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IMPLICIT DIFFERENCE SCHEMES FOR

QUASILINEAR PARABOLIC FUNCTIONAL EQUATIONS

Abstract. We present a new class of numerical methods for quasilinear parabolic
functional differential equations with initial boundary conditions of the Robin type. The
numerical methods are difference schemes which are implicit with respect to time variable.
We give a complete convergence analysis for the methods and we show that the new
methods are considerable better than the explicit schemes. The proof of the stability is
based on a comparison technique with nonlinear estimates of the Perron type for given
functions with respect to functional variables. Results obtained in the paper can be applied
to differential equations with deviated variables and to differential integral problems.

1. Introduction

Difference schemes for quasilinear parabolic functional differential equa-
tions consist in replacing partial derivatives with difference operators. More-
over, because differential equations contain functional variables, some inter-
polating operators are needed. This leads to functional difference equations
which satisfy consistency conditions on classical solutions of original prob-
lems. The main task in these considerations is to find difference approxima-
tions of functional differential equations which are stable.

From the numerous literature concerning explicit difference methods we
mention the papers [1], [13], where quasilinear parabolic functional differ-
ential equations with initial boundary conditions of the Dirichlet type were
considered. Parabolic equations with initial boundary conditions of the Neu-
mann type were investigated in [2], [14].

The papers [3], [5] initiated the theory of implicit difference schemes
for quasilinear equations. Initial boundary value problems of the Dirichlet
type were investigated in [3]. Numerical treatment of initial boundary value
problems of the Neumann type can be found in [5], [6]. A method of dif-
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ference inequalities and theorems on recurrent inequalities are used in the
investigations of the stability of implicit difference schemes.

Monotone iterative methods and implicit difference schemes for com-
puting approximate solutions to parabolic equations with time delays were
studied in [7]–[10], [15].

The aim of the paper is to present a new class of numerical methods for
quasilinear parabolic functional differential equations with initial boundary
conditions of the Robin type. The numerical methods are difference schemes
which are implicit with respect to the time variable. We give sufficient
conditions for the convergence of the methods and we show by examples
that the new methods are considerably better than classical schemes.

The proof of the convergence is based on comparison technique with non-
linear estimates of the Perron type with respect to the functional variables.

Now, we formulate our functional differential problems. For any metric
spaces X and Y we denote by C(X,Y ) the class of all continuous functions
defined on X and taking values in Y . We will use vectorial inequalities with
the understanding that the same inequalities hold between their correspond-
ing components. Write

E0 = [−b0, 0]× [−b, b], E = [0, a]× [−b, b],

where a > 0, b0 ∈ R+, R+ = [0,+∞) and b = (b1, . . . , bn), bi > 0 for
i = 1, . . . , n. Set r0 = b0 + a, r = 2b and B = [−r0, 0] × [−r, r], Σ =
[−r0, a]× [−b− r, b+ r]. For a function z : Σ → R and for a point (t, x) ∈ E
we define a function z(t,x) : B → R by

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ B.

For (t, x) ∈ E we put

D[t, x] = {(τ, y) ∈ R
1+n : τ ≤ 0, (t+ τ, x+ y) ∈ E0 ∪E}.

It is clear that D[t, x] = [−b0 − t, 0] × [−b − x, b − x] and D[t, x] ⊂ B for
(t, x) ∈ E. Let Mn×n be the class of all n × n matrices with real elements.
Write Ξ = E × C(B,R) and suppose that f : Ξ → Mn×n, f = [fij ]i,j=1,...,n,
g : Ξ → R

n, g = (g1, . . . , gn) G : Ξ → R are given functions. We will say
that f, g and G : Ξ → R satisfy the condition (V ) if for each (t, x, w) ∈ Ξ
and w̃ ∈ C(B,R) such that w(τ, y) = w̃(τ, y) for (τ, y) ∈ D[t, x], we have
f(t, x, w) = f(t, x, w̃), g(t, x, w) = g(t, x, w̃) and G(t, x, w) = G(t, x, w̃). Note
that the condition (V ) means that the value of f, g and G at the point
(t, x, w) ∈ Ξ depends on (t, x) and on the restriction of w to the set D[t, x]
only. Let us denote by z an unknown function of the variables (t, x), x =
(x1, . . . , xn). We consider the functional differential equation
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∂tz(t, x) =
n
∑

i,j=1

fij(t, x, z(t,x))∂xixj
z(t, x)(1.1)

+
n
∑

i=1

gi(t, x, z(t,x))∂xi
z(t, x) +G(t, x, z(t,x))

where ∂xz = (∂x1z, . . . , ∂xnz), ∂xxz = [∂xixj
z]i,j=1,...,n. We assume that f, g

and G satisfy the condition (V ) and we consider classical solutions of (1.1).
Now we formulate initial boundary conditions for (1.1). Write

Si = {x ∈ [−b, b] : xi = bi}, Sn+i = {x ∈ [−b, b] : xi = −bi}, i = 1, . . . , n

and

Q+
1 = S1, Q+

i = Si \
i−1
⋃

j=1

Sj , Q−
i = Sn+i \

n+i−1
⋃

j=1

Sj , i = 1, . . . , n.

Set
∂0E

+
i = [0, a)×Q+

i , ∂0E
−
i = [0, a)×Q−

i , i− 1, . . . , n

and

∂0E =
n
⋃

i=1

(∂0E
+
i ∪ ∂0E

−
i ).

Suppose that β, γ, Ψ : ∂0E → R, ψ : E0 → R are given functions. The
following initial boundary conditions are associated with (1.1):

z(t, x) = ψ(t, x) on E0,(1.2)

β(t, x)z(t, x) + γ(t, x)∂xi
z(t, x) = Ψ(t, x) on ∂0E

+
i , i = 1, . . . , n,(1.3)

β(t, x)z(t, x)− γ(t, x)∂xi
z(t, x) = Ψ(t, x) on ∂0E

−
i , i = 1, . . . , n.(1.4)

A function z : E0 ∪ E → R will be called the function of class C∗ if z
is continuous on E0 ∪E, the partial derivatives ∂tz, ∂xz = (∂x1z, . . . , ∂xnz),
∂xxz = [∂xixj

z]i,j=1,...,n exist on E and the functions ∂tz, ∂xz, ∂xxz are con-
tinuous on E. We consider solutions of (1.1)–(1.4) of class C∗.

For spaces X and Y we denote by F(X,Y ) the class of all functions de-
fined on X and taking values in Y . Solutions of difference functional equa-
tions are elements of the space F(E0.h∪Eh,R). Since equation (1.1) contains
the functional variable z(t,x) which is an element of the space C(D[t, x],R),
we need an interpolating operator Th : F(Bh,R) → C(B,R). For a func-
tion z ∈ Σh → R and for a point (t(r), x(m)) ∈ Eh we define a function
z[r,m] : Bh → R by

z[r,m](τ, y) = z(t(r) + τ, x(m) + y), (τ, y) ∈ Bh.

Let N and Z be the sets of natural numbers and integers, respectively. We de-
fine a mesh in R

1+n in the following way. Let h = (h0, h), h = (h1, . . . , hn),
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stand for steps of the mesh. For (r,m) ∈ Z
1+n, m = (m1, . . . ,mn) we define

nodal points as follows

t(r) = rh0, x(m) = (m1h1, . . . ,mnhn) = (x
(m1)
1 , . . . , x(mn)

n ).

Let us denote by H the set of all h for which there exist (M1, . . . ,Mn) =
M ∈ Z

n and M0 ∈ Z such that Mihi = bi for i = 1, . . . , n, M0h0 = b0. Let
K ∈ N be defined by relations Kh0 ≤ a < (K + 1)h0. For h ∈ H we put

R
1+n
h

= {(t(r), x(m)) : (r,m) ∈ Z
1+n}

and

E0.h = E0 ∩ R
1+n
h

, Eh = E ∩ R
1+n
h

, Bh = B ∩ R
1+n
h

,

∂0E
+
h.i = ∂0E

+
i ∩ R

1+n
h

, ∂0E
−
h.i = ∂0E

+
i ∩ R

1+n
h

, Ξh = Eh × C(Bh,R).

Suppose that ψh : E0.h → R and Ψh : ∂0Eh → R are given functions.
We consider the difference functional equation corresponding to (1.1).

δ0z
(r,m) =

n
∑

i,j=1

fij(t
(r), x(m), Thz[r,m])δijz

(r+1,m)(1.5)

+
n
∑

i=1

gi(t
(r), x(m), Thz[r,m])δiz

(r+1,m)

+G(t(r), x(m), Thz[r,m]),

where the difference operators δ0, δ = (δ1, . . . , δn), δ
(2) = [δij ]i,j=1,...,n are de-

fined in the following way. Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n with 1 stand-

ing on the i−th place. Write J = {(i, j) : i, j = 1, . . . , n, i 6= j}. For a
function z : E0.h ∪ Eh → R and for a point (t(r), x(m)) ∈ Eh we define the
sets

J
(r,m)
− [z] = {(i, j) ∈ J : fij(t

(r), x(m), Thz[r,m]) ≤ 0},

J
(r,m)
+ [z] = J \ J

(r,m)
− [z].

Let P (r,m)[z] = (t(r), x(m), Thz[r,m]). Given z ∈ F(E0.h∪Eh,R) and (r,m) ∈

Z
1+n, 0 ≤ r ≤ K − 1, −(M − 1) ≤ m ≤ M − 1, where M − 1 = (M1 −

1, . . . ,Mn − 1). Write

(1.6)

δ0z
(r,m) =

1

h0

[

z(r+1,m) − z(r,m)
]

,

δ+i z
(r,m) =

1

hi
[z(r,m+ei) − z(r,m)],

δ−i z
(r,m) =

1

hi
[z(r,m) − z(r,m−ei)], i = 1, . . . , n,

δz(r,m) = (δ1z
(r,m), . . . , δnz

(r,m))
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where

(1.7) δiz
(r,m) =

1

2
[δ+i z

(r,m) + δ−i z
(r,m)], i = 1, . . . , n.

The difference operator δ(2) = [δij]i,j=1,...,n, is defined in the following way:

(1.8) δ
(2)
ii z

(r,m) = δ+i δ
−
i z

(r,m) for i = 1, . . . , n

and

δ
(2)
ij z

(r,m) =
1

2

[

δ+i δ
−
j z

(r,m) + δ−i δ
+
j z

(r,m)
]

, if (i, j) ∈ J
(r,m)
− [z],(1.9)

δ
(2)
ij z

(r,m) =
1

2

[

δ+i δ
+
j z

(r,m) + δ−i δ
−
j z

(r,m)
]

, if (i, j) ∈ J
(r,m)
+ [z].(1.10)

Set

Λ+
h.i[z]

(r,m) = β(r,m)z(r,m) + γ(r,m)δ−i z
(r,m) on ∂0E

+
h.i,

Λ−
h.i[z]

(r,m) = β(r,m)z(r,m) − γ(r,m)δ+i z
(r,m) on ∂0E

−
h.i,

where i = 1, . . . , n. Write

∂0E
+
h
=

n
⋃

i=1

∂0E
+
h.i, ∂0E

−
h
=

n
⋃

i=1

∂0E
−
h.i, ∂0Eh = ∂0E

+
h
∪ ∂0E

−
h
.

For a function z : E0.h ∪ Eh → R we define a function Λh[z] : ∂0Eh → R in
the following way:

Λh[z]
(r,m) = Λ+

h.i[z]
(r,m) if (t(r), x(m)) ∈ ∂0E

+
h.i,

Λh[z]
(r,m) = Λ−

h
[z](r,m) if (t(r), x(m)) ∈ ∂0E

−
h.i.

The following initial boundary conditions are associated with (1.5)

z(r,m) = ψ
(r,m)
h

on E0.h,(1.11)

Λh[z]
(r,m) = Ψ

(r,m)
h

on ∂0Eh.(1.12)

Our motivations for the construction of implicit difference schemes are the
following. Two type assumptions are needed in theorems on the convergence
of the explicit difference methods generated by (1.1)–(1.4). The first type
conditions concern regularity of F . The first type concern the regularity of
f, g and G. It is assumed that these functions are continuous and bounded
on Ξ and satisfy nonlinear estimates of the Perron type with respect to the
functional variable. The second type conditions concern the mesh. It is
required that difference schemes satisfy the condition

(1.13) 1−2h0

n
∑

i=1

1

h2i
fii(t, x, w)+h0

n
∑

j=1
j 6=i

1

hihj
|fij(t, x, w)| ≥ 0, (t, x, w) ∈ Ξ,
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(see [1], [13]) where h0 and (h1, . . . , hn) are steps of the mesh with respect to t
and (x1, . . . , xn) respectively. It is clear that strong assumptions on relations
between h0 and (h1, . . . , hn) are required in (1.13). We show that there
are difference methods for (1.1)–(1.4) which are convergent and assumption
(1.13) is omitted.

The authors of the papers [1]–[3], [5], [6] have assumed that given func-
tions satisfy the Lipschitz condition or satisfy nonlinear estimates of the
Perron type with respect to the functional variable, and these conditions are
global. We assume nonlinear estimates of the Perron type and suitable esti-
mates are local with respect to functional variables. It is clear that there are
differential equations with deviated variables and differential integral equa-
tions such that local estimates of the Perron type hold and global inequalities
are not satisfied.

We use in the paper general ideas for finite difference equations which
were introduced in the monographs [4], [11], [12].

2. Solutions of functional differential and difference problems

We first construct estimates of solutions to (1.1)–(1.4). For W ∈ Mn×n

and x ∈ R
n, where W = [wij]i,j=1,...,n, x = (x1, . . . , xn), we define

‖W‖[n×n] =
n
∑

i,j=1

|wij | , ‖x‖[n] =
n
∑

i=1

|xi| .

For functions z ∈ C(E0∪E,R), u ∈ F(E0.h∪Eh,R) we define the semi-norms

‖z‖t = max{|z(τ, x)| : (τ, x) ∈ (E0 ∪ E) ∩ ([−b0, t]× R
n)},

‖u‖h.r = max{|z(τ, x)| : (τ, x)∈(E0.h ∪Eh) ∩ ([−b0, t
(r)]× R

n)}, 0≤r≤K.

Assumption H[̺]. The function ̺ : [0, a] × R+ → R+ is continuous and
it is nondecreasing with respect to both variables and for each η ∈ R+ the
maximal solution of the Cauchy problem

(2.1) ω′(t) = ̺(t, ω(t)), ω(0) = η

is defined on [0, a].

Assumption H0[f,g, G]. The functions f : Ξ → Mn×n, g : Ξ → R
n,

G : Ξ → R are continuous and they satisfy the condition (V ) and

1) the matrix f is symmetric and for (t, x, w) ∈ Ξ we have
n
∑

i,j=1

fij(t, x, w)yiyj ≥ 0, where y = (y1, . . . , yn) ∈ R
n,

2) there is ̺ : [0, a]× R+ → R+ such that Assumption H[̺] is satisfied and

|G(t, x, w)| ≤ ̺(t, ‖w‖B) on Ξ

is satisfied on Ξ,
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3) the functions β : ∂0E → (0,+∞), γ : ∂0E → R+ are continuous and the
constant B̃ > 0 is defined by the relation β(t, x) ≥ B̃ on ∂0E,

4) the constant η̃ is defined by the relations

(2.2) |ψ(t, x)| ≤ η̃ on E0 and |Ψ(t, x)| ≤ B̃ω(t, η̃) on ∂0E,

where ω(·, η̃) is a maximal solution to problem (2.1) with η = η̃.

Theorem 2.1. Suppose that Assumption H0[f,g, G] is satisfied and v is

a solution of problem (1.1)–(1.4) and v is of class C∗. Then

(2.3) |v(t, x)| ≤ ω(t, η̃) on E.

Proof. For ε > 0 we denote by ω(·, η̃, ε) the right hand maximal solution of
the Cauchy problem

(2.4) ω′(t) = ̺(t, ω(t)) + ε, ω(0) = η̃ + ε.

The solution ω(·, η̃, ε) is defined on [0, a] and lim
ε→0

ω(t, η̃, ε) = ω(t, η̃) uni-

formly on [0, a]. Write ζ(t) = ‖v‖t, t ∈ [0, a]. We prove that

(2.5) ζ(t) < ω(t, η̃, ε) for t ∈ [0, a].

Suppose by contradiction that assertion (2.5) fails to be true. Then the set
Σ+ = {t ∈ [0, a] : ζ(t) ≥ ω(t, η̃, ε)} is not empty. If we put t̃ = minΣ+, from
condition 4) of Assumption H0[f,g, G] it is clear that t̃ > 0 and there exists
x̃ ∈ [−b, b] such that

ω(t̃, η̃, ε) = ζ(t̃) =
∣

∣v(t̃, x̃)
∣

∣ .

Then two possibilities can happen, either (i) v(t̃, x̃) = ω(t̃, η̃, ε) or (ii)
v(t̃, x̃) = −ω(t̃, η̃, ε). Let us consider the first case. We conclude from
conditions 3) and 4) of Assumption H0[f,g, G] that (t̃, x̃) /∈ ∂0E. Hence
(t̃, x̃) ∈ E \ ∂0E. We have that

(2.6) D−ζ(t̃) ≥ ω′(t̃, η̃, ε).

On the other hand x̃ ∈ (−b, b), hence ∂xv(t̃, x̃) = 0 and
n
∑

i,j=1

∂xixj
v(t̃, x̃)λiλj ≤ 0 for λ ∈ R

n.

We have that

D−ζ(t̃) ≤ ∂tv(t̃, x̃) =
n
∑

i,j=1

fij(t̃, x̃, v(t̃,x̃))∂xixj
v(t̃, x̃)

+
n
∑

i=1

gi(t̃, x̃, v(t̃,x̃))∂xi
v(t̃, x̃) +G(t̃, x̃, v(t̃,x̃))

≤ G(t̃, x̃, v(t̃,x̃)) ≤ ̺(t̃, ‖v‖t̃) < ω′(t̃, η̃, ε),
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which contradicts (2.6). The case v(t̃, x̃) = −ω(t̃, η̃, ε) can be treated in
a similar way. Hence Σ+ is empty and inequality (2.3) is proved on E. This
completes the proof.

Assumption H[f,g, G]. Assumption H0[f,g, G] is satisfied and functions
f, g satisfy the inequality

(2.7) −
1

2
|gi(P )|+

1

hi
fii(P )−

n
∑

j=1
j 6=i

1

hj
|fij(P )| ≥ 0, i = 1, . . . , n, P ∈ Ξ.

Set P (r,m)[z] = (t(r), x(m), Thz[r,m]) and

Fh[z]
(r,m) =

n
∑

i,j=1

fij(P
(r,m)[z])δijz

(r+1,m)

+
n
∑

i=1

gi(P
(r,m)[z])δiz

(r+1,m) +G(P (r,m)[z]).

Lemma 2.1. Suppose that Assumption H[f,g, G] is satisfied and z ∈
F(E0.h ∪ Eh,R) and

G
(r,m)
h

[w, z] =
n
∑

i,j=1

fij(P
(r,m)[w])δijz

(r+1,m) +
n
∑

i=1

gi(P
(r,m)[w])δiz

(r+1,m).

Then

(2.8) G
(r,m)
h

[w, z]

= S
(r,m)
0 [w]z(r+1,m) +

n
∑

i=1

S
(r,m)
i.+ [w]z(r+1,m+ei) +

n
∑

i=1

S
(r,m)
i.− [w]z(r+1,m−ei)

+
∑

(i,j)∈J
(r,m)
+ [w]

1

2hihj
fij(P

(r,m)[w])
[

z(r+1,m+ei+ej) + z(r+1,m−ei−ej)
]

−
∑

(i,j)∈J
(r,m)
−

[w]

1

2hihj
fij(P

(r,m)[w])
[

z(r+1,m+ei−ej) + z(r+1,m−ei+ej)
]

,

where

S
(r,m)
0 [w] =

∑

(i,j)∈J

1

hihj

∣

∣

∣
fij(P

(r,m)[w])
∣

∣

∣
− 2

n
∑

i=1

1

h2i
fii(P

(r,m)[w]),

S
(r,m)
i.+ [w] =

1

2hi
gi(P

(r,m)[w]) +
1

h2i
fii(P

(r,m)[w])−
n
∑

j=1
j 6=i

1

hihj

∣

∣

∣
fij(P

(r,m)[w])
∣

∣

∣
,
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S
(r,m)
i.− [w] = −

1

2hi
gi(P

(r,m)[w]) +
1

h2i
fii(P

(r,m)[w])−
n
∑

j=1
j 6=i

1

hihj

∣

∣

∣
fij(P

(r,m)[w])
∣

∣

∣

and S
(r,m)
i.+ [w] ≥ 0, S

(r,m)
i.− [w] ≥ 0 and

S
(r,m)
0 [w] +

n
∑

i=1

S
(r,m)
i.+ [w] +

n
∑

i=1

S
(r,m)
i.− [w] +

∑

(i,j)∈J

1

hihj

∣

∣

∣
fij(P

(r,m)[w])
∣

∣

∣
= 0.

Proof. The above lemma is a consequence of (1.7)–(1.10) and (2.7).

Theorem 2.2. Suppose that Assumption H[f ,g,G] is satisfied and h ∈ H

and 0 ≤ r ≤ K − 1 is fixed.

1) If vh : (E0.h ∪Eh) ∩ ([−r0, t
(r+1)]× R

n) → R and

v
(r+1,m)
h

≤ h0G
(r,m)
h

[vh, vh]

for −(M − 1) ≤ m ≤ M − 1 and Λh[vh]
(r+1,m) ≤ 0 on ∂0Eh, then

v
(r+1,m)
h

≤ 0 for −M ≤ m ≤M .

2) If vh : (E0.h ∪Eh) ∩ ([−r0, t
(r+1)]× R

n) → R and

v
(r+1,m)
h

≥ h0G
(r,m)
h

[vh, vh]

for −(M − 1) ≤ m ≤ M − 1 and Λh[vh]
(r+1,m) ≥ 0 on ∂0Eh, then

v
(r+1,m)
h

≥ 0 for −M ≤ m ≤M .

Proof. Let us consider the first case. Let µ ∈ Z
n be defined by relation

v
(r+1,µ)
h

= max{v
(r+1,m)
h

: (t(r+1), x(m)) ∈ E0.h ∪Eh}.

Conversely, suppose that v
(r+1,µ)
h

> 0. Suppose that −(M−1) ≤ µ ≤M−1.
It follows from (2.8) that

v
(r+1,m)
h

(1− h0S
(r,m)
0 [vh])

≤ h0

n
∑

i=1

S
(r,m)
i.+ [vh]v

(r+1,m+ei)
h

+ h0

n
∑

i=1

S
(r,m)
i.− [vh]v

(r+1,m−ei)
h

+ h0
∑

(i,j)∈J
(r,m)
+ [vh]

1

2hihj
fij(P

(r,m)[vh])
[

v
(r+1,m+ei+ej)
h

+ v
(r+1,m−ei−ej)
h

]

− h0
∑

(i,j)∈J
(r,m)
−

[vh]

1

2hihj
fij(P

(r,m)[vh])
[

v
(r+1,m+ei−ej)
h

+ v
(r+1,m−ei+ej)
h

]

.

We see at once that v
(r+1,µ)
h

≤ 0 for −(M − 1) ≤ µ ≤ M − 1, which

contradicts our assumption. Suppose that (t(r+1), x(µ)) ∈ ∂0Eh. We have
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v
(r+1,µ)
h

≤
γ(r+1,µ)

hiβ(r+1,µ) + γ(r+1,µ)
v
(r+1,µ−ei)
h

for (t(r+1), x(µ)) ∈ ∂0E
+
h.i,

v
(r+1,µ)
h

≤
γ(r+1,µ)

hiβ(r+1,µ) + γ(r+1,µ)
v
(r+1,µ+ei)
h

for (t(r+1), x(µ)) ∈ ∂0E
−
h.i.

From this we conclude that v
(r+1,µ)
h

≤ 0, which is impossible. The second
case can be treated in a similar way.

Theorem 2.3. Suppose that Assumption H[f,g, G] is satisfied and ψh :
E0.h → R, Ψh : ∂0Eh → R. Then there is exactly one solution uh : E0.h ∪
Eh → R of problem (1.5), (1.11), (1.12).

Proof. Suppose that 0 ≤ r < K is fixed and that the solution uh to problem
(1.5), (1.11), (1.12) is given on the set (E0.h ∪ Eh) ∩ ([−b0, t

(r)] × R
n). We

prove that the values u
(r+1,m)
h

, −M ≤ m ≤ M exist, and that they are
unique. It is sufficient to show that there exists exactly one solution of the
system of equations

(2.9) z(r+1,m) = u
(r,m)
h

+ h0G
(r,m)
h

[uh, zh] + h0G(P
(r,m)[uh])

where −(M − 1) ≤ m ≤M − 1, and

(2.10) Λ[z](r+1,m) = Ψ
(r+1,m)
h

on ∂0Eh.

Consider problem

z(r+1,m) = h0G
(r,m)
h

[uh, zh], where − (M − 1) ≤ m ≤M − 1,

Λ[z](r+1,m) = 0 on ∂0Eh.

We conclude from Theorem (2.2), that above problem has exactly one solu-
tion, which proves the theorem.

Assumption H[Th]. The operator Th : F(Bh,R) → C(B,R) satisfies the
conditions:

1) for w, w̃ ∈ F(Bh,R) we have

‖Th[w]− Th[w̃]‖B ≤ ‖w − w̃‖Bh
,

2) if w : B → R is of class C1 then there is γ∗ : H → R+ such that

‖Th[wh]− w‖B ≤ γ∗(h), and lim
h→0

γ∗(h) = 0

where wh is the restriction of w to the set Bh.,
3) if Oh ∈ F(E0.h ∪ Eh,R) is given by Oh(t, x) = 0 for (t, x) ∈ E0.h ∪ Eh

then Th[Oh](t, x) = 0 for (t, x) ∈ E0 ∪E.
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Lemma 2.2. Suppose that Assumptions H[Th], H[f,g, G] are satisfied and

vh is a solution of problem (1.5), (1.11), (1.12) and

(2.11)
∣

∣

∣
ψ
(r,m)
h

∣

∣

∣
≤ η̃ on E0.h and

∣

∣

∣
Ψ

(r,m)
h

∣

∣

∣
≤ B̃ω(t(r), η̃) on ∂0Eh.

Then

(2.12)
∣

∣

∣
v
(r,m)
h

∣

∣

∣
≤ ω(t(r), η̃) on E0.h ∪Eh.

Proof. Write

ε
(r)
h

= max{|v
(i,m)
h

| : (t(i), x(m)) ∈ E0.h ∪Eh, i ≤ r}, 0 ≤ r ≤ K.

It is sufficient to show that

(2.13) ε
(r)
h

≤ ω(t(r), η̃)

where 0 ≤ r ≤ K. From (2.11) we deduce that (2.13) is true for r = 0.

Assuming that ε
(j)
h

≤ ω(t(j), η̃) for 0 ≤ j ≤ r − 1 we will prove (2.13) for

r. There exists (t(i), x(m)) ∈ Eh such that ε
(r)
h

= |v
(i,m)
h

|. If i < r then

|v
(i,m)
h

| ≤ ε
(r−1)
h

≤ ω(t(r−1), η̃) and consequently ε
(r)
h

≤ ω(t(r), η̃). Suppose

that ε
(r)
h

= |v
(r,m)
h

|. Then two possibilities can happen, either ε
(r)
h

= v
(r,m)
h

or ε
(r)
h

= −v
(r,m)
h

. Let us consider the first case. It follows form (2.11) that

for (t(r), x(m)) ∈ ∂0Eh we have

B̃v
(r,m)
h

≤
∣

∣

∣
Ψ

(r,m)
h

∣

∣

∣
≤ B̃ω(t(r), η̃).

Hence ε
(r)
h

≤ ω(t(r), η̃). Suppose that (t(r), x(m)) ∈ Eh. It follows from (1.6)
and (2.8) that

v
(r,m)
h

(

1− h0S
(r−1,m)
0 [vh]

)

= v
(r−1,m)
h

+
[

h0

n
∑

i=1

S
(r−1,m)
i.+ [vh]v

(r,m+ei)
h

+ h0

n
∑

i=1

S
(r−1,m)
i.− [vh]v

(r,m−ei)
h

+ h0
∑

(i,j)∈J
(r−1,m)
+ [vh]

1

2hihj
fij(P

(r−1,m)[vh])[v
(r,m+ei+ej)
h

+ v
(r,m−ei−ej)
h

]

− h0
∑

(i,j)∈J
(r−1,m)
−

[vh]

1

2hihj
fij(P

(r−1,m)[vh])[v
(r,m−ei+ej)
h

+ v
(r,m+ei−ej)
h

]
]

+ h0G(P
(r−1,m)[vh]).

It follows from induction and from condition 1) of Assumption H[f,g, G]
that

ε
(r)
h

≤ ε
(r−1)
h

+ h0̺(t
(r−1), ε

(r−1)
h

)
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and consequently

ε
(r)
h

≤ ω(t(r), η̃).

The case ε
(r)
h

= −v
(r,m)
h

can be treated in a similar way. Hence, the proof of
(2.13) is completed by induction.

3. Convergence of difference schemes

Write A = ω(a, η̃), where ω(·, η̃) is the maximal solution to (2.1) and
KC(B,R)(A) = {w ∈ C(B,R) : ‖w‖B ≤ A}.

Assumption H[σ]. The function σ : [0, a] × R+ → R+ is continuous,
it is nondecreasing with respect to both variables and for each L ≥ 1 the
maximal solution of the Cauchy problem

ω′(t) = Lσ(t, ω(t)), ω(0) = 0

is ω̃(t) = 0 for t ∈ [0, a].

Assumption A[f,g, G]. The functions f : Ξ → Mn×n, g : Ξ → R
n,

G : Ξ → R satisfy Assumption H[f,g, G] and there is σ : [0, a] × R+ → R+

such that Assumption H[σ] is satisfied and

‖f(t, x, w)− f(t, x, w̄)‖[n×n] ≤ σ(t, ‖w − w̄‖B),(3.1)

‖g(t, x, w)− g(t, x, w̄)‖[n] ≤ σ(t, ‖w − w̄‖B),(3.2)

|G(t, x, w)−G(t, x, w̄)| ≤ σ(t, ‖w − w̄‖B),(3.3)

where (t, x) ∈ E, w, w̄ ∈ KC(B,R)(A).

Remark 3.1. Note that we have assumed estimates (3.1)–(3.3) for w, w̄ ∈
KC(B,R)[A] only. It is clear, that there are differential equations with de-
viated variables and differential integral equations such that correspond-
ing functions f, g and G satisfy conditions (3.1)–(3.3), respectively on E ×
KC(B,R)(A) and they do not satisfy (3.1)–(3.3) on Ξ.

Theorem 3.1. Suppose that Assumptions A[f,g, G], H[Th] are satisfied

and

1) uh : E0.h ∪Eh → R is a solution of (1.5), (1.11), (1.12),
2) v : E0 ∪E → R is a solution of (1.1)–(1.4) and v is of class C∗ and vh is

restriction of v to the set E0.h ∪Eh,

3) for α0 : H → R+ the following initial boundary inequalities are satisfied
∣

∣

∣
ψ
(r,m)
h

− ψ(r,m)
∣

∣

∣
≤ α0(h) on E0.h,

∣

∣

∣
Ψ

(r,m)
h

−Ψ(r,m)
∣

∣

∣
≤ h0α0(h) on ∂0Eh

and limh→0 α0(h) = 0,
4) there is c0 > 0 such that hi ≤ c0h0 for i = 1, . . . , n.
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Then there is α : H → R+ such that

(3.4)
∣

∣

∣
(uh − vh)

(r,m)
∣

∣

∣
≤ α(h) on Eh

and lim
h→0

α(h) = 0.

Proof. Our proof starts with the above observation that

δijv
(r,m) =

1

2

1�

0

1�

0

∂xixj
v(t(r), x(m) + shiei + τhjej)dsdτ

+
1

2

1�

0

1�

0

∂xixj
v(t(r), x(m) − shiei − τhjej)dsdτ for (i, j) ∈ J+,

δijv
(r,m) =

1

2

1�

0

1�

0

∂xixj
v(t(r), x(m) + shiei − τhjej)dsdτ

+
1

2

1�

0

1�

0

∂xixj
v(t(r), x(m) − shiei + τhjej)dsdτ for (i, j) ∈ J−.

It follows that there are Γh : Eh → R, γ1 : H → R+ such that

(3.5) δ0v
(r,m)
h

= Fh[vh]
(r,m) + Γ

(r,m)
h

on Eh,

(3.6)
δ+i v

(r,m)
h

= ∂xi
v(r,m) + Γ

(r,m)
h

on ∂0E
+
h.i,

δ−i v
(r,m)
h

= ∂xi
v(r,m) − Γ

(r,m)
h

on ∂0E
−
h.i,

where i = 1, . . . , n and
∣

∣

∣
Γ
(r,m)
h

∣

∣

∣
≤ γ1(h) on Eh and lim

h→0
γ1(h) = 0.

Write zh = uh − vh and

ε
(r)
h

= max{
∣

∣

∣
z
(i,m)
h

∣

∣

∣
: (t(i), x(m)) ∈ E0.h ∪Eh, i ≤ r}, 0 ≤ r ≤ K.

We prove that the function ε
(r)
h

satisfies the recurrent inequality

(3.7) ε
(r+1)
h

≤ ε
(r)
h

+ h0Lσ(t
(r), ε

(r)
h

) + h0γ̃(h), 0 ≤ r ≤ K − 1,

where L≥1 and γ̃(h) = γ1(h)(1+c0)+B̃
−1α0(h). Suppose that (t(r+1), x(m))

∈ Eh and −(M − 1) ≤ m ≤M − 1. Then we have

z
(r+1,m)
h

= z
(r,m)
h

+ h0
[

Fh[uh]
(r,m) − Fh[vh]

(r,m)
]

.

It follows from (2.8) that
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z
(r+1,m)
h

(1− h0S
(r,m)
0 [uh])

= z
(r,m)
h

+ h0

n
∑

i=1

S
(r,m)
i.+ [uh]z

(r+1,m+ei)
h

+ h0

n
∑

i=1

S
(r,m)
i.− [uh]z

(r+1,m−ei)
h

− h0
∑

(i,j)∈J
(r,m)
−

[uh]

1

2hihj
fij(P

(r,m)[uh])
[

z
(r+1,m+ei−ej)
h

+ z
(r+1,m−ei+ej)
h

]

+ h0
∑

(i,j)∈J
(r,m)
+ [uh]

1

2hihj
fij(P

(r,m)[uh])
[

z
(r+1,m+ei+ej)
h

+ z
(r+1,m−ei−ej)
h

]

+ h0
[

G(P (r,m)[uh])−G(P (r,m)[vh])
]

− h0Γ
(r,m)
h

+ h0

n
∑

i,j=1

[

fij(P
(r,m)[uh])− fij(P

(r,m)[vh])
]

δijv
(r+1,m)
h

+ h0

n
∑

i=1

[

gi(P
(r,m)[uh])− gi(P

(r,m)[vh])
]

δiv
(r+1,m)
h

.

There is c̃ ∈ R+ such that

(3.8)
∣

∣

∣
δiv

(r+1,m)
h

∣

∣

∣
≤ c̃, i = 1, . . . , n,

∣

∣

∣
δijv

(r+1,m)
h

∣

∣

∣
≤ c̃, i, j = 1, . . . , n.

It follows from Assumptions A[f,g, G], H[Th] and (3.8) that

(3.9)
∣

∣

∣
z
(r+1,m)
h

∣

∣

∣
≤ ε

(r)
h

+ h0(2c̃+ 1)σ(t(r), (εh)t(r)) + h0γ1(h).

Suppose that (t(r+1), x(m)) ∈ ∂0E
+
h.i. Then we have

z
(r+1,m)
h

=
γ(r+1,m)

hiβ(r+1,m) + γ(r+1,m)
z
(r+1,m−ei)
h

+
γ(r+1,m)

hiβ(r+1,m) − γ(r+1,m)
hiΓ

(r+1,m)
h

+
hi

hiβ(r+1,m) + γ(r+1,m)
[Ψ

(r+1,m)
h

−Ψ(r+1,m)]

and consequently

(3.10)
∣

∣

∣
z
(r+1,m)
h

∣

∣

∣
≤ ε

(r)
h

+h0Lσ(t
(r), ε

(r)
h

)+h0γ1(h)+c0h0γ1(h)+
1

B̃
h0α0(h).

In a similar way we prove (3.10) for (t(r+1), x(m)) ∈ ∂0E
−
h.i. Estimates

(3.9) and (3.10) imply (3.7). Lets us consider the Cauchy problem
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(3.11) ω′(t) = Lσ(t, ω(t)) + γ̃(h), ω(0) = α0(h).

There is ε0 > 0 such that the maximal solution ω(·,h) to (3.11) is defined on
[0, a] for 0 ≤ ‖h‖ < ε0 and lim

h→0
ω(t,h) = 0 uniformly on [0, a]. We conclude

from Assumption H[σ] that

ω(t(r+1),h) ≥ ω(t(r),h) + h0Lσ(t
(r), ω(t(r),h)) + h0γ̃(h), 0 ≤ r ≤ K − 1.

This gives

ε
(r)
h

≤ ω(t(r),h) for 0 ≤ r ≤ K.

Then assertion (3.4) is satisfied with α(h) = ω(a,h).

Remark 3.2. Suppose that all the assumptions of Theorem 3.1 are satisfied
and σ : [0, a]× R+ × C(I,R+) → R+ is given by

σ(t, p) = L̃p on [0, a]× R+,

where L̃ ∈ R+. Then
∣

∣

∣
u
(r,m)
h

− v
(r,m)
h

∣

∣

∣
≤ α̃(h) on Eh

where

α̃(h) = α0(h)e
L̃a +

γ̃(h)

L̃
(eL̃a − 1) if L̃ > 0,(3.12)

α̃(h) = α0(h) + aγ̃(h) if L̃ = 0.(3.13)

We obtain the above estimates by solving problem (3.11) with σ(t, p) = L̃p.

4. Numerical examples

E0 = {0} × [−1, 1] × [−1, 1], E = [0, 0.5] × [−1, 1] × [−1, 1]. Initial-
boundary problems considered in the present section have solutions on E.

Example 4.1. Consider the differential equation with deviated variables

(4.1) ∂tz(t, x, y)

=

{

2 + sin

[

e
x
2 z

(

t,
x− 1

2
,
y − 1

2

)

− e
y

2 z(t, x, y)

]}

∂xxz(t, x, y)

+

{

2 + cos

[

e
x
2 z

(

t,
x+ 1

2
,
y + 1

2

)

− e
y

2 z(t, x, y)

]}

∂yyz(t, x, y)

+ sin

[

z

(

t,
x

2
, y

)

+ z

(

t, x,
y

2

)

− (e−
x
2 + e

y

2 )z(t, x, y)

]

∂xyz(t, x, y)

− 5z(t, x, y) + ex−y,

and the initial-boundary conditions

(4.2) z(0, x, y) = 0, (x, y) ∈ [−1, 1]× [−1, 1]
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and

(4.3)

z(t, 1, y) + ∂xz(t, 1, y) = 2te1−y,

z(t,−1, y)− ∂xz(t,−1, y) = 0, y ∈ [−1, 1],

z(t, x, 1) + ∂yz(t, x, 1) = 0,

z(t, x,−1)− ∂yz(t, x,−1) = 2tex+1, x ∈ [−1, 1].

The solution of (4.1–4.3) is known, it is v(t, x, y) = tex−y. Let us denote by
uh : Eh → R the solution of implicit difference problem corresponding to
(4.1)–(4.3). Write

(4.4) ε
(r)
h

=
1

(2N1 + 1)(2N2 + 1)

∑

m∈M

∣

∣

∣
u
(r,m)
h

− v
(r,m)
h

∣

∣

∣
, 0 ≤ r ≤ N0,

where vh is the restriction of v to the set Eh and M = {m ∈ (m1,m2) :
−N1 ≤ m1 ≤ N1, −N2 ≤ m2 ≤ N2} and N0h0 = 0.5, N1h1 = 0.5, N2h2 =

0.5. The numbers ε
(r)
h

are the arithmetical means of the errors with fixed

t(r). We give experimental values of the above defined errors for h0 = 0.001,
h1 = h2 = 0.004.

Table I

t
(r)

: 0.07 0.14 0.21 0.28 0.35 0.42 0.49

ε
(r)
h : 0.0003808 0.0006355 0.0008261 0.0009835 0.0011245 0.0012578 0.0013883

We have solved numerically problem (4.1–4.3) by using explicit difference
schemes for h0 = 0.001, h1 = h2 = 0.004. In this case condition (1.13) is not
satisfied and errors exceeded 12 · 1016 for t(r) = 0.01.

Example 4.2. Consider the differential integral equation

∂tz(t, x, y) =
{

2 + cos
[
x�

0

z(t, s, y)ds− z(t, x, y)
]}

∂xxz(t, x, y)(4.5)

+
{

2− cos
[

y�

0

z(t, x, s)ds+ z(t, x, y)
]}

∂yyz(t, x, y)

+ cos
[

y�

0

x�

0

z(t, s, r)dsdr + z(t, x, y)
]

∂xyz(t, x, y)

− f(t, x, y)z(t, x, y) + g(t, x, y),

where

f(t, x, y) = 4 + cos[(et − 1)e−y]− cos[(et − 1)ex]

− cos[(et − 1)ex + (et − 1)e−y − et + 1],

g(t, x, y) = etex−y,
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with initial-boundary conditions

(4.6) z(0, x, y) = 0 for (x, y) ∈ [−1, 1]× [−1, 1],

and

(4.7) z(t, 1, y)+∂xz(t, 1, y) = 2(et−1)e1−y, z(t,−1, y)−∂xz(t,−1, y) = 0,

(t, y) ∈ [0, 0.5]× [−1, 1]

z(t, x, 1) + ∂yz(t, x, 1) = 0, z(t, x,−1)− ∂yz(t, x,−1) = 2(et − 1)ex+1,

(t, x) ∈ [0, 0.5]×[−1, 1]. The solution of (4.5)–(4.7) is known, it is z(t, x, y) =
(et − 1)ex−y.

Let us denote by uh : Eh → R, the solution of implicit difference problem

corresponding to (4.5)–(4.7). Let ε
(r)
h

be the arithmetical means of the errors

defined by (4.4). In Table II, we give experimental values of ε
(r)
h

for h0 =
0.001, h1 = h2 = 0.004.

Table II

t
(r)

: 0.07 0.14 0.21 0.28 0.35 0.42 0.49

ε
(r)
h : 0.0002246 0.0004542 0.00073299 0.0013553 0.0025644 0.0042563 0.00694559

We have solved numerically problem (4.1–4.3) by using explicit difference
schemes for h0 = 0.001, h1 = h2 = 0.004. In this case, condition (1.13) is
not satisfied and errors exceeded 44 · 1015 for t(r) = 0.01.

The results presented in the paper show that there are implicit differ-
ence methods for (1.1)–(1.4), which are convergent and the corresponding
explicit difference schemes are not convergent. Note that our results are new
also in the case of quasilinear differential equations without the functional
dependence.
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