € V.

Thus if 1 < k < n, dimgs = @ > 0 and Dy is defined by —k(k;rl)

Pfaffian forms. We have the following coordinate description of the standard
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differential system of type m?(p, k);
{2j(1<i<j<k), yoy 1<a<2p, 1<j<k)}
with symplectic forms w; for 1 < j <k on {ya;, 1 <a < 2p};

p
Z dy?p-‘rl—a,j A dyOéj)u

and 1-forms 0;; (1 <i < j < k) such that D = Ker{#;;} and

92']' = dl’ij
T3 Z (y2p+1-0,iaj — YaidYopr1-aj + Y2p+1—aj@Yai — Yajdyops1—ai)-
a=1
In fact we have
p
= Z (dyapt1-ai A AYaj + dY2pt1-a,j N WYai)-
Taking the dual frame {a ( <i<j<k), Y, Yopri—ai(l <a<p,1

i < k)} to the coframe {92](1 i <j<k)dYai,dYop+1-ai(l <a <p,1
i < k)}, we have

(VANRPAN

k
0 1 0 1 0
Yoi= s =25 i Sy i,
i 83/011’ 5 P Y2p+1—a,j 3%]’ 2y2p+1 i Dz

0 0 1 0
Y- = E
2p+1—ayi 8y2p+1—a ; ‘ Yaj 73— a + yocz 83711 ’

for 1 < a <p. Here we put x;; = xj; for 1 <j <1t <k. Then we have

[Yaza YB]] [Y2p+1 iy Y2p+1 B,]] 0

0 0 L
[Yai, Yopt1-p,) = 25045%7 Yai, Yopy1-8,] = 504,3% (i # J),

for 1 <a<pand1l<i,j <k Thus we obtain the coordinate description
of the standard differential system of type m?(p, k).

We may regard CF as the set of all isotropic k-planes in symplectic R?".
We have

CF=U(n)/(U(n—k) x SO(k)).

If k=n,theng 1 =g =0and g =g 2+ go+ g2. We have a diffeomor-
phism CJ' = U(n)/SO(n) which is the set of Lagrangian subspaces of the
symplectic R?".
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7. Lie tensor symplectic structure

A 2pg-dimensional vector space W is a (p, q) symplectic tensor prod-
uct space if there exist a 2p-dimensional vector space U with a symplectic
form w, a g-dimensional vector space V' and an isomorphism A : UV — W.

Let Sp(U) = Sp(p,R) be the set of linear transformations of U which
preserve the symplectic form w invariant. The product group Sp(U)xGL(V)
acts naturally on the (p, ¢) symplectic tensor product space W.

A linear transformation ¢ of a (p, q) symplectic tensor product space W
is called a symplectic tensor product transformation if it is expressed
as an action of an element in Sp(U) x GL(V).

Let S?(V) € V ® V be the symmetric products of V. We have the
symmetric product representation

o:GL(V) — GL(S*(V)).
Define a homomorphism p : Sp(U) x GL(V) — GL(m?*(U,V)) by
o(B) 0
0 A®B

where m?(U, V) =g 2@ g1, g2 = S?(V), g1 = U® V. Then we see
that, through p, Sp(U) x GL(V') acts as a graded Lie algebra automorphism
group of m?(U, V).

Let Gy C Sp(n,R), n = p+ k, be the Lie subgroup whose Lie algebra is
equal to go under the decomposition (6) of g = sp(n,R). Under the identifi-
cation of m?(U, V') with the tangent space at the base point of C¥, the group
Im(p) coincides with the image of the isotropy representation of Gy C P at
the base point of Sp(n,R)/P = C¥.

Define a subgroup Gg of GL(m?(U,V)) by

ot o(B) 0
0 C A®B

A 2p x g matrix F' and B € GL(V') defines a linear map (B, F) : g_o —
g_1 by the matrix multiplication: g o > C — FCB~! € g_1, where we
identify g_o = S and g1 = M(2p, k) as in §6. We define a closed subgroup
G of G by

é:{< o(B) 0 >
wW(B,F) A®B

By calculating the adjoint representation of P on g = sp(n,R), we see that

the group G is the linear isotropy representation of P at the base point of
Sp(n,R)/P = CFk. 1f ¢ > 2, then G ¢ G,

p(A, B) = < > , AeSpU), BeGL(V),

A€ Sp(U),B S GL(V),C S End(g_g,g_l)} .

AeSpU),Be GL(V),F € M(Qp,q)}.
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Lie Tensor symplectic structure
A (2t
2
called a (p,q) Lie tensor symplectic manifold if the canonical 1-form
0 satisfies

+ 2pq> -dimensional manifold M with a Gg—structure is

(©) df_s + 3 [0-1,0-1] = 0 (mod 0_5).

Here the bracket [,] is that of m?(U, V). The Lie tensor symplectic manifold
M carries a distribution D C T'M, which is defined by #_o = 0, where 6_5 is
the g_o-component of @ so that rank D = dimg_;. Then the condition (C')
is equivalent to the condition that (M, D) is a regular differential system
of type m?(U, V), i.e., the symbol algebra m(z) of (M, D) is isomorphic to
m?(U, V) at each € M [Ta).

We have

PROPOSITION 7.1. For 1 < k < n, 2 < n, the generalized flag manifold
C* has a structure of (n — k, k) Lie tensor symplectic manifold.

The generalized flag manifold C} is a contact manifold and the auto-
morphism group is of infinite dimension. If we give it a projective con-
tact structure, the automorphism group of the structure is isomorphic to
Sp(n,R) and is of finite dimension.

Furthermore, when 2 < k < n, from Theorem 5.3 [Yal|, it follows that
g = s5p(n, R) is the prolongation of m?(n — k, k). This implies that p(S(U) x
GL(V)) coincides with the full group of graded Lie algebra automorphisms
of m?(U, V). Hence, a regular differential system (M, D) of type m?(U, V)
admits the (n — k, k) Lie tensor symplectic structure. Thus the parabolic
geometry modeled after C*, when 2 < k < n, is the geometry of regular

no

differential systems of type m?(n — k, k).
By Tanaka theory |Ta| and Proposition 5.5 [Yal], we have the following;

THEOREM 7.2. Forp > 1, q > 2, let M be a (p,q) Lie tensor symplectic
manifold, i.e., M carries a reqular differential system D of type m?(p,q).
Write Cg+q = Sp(p + q,R)/P together with the invariant differential system
Dgy. Then there exists a principal P-bundle () over M and unique normal
Cartan connection @ on Q. If p > 2 and q > 3, the curvature always vanishes.
When q = 2, the curvature K has two components if p = 1 and has one
component if p > 2. When p = 1 and q > 3, the curvature K has one
component. The vanishing of the curvature is the condition that (M, D) is

equivalent to the flat model (C, ,, Dy).
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8. Examples

We show that the unit tangent bundle of semi-Riemannian manifolds are
example of Lie tensor metric structure.

Let (M, g) be a semi-Riemannian manifold of index (r, s) such that r+s =
n = dim M. A non-zero vector z € T),M is called spacelike, null, timelike
if g(z, 2) % 0 respectively and non null if g(z, z) # 0.

Put S;(M) = {2z € T,M | g(2,2) = 1} € T,M. Then STM =
Upear Sy M is called the unit spacelike bundle. Put S, (M) = {z € T,M |
9(z,2) = =1} CTpM. Then S™M = J,c ), S, M is called the unit timelike
bundle. Then we have (cf. [SY1])

THEOREM 8.1. The unit spacelike bundle STM of semi-Riemannian man-
ifold of signature (r,s), r+s =mn = dim M has the structure of (n—1,2) Lie
tensor metric structure with signature (r,s — 1). The unit timelike bundle
S™M of semi-Riemannian manifold of signature (r,s), r +s =n = dim M
has the structure of (n — 1,2) Lie tensor metric structure with signature
(r—1,s).
For Bffb, if K = n, we have
n(n—1)
2 )
The manifold B! is diffeomorphic to SO(n + 1), which is diffeomorphic to
the oriented orthonormal frame bundle of S™. We have dim Dy = n. Since

D+ [D,D] =T(TM), Dy gives a maximally nondegenerate structure on B}
(n—1)(n—2)

dimg o = dimg_1 = n.

Ifk=n—-1,dimg o= 5 , dimg_; = 3(n—1). The manifold
B! is diffeomorphic to (SO(n + 1) x SO(n)) / (SO(2) x ASO(n — 1)).

For a manifold M with a distribution D C T M, a curve « is called a
D-curve if tangent vectors of v are contained in D. A D-curve v in M

is called singular (= irregular) if it is a critical point of the endpoint map
end : Q(zo, D) — M (see [Mo, p.83]).

PROPOSITION 8.2. The manifold B"~! is a set of singular D-curves of B,

Proof. Let BL '™ denote the generalized flag manifold defined by choos-
ing the subset A; of the set of simple roots A of G = O(n + 1,n) as
Ay = {ap_1, ). Then BE ™ is diffeomorphic to (SO(n + 1) x SO(n))/
ASO(n — 1), which in turn is naturally diffeomorphic to the set of oriented
D-lines of the manifold (B", D). The tangent space m = ToBj " has the
decomposition

m=g 4+g-3+g-2+9-1
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whose dimensions are given
n?+3n—-2 n®>—-3n+2
2 - 2
The n-dimensional space g_; is equal to the restriction to Bﬁ_l’” of the

tautological distribution of the Grassmann bundle consisting of oriented
lines of B. The set of vectors g !; tangent to the fiber of the fibration

+(n-=1)+(n—-1)+n.

p*: B Y™ 5 B™is (n — 1)-dimensional subspace of g_1. The set of vec-
tors g2 tangent to the fiber of the fibration p®~! : B~ "" — Bl s
1-dimensional subspace of g_; transversal to g ! such that g1 =g 4, ®g %.

In the Lie algebra (1), put

Upq = Entpg — Eant2—gnt2—p,

where E; ; denotes the matrix whose (¢, j) component is equal to 1 and others
0. Let e € B]! be the base point and let x € D, C T.B;!. By the action of
G, we may assume that = {v1,} € T.B,;. Denote by (x) the oriented

line generate by . Then T<z>+Bﬁfl’n is equal to a subspace of (1) so that

g =(v,1<j<n-1), g% = (vin)

Put v = v1 4. Then v is mapped by pf to x and is tangent to the fiber of the
projection p"~!'. We will show that z is the projection of a characteristic
direction at some A € D+. Denote by AP the dual basis of v, , in (1). Then
D=(v4|1<qg<mn)and D isequal to (\P?[2<p, 1 <qg<n). Let
A = A\P? € D+ such that 3 < p. By an easy calculation, we have A([z,y]) =0
for any y € D. Let w : D+ — A2D* be the dual curvature [Mo, 4.2]. Then
w(A)(x,y) = AN(—[z,y]) for y € D. Thus we conclude that x is the projection
of a characteristic direction. m
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