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AN EXISTENCE THEOREM FOR SOLUTIONS

OF AN INTEGRO-DIFFERENTIAL EQUATION

IN BANACH SPACES

Abstract. The paper contains an existence theorem for local solutions of an ini-
tial value problem for a nonlinear integro-differential equation in Banach spaces. The
assumptions and proofs are expressed in terms of measures of noncompactness.

Consider the following Cauchy problem

(1) x(m)(t) = f
(
t, x(t),

t�

0

g(t, s, x(s))ds
)
,

(2) x(0) = 0, x′(0) = η1, . . . , x
(m−1)(0) = ηm−1

in a Banach space E, where m ≥ 1 is a natural number. Throughout this
paper we shall assume that D = [0, a] is a compact interval in R, B =
{x ∈ E : ‖ x ‖≤ b}, f : D × B × E → E is a continuous function, and
g : D2 × B → E is a bounded continuous function. Moreover, we suppose
that ‖f(t, x, z)‖ ≤ M for t ∈ D, x ∈ B, z ∈ W , where

W =
⋃

0≤λ≤a

λconvg(D2 ×B).

Denote by α the Kuratowski measure of noncompactness in E (cf. [1]).

1. Main result

In this section we shall prove an existence theorem for local solutions of
the above initial value problem for the nonlinear integro-differential equation
in Banach spaces.
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Theorem. Let w : R+ 7→ R+ be a continuous nondecreasing function such

that w(0) = 0, w(r) > 0 for r > 0 and
�

0+

dr
m
√

rm−1w(r)
= ∞.

If

(3) α (f(t,X × Y )) ≤ w (α(X)) + α(Y )

for t ∈ D, X ⊂ B and bounded Y ⊂ E, and the set g(D2 × B) is relatively

compact in E, then there exists an interval J = [0, d] such that the problem

(1)− (2) has at least one solution defined on J .

Our results extend the Aronszajn type theorem for the equation x(m) =
f(t, x) in Banach space obtained in [6, Th. 2.1] (see also [5]).

Proof. We choose a positive number d such that d ≤ a and

(4)

m−1∑

j=1

‖ηj‖
dj

j!
+M

dm

m!
< b.

Put J = [0, d]. Denote by C = C(J,E) the Banach space of continuous
functions y : J → E with the usual norm ‖y‖C = maxt∈J ‖y(t)‖.

Let B̃ ⊂ C be the subset of those functions with values in B. For t ∈ J

and x ∈ B̃ put

g̃(t, x) =
t�

0

g(t, s, x(s))ds.

Fix τ ∈ J and x ∈ B̃. As the set J × x(J) is compact, from the continuity
of g it follows that for each ε > 0 there exists δ > 0 such that

‖g(t, s, x(s))− g(τ, s, x(s))‖ < ε for t, s ∈ J with |t− τ | < δ.

In view of the inequality

‖g̃(t, x)− g̃(τ, x)‖ ≤ K|t− τ |+
τ�

0

‖g(t, s, x(s))− g(τ, s, x(s))‖ ds,

where K = sup{‖g(t, s, x)‖ : t, s ∈ D, x ∈ B}, this implies the continuity
of the function t → g̃(t, x). On the other hand, the Lebesgue dominated
convergence theorem proves that for each fixed t ∈ J the function x → g̃(t, x)

is continuous on B̃. Moreover

‖g̃(t, x)‖ ≤ Kt for t ∈ J and x ∈ B̃.

By the Mazur lemma the set convg(D2×B) is relatively compact. There-
fore from the following properties of the Kuratowki measure of noncompact-
ness α(

⋃
0≤λ≤a λA) = aα(A) it follows that W =

⋃
0≤λ≤a λconvg(D

2 × B)
is relatively compact.
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According to the above and
{
g̃(s, x) : x ∈ B̃

}
⊂ W , we have

(5) α
({

g̃(s, x) : x ∈ B̃
})

≤ α(W ) = 0.

Let us remark that the problem (1)−(2) is equivalent to the integral equation

x(t) = p(t) +
1

(m− 1)!

t�

0

(t− s)m−1f(s, x(s), g̃(s, x))ds (t ∈ J),

where p(t) =
∑m−1

j=1 ηj
tj

j! . We define a mapping F by

F (x)(t) = p(t) +
1

(m− 1)!

t�

0

(t− s)m−1f(s, x(s), g̃(s, x))ds (t ∈ J, x ∈ B̃).

Owing to (4), it is known (cf. [3]) that F is a continuous mapping B̃ 7→ B̃

and the set F (B̃) is equicontinuous.

For any positive integer n put

vn(t) =





p(t) if 0 ≤ t ≤ d
n

p(t) +
1

(m− 1)!

t− d
n�

0

(t− s)m−1f(s, vn(s), g̃(s, vn))ds if d
n
≤ t ≤ d.

Then, by (4), vn ∈ B̃ and

(6) lim
n→∞

‖ vn − F (vn) ‖C= 0.

Put V = {vn : n ∈ N} and V (t) = {vn(t) : n ∈ N} for t ∈ J .

As V ⊂ {vn − F (vn) : n ∈ N} + F (V ) and V ⊂ B̃, from (6) it follows
that the set V is equicontinuous. Thus the function t 7→ v(t) = α(V (t)) is
continuous on J . Since

V (t) ⊂ {vn(t)− F (vn)(t) : n ∈ N}+ F (V )(t)

and α({vn(t)− F (vn)(t) : n ∈ N}) = 0, we have

(7) α(V (t)) ≤ α (F (V )(t)) .
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By (3), (5) and Heinz’s lemma [2] we obtain

α(F (V )(t)) = α

({
1

(m− 1)!

t�

0

(t− s)m−1f(s, vn(s), g̃(s, vn))ds : n ∈ N

})

≤
2

(m− 1)!

t�

0

α
({

(t− s)m−1f(s, vn(s), g̃(s, vn)) : n ∈ N
})

ds

≤
2

(m− 1)!

t�

0

(t− s)m−1α(f(s, V (s), g̃(s, V ))ds

≤
2

(m− 1)!

t�

0

(t− s)m−1
(
w(α(V (s)))+α({g̃(s, x) : x ∈ B̃})

)
ds

=
2

(m− 1)!

t�

0

(t− s)m−1w(α(V (s)))ds.

Applying (7) we have

v(t) ≤
2

(m− 1)!

t�

0

(t− s)m−1w(v(s))ds for t ∈ J.

Putting h(t) =
2

(m− 1)!

t�

0

(t− s)m−1w(v(s))ds, we see that h ∈ Cm, v(t) ≤

h(t), h(j)(t) ≥ 0 for j = 0, 1, . . . ,m , h(j)(0) = 0 for j = 0, 1, . . . ,m− 1 and
h(m)(t) = 2w(v(t)) ≤ 2w(h(t)) for t ∈ J. By Th. 1 of [4] from this we deduce
that h(t) = 0 for t ∈ J . Thus α(V (t)) = 0 for t ∈ J . Therefore, for each
t ∈ J the set V (t) is relatively compact in E. Hence by Ascoli’s theorem, V
is relatively compact subset of C. Hence, we can find a subsequence (vnk

)
of (vn) which converges in C to a limit u. As F is continuous, from (6) we
conclude that u = F (u), so that u is a solution of (1)–(2).

2. The set of solutions

Put

f(t, x, z) = f
(
t, r(x), z

)
,

g(t, s, x) = g
(
t, s, r(x)

)
,

where

r(x) =




x for x ∈ B
bx

‖x‖
for x ∈ E \B
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and define a mapping F by

F (x)(t) = p(t) +
1

(m− 1)!

t�

0

(t− s)m−1f
(
s, x(s),

s�

0

g
(
s, τ, x(τ)

)
dτ

)
ds.

It can be shown that F satisfies the assumptions of Theorem 1.3 from [6] (see
also Vidossich [7] ). By this theorem we conclude that under the assumptions
of the Theorem, the set of all solutions of (1)− (2) defined on J is a compact
Rδ in C(J,E), i.e. it is homeomorphic to the intersection od a decreasing
sequence of compact absolute retracts.
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