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I-UNIFORM CONTINUITY
AND /-UNIFORM BOUNDEDNESS OF A FUNCTION

Abstract. The concepts of [-convergence and I-Cauchy condition are a generaliza-
tion of statistical convergence and statistical Cauchy conditions and are dependent on
the notion of the ideal I of subsets of the set N of positive integers. In this paper, we
shall introduce two new notions of I-uniform continuity and I-uniform boundedness of a
function with values in R or in a metric space and then study their basic properties.

1. Introduction background

The idea of convergence of a real sequence had been extended to statis-
tical convergence by Fast [5] and Steinhaus [15] (see also Schoenberg [14])
as follows: If N denotes the set of natural numbers and K C N then K,
denotes the set {k € K : k < n} and |K,,| stands for the cardinality of the
set K,. The natural density of the subset K is defined by

d(K) = Tim 2!

n—oo n
provided the limit exists.

A sequence {z,}nen In a metric space (X,dx) is said to be statisti-
cally convergent to = € X if for every ¢ > 0, the set A(e) = {n € N :
dx(xn,z) > €} has natural density zero. A lot of investigations have been
done on this convergence after the initial works by Fridy [6] and Salat [13].
It should be also mentioned that the notion of statistical convergence has
been considered, in other contexts, by R. A. Bernstein, Z. Frolik, and other
authors.

Statistical convergence has several applications in various fields of mathe-
matics: summability theory [1, 6], number theory, trigonometric series, prob-
ability theory, measure theory, optimization [12] and approximation theory.
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An interesting generalization of the notion of statistical convergence was
proposed in [9] (see also [10]). Namely, it is easy to check that the family
I; = {A C N:d(A) = 0} forms a non-trivial admissible ideal of N (recall
that I C 2N is called an ideal if ¢ € I, A,B € I implies AU B € I, and
A€, BC Aimplies B € I. I is called non-trivial if I # {¢} and N ¢ I.
I is admissible if it contains all singletons. If I is a proper non-trivial ideal
then the family of sets F'((I) ={M CN:(3Ae€l) M =N\ A} is a filter in
N. It is called the filter associated with the ideal). Thus one may consider
an arbitrary ideal I of N and define I-convergence of a sequence as follows:

A sequence {zy, }nen in a metric space (X, dy) is said to be I-convergent
to x € X (in short z = I—nh_{goxn) if A(e) € I for each ¢ > 0, where
A(e) ={n e N:dx(x,,x) > €}.

Fridy (6] formulated the statistical Cauchy condition for sequence of real
numbers from the idea of classical Cauchy condition. The notion of statistical
Cauchy condition was further extended to I-Cauchy condition in a metric
space independently by Dems [4] and also by Gurdal [8]|. (More results on this
convergence can be found in [3,11]). In the present paper we shall introduce
two new notions: of I-uniform continuity and I-uniform boundedness of a
function with values in R or in a metric space, and then study their basic
properties.

Throughout the paper we assume I to be a non-trivial, admissible ideal

of N.

Main definitions and results
In [4] the notion of an [-Cauchy sequence was introduced as follows:
DEFINITION 1. Let (X,dx) be a metric space and I C 2" be an admissible

ideal. Then a sequence {zy}nen in X is called an I-Cauchy sequence in X
if for every € > 0 there exists k € N such that

{n e N:dx(zpn,zr) > €} € 1.

In [4] it was shown that {z,}nen is I-Cauchy if and only if for every
e > 0, there exists a set B € I such that m,n ¢ B = dx(zm,z,) < €.

Now we introduce the following definitions:

DEFINITION 2. Let (X,dx) and (Y, dy) be two metric spaces. A function
f X — Y is said to be [-uniform continuous on X, if for every I-Cauchy
sequence {zy tnen in X, {f(xn) tnen is also an I-Cauchy sequence in Y.

DEFINITION 3. Let (X, dx) be a metric space. A sequence {z,}nen in X
is said to be I-bounded, if there exists an element x € X and a positive real
number 7 such that {n € N: dx(zy,z) >r} € 1.
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PROPOSITION 1. In a metric space (X,dx), every I-Cauchy sequence is
also I-bounded.

Proof. Let {z,},en be an [-Cauchy sequence in X. Then for each € > 0
there exists a positive integer k such that {n € N : dx(zp,zr) > €} € I.
Choose x € X and put M = e+dx(z,zi). Then {n € N:dx(x,,zr) > €} =
{n € N :dx(z,zg) +dx(zn,zx) > M} O {n € N : dx(z,z,) > M} D
{n € N:dx(z,z,) > 2M}. Hence the result. =

It is quite clear that every function f : X — Y uniformly continuous on
X is also I-uniformly continuous on X. But the converse is not true.

EXAMPLE 1. Let us consider the function f : Q — Q such that f(z) = 22,

The function is I-uniformly continuous on @Q but not uniformly continuous
on Q.

It is sufficient to prove that for every I-Cauchy sequence {z,}nen in
Q, {22} ,en is an I-Cauchy sequence in Q. Since {x,}nen is an I-Cauchy
sequence, {x,}nen is I-bounded, hence there exists a positive real number
r such that M = {n € N: |z,| <r} € F(I). Since {zy, }nen is an I-Cauchy
sequence, for each € > 0 there exists A € I such that m,n ¢ A implies
| T — 2n| < 5-. Let m,n € (N\ A)N M € F(I) (m,n exist since ¢ ¢ F(I))
then |22, — 23| < |Tm + @nl|zm — 20| < (@] + |20])|2m — 20| < 2rs =€

Let us define sets
C(X,Y)={f:(X,dx) — (Y,dy) : f is continuous on X }
and
UC(X,Y,I)={f:(X,dx) = (Y,dy) : f is I-uniform continuous on X}.

The following examples show that C(X,Y)AUC(X,Y,I) # ¢ (where A
is the symmetric difference).

First we construct a function f : (0,1] — R such that f is continuous on
(0,1] but not I-uniformly continuous on (0, 1], i.e. there exists a sequence
{Zn}nen in (0,1] which is I-Cauchy, while { f(zy)}nen is not.

It is easy to verify that f(z) = 1, « € (0,1] is such a function (I can be
any admissible ideal).

Next we construct a function f : (0,1] — R such that f is I-uniformly
continuous, but not continuous on (0, 1], i.e., for every I-Cauchy sequence
{zn}tnen in (0,1], {f(zn)}nen is an I-Cauchy sequence in R, but f is not
continuous on (0, 1].

Let

—, if z = and m,n are relatively prime.

{o, if 2 is irrational,
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Also let I(C 2Y) be any admissible ideal. Then the function f is discontinu-
ous at every rational point in (0, 1]. We skip the straightforward verification.

PROPOSITION 2. Let (X,dx) and (Y,dy) be two metric spaces and the
functions f,g : X — Y be I-uniform continuous on X. Then the func-
tion dy (f,g) : X — R is I-uniform continuous on X, where dy (f,g)(x) =

dy (f(x),g9(x)),V z € X.

Proof. Let {x,}neny be an I-Cauchy sequence in X. Since f and g are
both [-uniformly continuous on X, then {f(z,)}neny and {g(zy)}nen are
I-Cauchy sequences in Y, so for each € > 0 there exist M, My € F(I) such
that

m,n € M1 = dy(f(xm), f(zn)) <

oAl

and m,n € My = dy(g(xm),g(x,)) <

Since

dy (f (@n), g(zn)) < dy (f(zn), f(@m)) + dy (f (@m), 9(2m))
+dy (9(zm), g(xn)),

we have m,n € My N My € F(I) (m,n exist since ¢ ¢ F(I)), which shows
that

dy (f(zn), 9(zn)) — dy (f(Zm), 9(zm))| < €. m

PRoOPOSITION 3. Let X and Y be two norm linear spaces and functions
f,9: X =Y be I-uniformly continuous on X. Then f+ g and f-g are both
T-uniformly continuous on X.

Proof. We only prove the result for multiplication. Let {x,}n,en be an
I-Cauchy sequence in X. Since an [-Cauchy sequence is I-bounded and f
and g both are I-uniformly continuous, there exist two positive real number
B, and By such that

My ={n eN:||f(zn)]| < Bi} € F(I)
and My ={n € N: ||g(xy,)|| < B2} € F(I).

Since {f(zn)}nen and {g(zy)}nen are I-Cauchy sequences, for each € > 0
there exist M3, My € F(I) such that

mone My = ||f(@n) - flen)] < s
and myn € My = |lg(am) — g(wn)l] < 5o

Then m,n € My N MyN MsN My € F(I) (m,n exist because ¢ ¢ F(I))
implies |[(f - g)(zn) — (f - 9)(@m)ll = [|f(2n) - g(@n) = f(2m) - g(zm)|] <
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[Lf ()l g (@n) = g(zm) ||+l (@m) |- [1f (2n) = f (2m)| < Bigj; +Basg; =€
Hence f - g is I-uniformly continuous on X. =

PROPOSITION 4. Let X,Y and Z be three norm linear spaces, and f :
X =Y and g : f(X) = Z be L-uniformly continuous on X and f(X),
respectively. Then go f is also I-uniformly continuous on X.

Proof is straightforward.

“Let D be a bounded interval in R and f : D — R be uniformly continu-
ous on D, then f is bounded on D.” The uniform continuity of the function
f on D is a sufficient condition for boundedness of the function f on D.
There also exists a weaker condition such that the above statement holds:

THEOREM 1. Let I be any admissible ideal and D be a bounded interval
in R. If a function f : D — R is I-uniformly continuous on D, then f is
bounded on D.

Proof. Let us assume that f is not bounded on D. Then there exists a se-
quence {Z, }nen in D such that | f(zy,)| > nforn =1,2,3,.... Since {zy, }ren
is a bounded sequence, it has a convergent subsequence, say {z, }nen (by
Bolzano-Weierstrass theorem). Since {x,, }nen is convergent in D, it is an I-
Cauchy sequence in D. Since f is I-uniformly continuous on D, {f(x,, ) }nen
must be an I-Cauchy sequence in R. But | f(z,,, )| > r, > nforn=1,2,3,...
so {f(zr,) }nen can not be I-bounded, hence { f(z, ) }nen is not an I-Cauchy
sequence and we arrive at a contradiction. This proves that f is bounded
onD. =

Next, we introduce the following definition:

DEFINITION 4. Let (X,dx) and (Y, dy) be two metric spaces. A function
f: X — Y is said to be [-uniformly bounded on X, if for any I-bounded
sequence {zy tnen in X {f(2,)}nen is also I-bounded in Y.

It is quite clear that if a function f : X — Y is bounded on X, then
f: X — Y is I-uniformly bounded on X.

But the converse is not true. For example f : R — R defined by f(z) =z
and I be any admissible ideal in N.

Next we define

UB(X,Y,I)={f:(X,dx) — (Y,dy) : f is I-uniform bounded on X}.

The following example shows that f is Iy-uniformly bounded but not
I't-uniformly continuous for the admissible ideal Iy of N, where Iy = {A C
N: A is finite}.
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Setting, f : R — R defined by

)1, ifz € (0,00)
f) = {—1, if x € (—o0,0].

Proof is straightforward.

NoOTE 1. For the case when f is I-uniformly continuous but not I-uniformly
bounded see [7].

THEOREM 2. Let D C R be an interval. If a function f : D — R be
such that f exists and is It-uniformly bounded on D, then f is I-uniformly
continuous on D.

Proof. Let {z,}neny be an I-Cauchy sequence. Then {zp}nen is an I-
bounded sequence so there exists a positive real number r such that M =
{neN:|z,| <r}e F().

Using MVT, we define a sequence {yx}xren such that

FCn) = ICn) _ () ity € M and 3, £

where min{z,, zm} < yr < max{z,,zn},

yr, = 0 otherwise (since there exists a bijection between N and N2).

Then |y,| < r for all k& € N. Since f is I #-uniformly bounded on D,
there exists a positive real number B such that |f (y)] < BV k € N. Since
{Zn}nen is an I-Cauchy sequence, for each ¢ > 0 there exists A € [ such
that m,n ¢ A implies |zp, — 25| < 5. Let m,n € (N\A)NM € F(I) (m,n
exist since ¢ ¢ F(I)), then |f(zm) — f(an)| = |f/(yk)||acm — x| < Bf =€
Hence the result. =

In [2] the notion of I-uniform convergence of sequences of functions was
introduced as follows:

DEFINITION 5. Let (X, dx) and (Y, dy) be two metric spaces and f : X —
Y, fn: X = Y be functions on X, n € N. Then the sequence of functions
{fn}nen is said to be I-uniformly convergent on X to a function f if

Ve>0)(IMel)(VngM) VaxeX) = dy(fulz), f(x)) <e.

THEOREM 3. Let (X,dx) and (Y,dy) be two metric spaces then the set
UB(X,Y,I) is closed with respect to I-uniform convergence for any ideal I.

Proof. Let the sequence {f,}neny be [-uniformly convergent to f, where
fn € UB(X,Y,I) for each n € N, then for ¢ = 1 there exists A € I such
that for all m ¢ A, for all z € X = dy(fm(2), f(x)) < 1. Let {zy}nen be
an I-bounded sequence in X. Since each f,, is I-uniformly bounded, then
{fm(xn) bnen is also I-bounded in Y, then there exist y € Y and r € R™
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such that M = {n € N : dy(y, fm(zy)) < r} € F(I). Let n € M then

dy (y, f(zn)) < dy (y, fm(zn)) + dy (fm(xn), f(xn)) < r+ 1. Hence the re-
sult. m

Note 2. If each f, be [-uniformly bounded on D, the [-uniform con-
vergence of the sequence {f,}nen on D is a sufficient but not a necessary
condition for I-uniform boundedness of the limit function f on D.

For example, let fn(z) = 755, = € [0,1]. Then the limit function f
is defined by f(x) = 0, z € [0,1]. Let I be an admissible ideal. Each f,
is [-uniformly bounded on [0,1]. Also the limit function f is I-uniformly
bounded on [0,1]. Let € < 1 then there does not exist any A € I such that

foralln ¢ Aforall z € [0,1], | fu(z) — f(z)| <, (since fo(1) =3, Vn e N).

THEOREM 4. Let (X,dx) and (Y,dy) be two metric spaces then the set
UC(X,Y, 1) is closed with respect to I-uniform convergence for any ideal I.

Proof. Let the sequence {f,}nen is I-uniformly convergent to f, where
fn € UC(X,Y,I) for each n € N, then for € > 0 there exists A € I,
for all n ¢ A, for all z € X = dy(fu(x), f(z)) < §. For fixed m ¢ A
= dy(fm(z), f(z)) < § Vo € X. Let {z,}nen be an I-Cauchy sequence in
X. Since each f,, is I-uniformly continuous on X, there exists k € N such
that M = {n € N: dy (fim(zn), fm(2r)) < §} € F(I). Hence

dy (f(xn), f(xx)) < dy (f(@n), fn(2n)) + dy (fm(2n); fm(2))
+ dy (fm(zk), f(zk))-
This implies (N\ A)NM C {n e N:dy(f(zn), f(zr)) <e} € F(I). m
NotE 3. If each f, : D(C R) — R be I-uniformly continuous on D, the

I-uniform convergence of the sequence {fy,}neny on D is a sufficient but not
a necessary condition for I-uniform continuous of the limit function f on D.

Same as example in Note 2.
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