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FUZZY ANTI-NORM AND FUZZY α-ANTI-CONVERGENCE

Abstract. In this paper the definition of fuzzy antinorm is modified. Some properties
of finite dimensional fuzzy antinormed linear space are studied. Fuzzy α-anti-convergence
and fuzzy α-anti-complete linear spaces are defined and some of their properties are stud-
ied.

1. Introduction

During the last few years there is a growing interest in the extension of
fuzzy set theory which is a useful tool to describe the situation in which data
are imprecise or vague or uncertain. Fuzzy set theory handle the situation by
attributing a degree of membership to which a certain object belongs to a set.
It has a wide range of application in the field of population dynamics [5],
chaos control [9], computer programming [10], medicine [4] etc.

The concept of fuzzy set theory was first introduced by Zadeh [17] in
1965 and thereafter, the concept of fuzzy set theory applied on different
branches of pure and applied mathematics in different ways, by several
authors. The concept of fuzzy norm was introduced by Katsaras [12] in
1984. In 1992, Felbin [8] introduced the idea of fuzzy norm on a linear
space. Cheng–Moderson [6] introduced another idea of fuzzy norm on a
linear space whose associated metric is same as the associated metric of
Kramosil–Michalek [14]. In 2003, Bag and Samanta [1] modified the defi-
nition of fuzzy norm of Cheng–Moderson [6] and established the concept of
continuity and boundednes of a linear operator with respect to their fuzzy
norm in [2].

Later on, Jebril and Samanta [11] introduced the concept of fuzzy anti-
norm on a linear space depending on the idea of fuzzy anti norm, introduced
by Bag and Samanta [3]. The motivation of introducing fuzzy anti-norm is
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to study fuzzy set theory with respect to the non-membership function. It
is useful in the process of decision making.

In this paper we generalize the definition of fuzzy anti-norm on a linear
space. Later on we prove Riesz lemma and some important properties of
finite dimensional fuzzy anti-normed linear space. Also, we define fuzzy α-
anti-convergence, fuzzy α-anti-Cauchy sequence, fuzzy α-anti-completeness
and study the relations among them.

2. Preliminaries

This section contains some basic definition and preliminary results which
will be needed in the sequel.

Definition 2.1. [16, 13] A binary operation ⋄ : [0, 1] × [0, 1] → [0, 1] is
continuous t-conorm if ⋄ satisfies the following conditions:

(i) ⋄ is commutative and associative,
(ii) ⋄ is continuous,
(iii) a ⋄ 0 = a, ∀a ∈ [0, 1],
(iv) a ⋄ b ≤ c ⋄ d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

A few examples of continuous t-conorm are a ⋄ b = a + b − ab, a ⋄ b =
max{a, b}, a ⋄ b = min{a+ b, 1}.

Definition 2.2. [3] Let X be a linear space over F (field of real/complex
numbers). Let N∗ be a fuzzy subset of X ×R such that for all x, y ∈ X and
c ∈ F

(N∗1) ∀t ∈ R with t ≤ 0, N∗(x, t) = 1,
(N∗2) ∀t ∈ R with t > 0, N∗(x, t) = 0 if and only if x = θ,
(N∗3) ∀t ∈ R with t > 0, N∗(cx, t) = N∗(x, t

|c|) if c 6= 0,

(N∗4) ∀s, t ∈ R with N∗(x+ y, s+ t) ≤ max{N∗(x, s), N∗(y, t)},
(N∗5) N∗(x, ·) is a non-increasing of t ∈ R and lim

t→∞
N∗(x, t) = 0.

Then N∗ is called a B-S-fuzzy antinorm on X.

We assume that

(N∗6) For all t ∈ R with t > 0, N∗(x, t) < 1 implies x = θ.

Definition 2.3. [11] Let (U,N∗) be a B-S-fuzzy antinormed linear space.
A sequence {xn}n∈N in U is said to converge to x ∈ U if given t > 0, r ∈ (0, 1)
there exists an integer n0 ∈ N such that

N∗(xn − x, t) < r, ∀n ≥ n0.

Definition 2.4. [11] Let (U,N∗) be a B-S-fuzzy antinormed linear space.
A sequence {xn}n∈N in U is said to be Cauchy sequence if for given t > 0,
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r ∈ (0, 1) there exists an integer n0 ∈ N such that

N∗(xn+p − xn, t) < r ∀n ≥ n0, p = 1, 2, 3, . . . .

Definition 2.5. [11] A subset A of a B-S-fuzzy antinormed linear space
(U,N∗) is said to be bounded if and only if there exist t > 0, r ∈ (0, 1) such
that

N∗(x, t) < r, ∀x ∈ A.

Definition 2.6. [11] A subset A of a B-S-fuzzy antinormed linear space
(U,N∗) is said to be compact if any sequence {xn}n∈N in A has a subsequence
converging to an element of A.

Definition 2.7. [11] Let (U,N∗) be a B-S-fuzzy antinormed linear space.
A subset B of U is said to be closed if any sequence {xn}n∈N in B converges
to x ∈ B, that is

lim
n→∞

N∗(xn − x, t) = 0, ∀t > 0 ⇒ x ∈ B.

3. Fuzzy anti-normed linear space

In this section, the definition of B-S-fuzzy antinorm is modified, and after
modification it will be termed as fuzzy antinorm with respect to a t-conorm
⋄. Thereafter some important results will be deduced.

Definition 3.1. Let V be linear space over the field F (= RorC). A fuzzy
subset ν of V ×R is called a fuzzy antinorm on V with respect to a t-conorm
⋄ if and only if for all x, y ∈ V

(i) ∀t ∈ R with t ≤ 0, ν(x, t) = 1;
(ii) ∀t ∈ R with t > 0, ν(x, t) = 0 if and only if x = θ;
(iii) ∀t ∈ R with t > 0, ν(cx, t) = ν(x, t

|c|) if c 6= 0, c ∈ F ;

(iv) ∀s, t ∈ R with ν(x+ y, s+ t) ≤ ν(x, s) ⋄ ν(y, t);
(v) lim

t→∞
ν(x, t) = 0.

The Definition 3.1 is more general than the Definition 2.2; since, in (N∗4)
instead of maximum function we have used more generalized function, co-
norm function and in the condition (N∗5) it is used that N∗(x, ·) is non-
increasing function of t(∈ R), which is redundant and later on it will be
deduced.

Remark 3.2. Let ν be a fuzzy anti-norm on V with respect to a t-conorm ⋄,
then ν(x, t) is non-increasing with respect to t for each x ∈ V .

Proof. Let t < s. Then k = s− t > 0 and we have

ν(x, t) = ν(x, t) ⋄ 0 = ν(x, t) ⋄ ν(0, k) ≥ ν(x, s).

Hence the proof.
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Definition 3.3. If A∗ = {((x, t), ν(x, t)) : (x, t) ∈ V × R} is a fuzzy
antinorm on a linear space V with respect to a t-conorm ⋄ over a field F ,
then (V,A∗) is called a fuzzy antinormed linear space with respect to the
t-conorm ⋄ over the field F .

We further assume that for any fuzzy anti-normed linear space (V,A∗)
with respect to a t-conorm ⋄,

(vi) ν(x, t) < 1, ∀t > 0 ⇒ x = θ.

(vii) ν(x, ·) is a continuous function of R and strictly decreasing on the subset
{t : 0 < ν(x, t) < 1} of R.

(viii) a ⋄ a = a, ∀a ∈ [0, 1].

Example 3.4. Let (V, ‖ · ‖) be a normed linear space and consider a ⋄ b =
a+ b− ab. Define ν : V × R → [0, 1] by

ν(x, t) =

{

0, if t > ‖x‖,

1, if t ≤ ‖x‖.

Then ν is a fuzzy antinorm on V with respect to the t-conorm ⋄ and (V, ν)
is a fuzzy anti-normed linear space with respect to the t-conorm ⋄.

Solution. (i) ∀x ∈ V and ∀t ∈ R, t ≤ 0 we have ν(x, t) = 1.
(ii) ∀t ∈ R, t > 0 we have ν(θ, t) = 0. Again

ν(x, t) = 0, ∀t > 0 ⇔ ‖x‖ < t, ∀t(> 0) ∈ R ⇔ ‖x‖ = 0 ⇔ x = θ.

(iii) ν(cx, t)=0 ⇔ t>‖cx‖ ⇔ t > |c|‖x‖ ⇔
t

|c|
> ‖x‖ ⇔ ν

(

x,
t

|c|

)

= 0.

ν(cx, t) = 1 ⇔ t ≤ ‖cx‖ ⇔ t ≤ |c|‖x‖ ⇔
t

|c|
≤ ‖x‖ ⇔ ν

(

x,
t

|c|

)

= 1.

(iv) ν(x, s) ⋄ ν(y, t) = ν(x, s) + ν(y, t)− ν(x, s)ν(y, t).

If s > ‖x‖ and t > ‖y‖ then ν(x+ y, s+ t) = 0, since s+ t > ‖x‖+ ‖y‖ and
ν(x, s) ⋄ ν(y, t) = 0 + 0− 0 = 0. So, ν(x+ y, s+ t) = ν(x, s) ⋄ ν(y, t).
If s > ‖x‖ and t ≤ ‖y‖ then ν(x, s) ⋄ ν(y, t) = 0 + 1− 0 = 1.
If s ≤ ‖x‖ and t > ‖y‖ then ν(x, s) ⋄ ν(y, t) = 1 + 0− 0 = 1.
If s ≤ ‖x‖ and t ≤ ‖y‖ then ν(x, s) ⋄ ν(y, t) = 1 + 1− 1 = 1.

Therefore in any of the above three cases

ν(x, s) ⋄ ν(y, t) = 1 ≥ ν(x+ y, s+ t).

Thus

ν(x+ y, s+ t) ≤ ν(x, s) ⋄ ν(y, t).

(v) From the definition it is clear that lim
t→∞

ν(x, t) = 0. Thus ν is a fuzzy

antinorm on V with respect to the t-conorm ⋄ and (V, ν) is a fuzzy anti-
normed linear space with respect to the t-conorm ⋄.
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Note 3.5. The above example satisfes the condition (vi) but does not
satisfy the condition (vii).

Example 3.6. Let (V, ‖ · ‖) be a normed linear space and consider a ⋄ b =
min{a+ b, 1}. Define ν : V × R → [0, 1] by

ν(x, t) =











0, if t > ‖x‖, t > 0,
‖x‖

t+‖x‖ , if t ≤ ‖x‖, t > 0,

1, if t ≤ 0.

Then ν is a fuzzy antinorm on V with respect to the t-conorm ⋄ and (V, ν)
is a fuzzy anti-normed linear space with respect to the t-conorm ⋄.

Solution. (i) From the definition we have ν(x, t) = 1 if t ≤ 0, ∀t ∈ R.

(ii) If t > 0 and t > ‖x‖ then

ν(x, t) = 0 ⇔ ‖x‖ < t, ∀t(> 0) ∈ R ⇔ ‖x‖ = 0 ⇔ x = θ.

If t > 0 and t ≤ ‖x‖ then

ν(x, t) = 0 ⇔
‖x‖

t+ ‖x‖
= 0 ⇔ ‖x‖ = 0 ⇔ x = θ.

(iii) ν(cx, t)=0 ⇔ t > ‖cx‖ ⇔ t > |c|‖x‖ ⇔
t

|c|
> ‖x‖ ⇔ ν

(

x,
t

|c|

)

=0.

ν(cx, t) =
‖cx‖

t+ ‖cx‖
⇔ t ≤ ‖cx‖ ⇔

t

|c|
≤ ‖x‖

⇔ ν(x,
t

|c|
) =

‖x‖
t
|c| + ‖x‖

=
‖cx‖

t+ ‖cx‖
.

(iv) ν(x, s) ⋄ ν(y, t) = min{ν(x, s) + ν(y, t), 1}. If ‖x‖ ≥ s and ‖y‖ ≥ t

then

ν(x, s) + ν(y, t) =
‖x‖

s+ ‖x‖
+

‖y‖

t+ ‖y‖

=
(t‖x‖+ ‖x‖‖y‖+ s‖y‖) + ‖x‖‖y‖

(t‖x‖+ ‖x‖‖y‖+ s‖y‖) + st
≥ 1 since ‖x‖‖y‖ ≥ st.

In this case ν(x, s) ⋄ ν(y, t) = 1 ≥ ν(x+ y, s+ t).

If ‖x‖ ≥ s and ‖y‖ < t then either ‖x+ y‖ ≥ s+ t or ‖x+ y‖ < s+ t.

Now,

ν(x, s) + ν(y, t) =
‖x‖

s+ ‖x‖
+ 0 < 1.

Hence

ν(x, s) ⋄ ν(y, t) =
‖x‖

s+ ‖x‖
.
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If ‖x+ y‖ ≥ s+ t then

ν(x+ y, s+ t)− ν(x, s) ⋄ ν(y, t) =
‖x+ y‖

s+ t+ ‖x+ y‖
−

‖x‖

s+ ‖x‖

≤
‖x‖+ ‖y‖

s+ t+ ‖x‖+ ‖y‖
−

‖x‖

s+ ‖x‖
=

s‖y‖ − t‖x‖

(s+ t+ ‖x‖+ ‖y‖)(s+ ‖x‖)

<
st− t‖x‖

(s+ t+ ‖x‖+ ‖y‖)(s+ ‖x‖)
, since ‖y‖ < t,

≤ 0, since s ≤ ‖x‖ ⇒ st < t‖x‖.

Therefore, ν(x+ y, s+ t) < ν(x, s) ⋄ ν(y, t).
If ‖x+ y‖ < s+ t then

ν(x+ y, s+ t) = 0 ≤
‖x‖

s+ ‖x‖
= ν(x, s) ⋄ ν(y, t).

If ‖x‖ < s and ‖y‖ ≥ t then in the similar manner (as in the case when
‖x‖ ≥ s and ‖y‖ < t) we can show that ν(x + y, s + t) ≤ ν(x, s) ⋄ ν(y, t).
If ‖x‖ < s and ‖y‖ < t then ν(x, s) + ν(y, t) = 0 + 0 < 1. Therefore,
ν(x, s)⋄ν(y, t) = 0. Also ‖x+y‖ ≤ ‖x‖+‖y‖ < s+t and hence ν(x+y, s+t)
= 0. Hence ν(x+ y, s+ t) = ν(x, s) ⋄ ν(y, t). Thus, in any case

ν(x+ y, s+ t) ≤ ν(x, s) ⋄ ν(y, t).

(v) If t > ‖x‖ then from the definition it is clear that lim
t→∞

ν(x, t) = 0. If

x 6= θ and t ≤ ‖x‖ then

lim
t→∞

ν(x, t) = lim
t→∞

‖x‖

t+ ‖x‖
= 0.

If x = θ and t ≤ ‖x‖ then

lim
t→∞

ν(x, t) = lim
t→∞

ν(θ, t) = lim
t→∞

0

t
= 0.

Hence

lim
t→∞

ν(x, t) = 0 ∀x ∈ V.

Thus ν is a fuzzy antinorm on V with respect to the t-conorm ⋄ and (V, ν)
is a fuzzy anti-normed linear space with respect to the t-conorm ⋄.

Note 3.7. The above example does not satisfy the conditions (vi) and (vii).

Example 3.8. Let (V, ‖ · ‖) be a normed linear space and consider a ⋄ b =
max{a, b}. Define ν : V × R → [0, 1] by

ν(x, t) =

{

‖x‖
t+‖x‖ , if t > 0,

1, if t ≤ 0.
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Then by Example 3.2 of [11] it follows that ν is a fuzzy antinorm on V with
respect to the t-conorm ⋄ and (V, ν) is a fuzzy anti-normed linear space with
respect to the t-conorm ⋄.

Note 3.9. The above example does not satisfy the condition (vi) and
satisfies the condition (vii).

Example 3.10. Let (V, ‖ · ‖) be a normed linear space and consider a⋄ b =
min{a+ b, 1}. Define ν : V × R → [0, 1] by

ν(x, t) =

{

‖x‖
2t−‖x‖ , if t > ‖x‖,

1, if t ≤ ‖x‖.

Then ν satisfies all conditions of Definition 3.1. Therefore, ν is a fuzzy
antinorm on V with respect to the t-conorm ⋄ and (V, ν) is a fuzzy anti-
normed linear space with respect to the t-conorm ⋄.

Note 3.11. The above example satisfies both conditions (vi) and (vii).

Theorem 3.12. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄ satisfying (vi) and (viii). Then for any α ∈ (0, 1) the function
‖x‖∗α : X → [0,∞) defined as

(ix) ‖x‖∗α =
∧

{t > 0 : ν(x, t) ≤ 1− α}, α ∈ (0, 1)

is a norm on V .

Proof. (i) For x ∈ V, ν(x, t) = 1 for t ≤ 0 ⇒
∧

{t > 0 : ν(x, t) ≤ 1−α} ≥ 0,
α ∈ (0, 1) ⇒ ‖x‖∗α ≥ 0, α ∈ (0, 1).

(ii) ‖x‖∗α = 0 ⇒ ν(x, t) ≤ 1− α < 1, ∀t ∈ R, t > 0 ⇒ x = θ, [by (vi)].
Conversely, x = θ ⇒ ν(x, t) = 0, ∀t > 0 ⇒

∧

{t > 0 : ν(x, t) ≤ 1 − α}
= 0, ∀α ∈ (0, 1) ⇒ ‖x‖∗α = 0.

(iii) If c 6= 0 then

‖cx‖∗α =
∧

{s > 0 : ν(cx, s) ≤ 1− α}

=
∧

{

s > 0 : ν

(

x,
s

|c|

)

≤ 1− α

}

=
∧

{|c|t > 0 : ν(x, t) ≤ 1− α}

=
∧

|c|{t > 0 : ν(x, t) ≤ 1− α} = |c|‖x‖∗α.

If c = 0 then ‖cx‖∗α = ‖θ‖∗α = 0 = 0. ‖x‖∗α = |c| ‖x‖∗α .

(iv) ‖x‖∗α + ‖y‖∗α

=
∧

{t > 0 : ν(x, t) ≤ 1− α}+
∧

{s > 0 : ν(y, s) ≤ 1− α}, ∀α ∈ (0, 1)
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≥
∧

{t+ s > 0 : ν(x, t) ≤ 1− α, ν(y, s) ≤ 1− α}

≥
∧

{t+ s > 0 : ν(x+ y, t+ s) ≤ 1− α [by (viii)]

= ‖x+ y‖∗α .

Hence, {‖·‖∗α} is a norm on V.

Remark 3.13. The norm defined above is more general than the norm
defined in Theorem 3.2 of [3]; since instead of ν(x, t) < α we write
ν(x, t) ≤ 1− α.

Theorem 3.14. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄. If α1 ≤ α2, then ‖x‖∗α1

≤ ‖x‖∗α2
i.e., {‖·‖∗α : α ∈ (0, 1)} is

an increasing family of norms on V .

Proof. α1 ≤ α2 we have

{t > 0 : ν(x, t) ≤ 1− α2} ⊂ {t > 0 : ν(x, t) ≤ 1− α1}

⇒
∧

{t > 0 : ν(x, t) ≤ 1− α2} ≥
∧

{t > 0 : ν(x, t) ≤ 1− α1}

⇒ ‖x‖∗α2
≥ ‖x‖∗α1

.

In the following theorem we describe another one equivalent expression
for ν, which will be useful to describe Riesz theorem in fuzzy environment.

Theorem 3.15. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄ satisfying (vi), (vii), (viii) and let ν ′ : V × R → [0, 1] be
defined by

(x) ν ′(x, t) =

{

∧

{1− α : ‖x‖∗α ≤ t}, if (x, t) 6= (θ, 0),

1, if (x, t) = (θ, 0).

Then ν ′ = ν, where ‖·‖∗α is a increasing family of norms given by (ix).

To prove this theorem we use the following lemma.

Lemma 3.16. Let (V,A∗) be a fuzzy antinormed linear space with respect to
a t-conorm ⋄ satisfying (vi), (vii), (viii) and {‖·‖∗α : α ∈ (0, 1)} be increasing
family of norms of V, defined by (ix). Then for x0( 6= θ) ∈ V , α ∈ (0, 1) and
s(> 0) ∈ R,

‖x0‖
∗
α = s ⇔ ν(x0, s) = 1− α.

Proof. Let ‖x0‖
∗
α = s, then s > 0. Then there exists a sequence {sn}n∈N,

sn > 0 such that ν(x0, sn) ≤ 1 − α, for all n ∈ N and sn → s as n → ∞.
Therefore

lim
n→∞

ν(x0, sn) ≤ 1− α ⇒ ν(x0, lim
n→∞

sn) ≤ 1− α by (vii)

⇒ ν(x0, ‖x0‖
∗
α) ≤ 1− α, ∀α ∈ (0, 1).
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Let α ∈ (0, 1), x0( 6= θ) ∈ V and s = ‖x0‖
∗
α =

∧

{t : ν(x0, t) ≤ 1− α}. Since
ν(x, ·) is continuous (by (vii)) we have

(1) ν(x0, s) ≤ 1− α.

If possible, let ν(x0, s) < 1 − α, then by (vii) there exists s′ > s such that
ν(x0, s

′) < ν(x0, s) < 1 − α, which is impossible since s =
∧

{t : ν(x0, t)
≤ 1− α}. Thus

(2) ν(x0, s) ≥ 1− α.

From (1) and (2) it follows that ν(x0, s) = 1− α. Thus

(3) ‖x0‖
∗
α = s ⇒ ν(x0, s) = 1− α.

Next, if ν(x0, s) = 1− α, α ∈ (0, 1) then by (vii)

(4) ‖x0‖
∗
α =

∧

{t : ν(x0, t) ≤ 1− α} = s.

Hence, from (3) and (4), we have for α ∈ (0, 1), x( 6= θ) ∈ V and for s > 0,
‖x0‖

∗
α = s ⇔ ν(x0, s) = 1− α.

Proof of the main theorem. Let (x0, t0) ∈ V ×R. To prove this theorem,
we consider the following cases:

Case 1: For any x0 ∈ V and t ≤ 0, ν(x0, t0) = ν ′(x0, t0) = 1.

Case 2: If x0 = θ, t0 > 0. Then ν(x0, t0) = ν ′(x0, t0) = 0.

Case 3: x0 6= θ, t0(> 0) ∈ R such that ν(x0, t0) = 1. By Lemma 3.16
we have, ν(x0, ‖x‖

∗
α) = 1−α for all α ∈ (0, 1). Since ν(x0, t0) = 1 > 1−α it

follows that ν(x0, ‖x‖
∗
α) ≤ 1−α < ν(x0, t0) and since ν(x0, ·) is strictly non

increasing t0 < ‖x0‖
∗
α, ∀α ∈ (0, 1). So, ν ′(x0, t0) =

∧

{1 − α : ‖x0‖
∗
α ≤ t0}

= 1. Thus, ν(x0, t0) = ν ′(x0, t0) = 1.

Case 4: x0 6= θ, t0(> 0) ∈ R such that ν(x0, t0) = 0. From (ix) it follows
that ‖x0‖

∗
α < t0, ∀α ∈ (0, 1). Therefore, ‖x0‖

∗
α < t0 ⇒ ν ′(x0, t0) = 0, by (x).

Thus, ν(x0, t0) = ν ′(x0, t0) = 0.

Case 5: x0 6= θ, t0(> 0) ∈ R such that 0 < ν(x0, t0) < 1. Let ν(x0, t0) =
1− β, then from (ix) we have

(5) ‖x‖∗β ≤ t0.

Using (5) from (x) we get, ν ′(x0, t0) ≤ 1− β. Therefore,

(6) ν(x0, t0) ≥ ν ′(x0, t0).

Now, from Lemma 3.16 we have ν(x0, t0) = 1 − β ⇔ ‖x‖∗β = t0. Now, for

β < α < 1, let ‖x‖∗α = t′. Then again by Lemma 3.16, we have ν(x0, t
′) =

1 − α. So, ν(x0, t
′) = 1 − α < 1 − β = ν(x0, t0). Since ν(x0, ·) is strictly

monotonically decreasing and ν(x0, t
′) < ν(x0, t0) therefore t′ > t0. Then for
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β < α < 1, we have ‖x‖∗α = t′ > t0. So,

(7) ν ′(x0, t0) ≥ 1− β = ν(x0, t0).

Thus, from (6) and (7) we have ν(x0, t0) = ν ′(x0, t0). Since (x0, t0) ∈ V ×R

is arbitrary, ν ′(x, t) = ν(x, t0) for all (x, t) ∈ V × R.

Lemma 3.17. In a fuzzy antinormed linear space (V,A∗) with respect to a
t-conorm ⋄ satisfying (vi), (vii) and (viii), every sequence is convergent if and
only if it is convergent with respect to its corresponding α-norms, α ∈ (0, 1).

Proof. ⇒ Part: Let (V,A∗) be a fuzzy antinormed linear space satisfying
(vi) and (vii) and {xn}n∈N be a sequence in V such that xn → x

lim
n→∞

ν(xn − x, t) = 0, ∀t > 0.

Choose 0 < α < 1. So, lim
n→∞

ν(xn − x, t) = 0 < 1 − α ⇒ there exists no(t)

such that

(8) ν(xn − x, t) < 1− α, ∀n ≥ n0(t, α).

Now,

‖xn − x‖∗α =
∧

{t > 0 : ν(xn − x, t) ≤ 1− α}

⇒ ‖xn − x‖∗α ≤ t, ∀n ≥ n0(t, α).

Since t > 0 is arbitrary,

‖xn − x‖∗α → 0 as n → ∞, ∀α ∈ (0, 1).

⇐ Part: Next we suppose that, ‖xn − x‖∗α → 0 as n → ∞, ∀α ∈ (0, 1).
Then for α ∈ (0, 1), ǫ > 0 there exists n0(α, ǫ) such that

(9) ‖xn − x‖∗α < ǫ, ∀n ≥ n0(α, ǫ), α ∈ (0, 1).

Now,

ν(xn − x, ǫ) =
∧

{1− α : ‖xn − x‖∗α ≤ ǫ}

⇒ ν(xn − x, ǫ) ≤ 1− α, ∀n ≥ n0(α, ǫ), α ∈ (0, 1)

⇒ lim
n→∞

ν(xn − x, ǫ) = 0.

Thus xn converges to x.

Corollary 3.18. Let (V,A∗) be a fuzzy antinormed linear space with
respect to a t-conorm ⋄ satisfying (vi), (vii) and (viii). W (⊆ V ) is closed in
(V,A∗) if and only if it is closed with respect to its corresponding α-norms,
α ∈ (0, 1).

In the following lemma, a finite dimensional space is characterized by
compact set in fuzzy environment and this will lead us to one of the fun-
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damental differences between finite dimensional and infinite dimensional
normed spaces with respect to fuzzy antinorms.

Lemma 3.19. (Riesz) Let W be a closed and proper subspace of a fuzzy
antinormed linear space (V, ν) with respect to a t-conorm ⋄, satisfying (vi),
(vii) and (viii). Then for each ǫ > 0 there exists y ∈ V − W such that
ν(y, 1) ≤ 1− α and ν(y − w, 1− ǫ) ≤ 1− α for all α ∈ (0, 1) and w ∈ W .

Proof. Recall that, ‖x‖∗α =
∧

{t : ν(x, t) ≤ 1 − α}, α ∈ (0, 1) and {‖ · ‖∗α :
α ∈ (0, 1)} is an increasing family of α-norms on a linear space V . Now, by
applying Riesz lemma for normed linear space, it follows that for any ǫ > 0
there exists y ∈ V −W such that

‖y‖∗α = 1,(10)

‖y − w‖∗α > 1− ǫ, ∀w ∈ W.(11)

Now, from Theorem 3.15 for all α ∈ (0, 1) we have

ν(y, t) =
∧

{1− α : ‖y‖∗α ≤ t}

⇒ ν(y, 1) =
∧

{1− α : ‖y‖∗α ≤ 1}

⇒ ν(y, 1) ≤ 1− α.

Again,

ν(y − w, t) =
∧

{1− α : ‖y − w‖∗α ≤ t}

⇒ ν(y − w, ǫ) =
∧

{1− α : ‖y − w‖∗α ≤ ǫ}

⇒ ν(y − w, ǫ) ≤ 1− α.

Hence the proof.

Theorem 3.20. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄, satisfying (vi), (vii) and (viii). If the set {x : ν(x, 1) ≤
1− α}, α ∈ (0, 1) is compact, then V is a space of finite dimension.

Proof. It can be easily verified that {x : ν(x, 1) ≤ 1 − α} = {x : ‖x‖∗α
≤ 1}, α ∈ (0, 1). By applying Lemma 3.19, it can be proved that if for some
α ∈ (0, 1) the set {x : ‖x‖∗α ≤ 1} is compact, then V is of finite dimensional.
Using Lemma 3.17, it follows that, for some α ∈ (0, 1), {x : ν(x, 1) ≤ 1−α}
is compact, then V is a space of finite dimension.

4. Fuzzy α-anti-convergence

In this section, the relations of fuzzy α-anti-convergence, fuzzy α-anti-
Cauchyness, fuzzy α-anti-compactness with respect to their corresponding
increasing family norms are studied.
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Theorem 4.1. Let (V,A∗) be a fuzzy antinormed linear space with re-
spect to a t-conorm ⋄, satisfying (vi), (vii), (viii) and {‖·‖∗α : α ∈ (0, 1)}
be increasing family of norms of V, defined by (ix). Then, for any increas-
ing (or, decreasing) sequence {αn}n∈N in (0, 1), αn → α in (0, 1) implies
‖x‖∗αn

→ ‖x‖∗α, ∀x ∈ V.

Proof. For x = θ, it is clear that αn converges to α ⇒ ‖x‖∗αn

→ ‖x‖∗α .

Suppose x 6= θ. Then, from Lemma 3.16, for x 6= θ, α ∈ (0, 1) and t′ > 0,
we have

‖x‖∗α = t′ ⇔ ν(x0, t
′) = 1− α.

Let {αn}n∈N be an increasing sequence in (0, 1), such that αn converges to
α in (0, 1). Let ‖x‖∗αn

= sn and ‖x‖∗α = s. Then,

(12) ν(x, sn) = 1− αn and ν(x, s) = 1− α.

Since {‖·‖∗α : α ∈ (0, 1)} is an increasing family of norms, {sn}n∈N is an
increasing sequence of real numbers. Since {sn}n∈N is an increasing sequence
of real numbers and is bounded above by s, {sn}n∈N is convergent. Thus,

(13) lim
n→∞

ν(x, sn) = 1− lim
n→∞

αn ⇒ ν(x, lim
n→∞

sn) = 1− α.

From (12) and (13) we have ν(x, lim
n→∞

sn) = ν(x, s). This implies lim
n→∞

sn

= s, by (vii). Therefore,

lim
n→∞

‖x‖∗αn

= ‖x‖∗α.

Similarly, if {αn}n∈N is a decreasing sequence in (0, 1) and αn converges to
α in (0, 1) then, it can be easily shown that ‖x‖∗αn

→ ‖x‖∗α, ∀x ∈ V.

Definition 4.2. Let (V,A∗) be a fuzzy antinormed linear space with
respect to a t-conorm ⋄ and α ∈ (0, 1). A sequence {xn}n∈N in V is said to
be fuzzy α-anti-convergent in (V,A∗), if there exists x ∈ V such that for all
t > 0

lim
n→∞

ν(xn − x, t) < 1− α.

Then x is called fuzzy α-antilimit of xn.

Theorem 4.3. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄ satisfying (vi) and (viii). Then fuzzy α-antilimit of a fuzzy
α-anti-convergent sequence is unique.

Proof. Let {xn}n∈N be a fuzzy α-anti-convergent sequence and suppose it
converges to x and y in V . Then for all t > 0

lim
n→∞

ν(xn − x, t) < 1− α and lim
n→∞

ν(xn − y, t) < 1− α.
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Now,

ν(x− y, t) = ν(x− xn + xn − y, t), ∀n

= ν(xn − x, t) ⋄ ν(xn − y, t), ∀n.

Taking limit we have

ν(x− y, t) = lim
n→∞

ν(xn − x, t) ⋄ lim
n→∞

ν(xn − y, t)

< (1− α) ⋄ (1− α) = (1− α), (by (viii)).

That is, ν(x− y, t) < 1, ∀t > 0. Therefore, x− y = θ by (vi) ⇒ x = y.

Theorem 4.4. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄, satisfying (vi) and (viii). If {xn}n∈N is a fuzzy α-anti-
convergent sequence in (V,A∗) such that xn converges to x, then ‖xn − x‖∗α
→ 0 as n → ∞.

Proof. Since {xn}n∈N be a fuzzy α-anti-convergent sequence, suppose it
converges to x, then for all t > 0,

lim
n→∞

ν(xn − x, t) < 1− α

⇒ ∃n0(t) > 0 such that ν(xn − x, t) < 1− α, ∀n ≥ n0(t)

⇒ ∃n0(t) > 0 such that ‖xn − x‖∗α ≤ t, ∀n ≥ n0(t).

Since t > 0 is arbitrary, ‖xn − x‖∗α → 0 as n → ∞.

Definition 4.5. Let (V,A∗) be a fuzzy anti-normed linear space with
respect to a t-conorm ⋄ and α ∈ (0, 1). A sequence {xn}n∈N in V is said to
be fuzzy α-anti-Cauchy sequence if

lim
n→∞

ν(xn − xn+p, t) ≤ 1− α, ∀t > 0, p = 1, 2, 3, . . . .

Theorem 4.6. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄, satisfying (viii) and α ∈ (0, 1). Then every fuzzy α-anti-
convergent sequence in (V,A∗) is a fuzzy α-anti-Cauchy sequence in (V,A∗).

Proof. Let {xn}n∈N be a fuzzy α-anti-convergent sequence and it converging
to x. Then

lim
n→∞

ν(xn − x, t) < 1− α.

Now,

ν(xn − xn+p, t) = ν(xn − x+ x− xn+p, t), for p = 1, 2, 3, . . . .

= ν

(

xn − x,
t

2

)

⋄ ν

(

xn+p − x,
t

2

)

, for p = 1, 2, 3, . . . .
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Therefore,

lim
n→∞

ν(xn − xn+p, t) ≤ lim
n→∞

ν

(

xn − x,
t

2

)

⋄ lim
n→∞

ν

(

xn+p − x,
t

2

)

< (1− α) ⋄ (1− α) = (1− α), (by (viii)).

Hence, {xn}n∈N is a fuzzy α-anti-Cauchy sequence in (V,A∗).

Note 4.7. Every constant sequence in a fuzzy antinormed linear space
(V,A∗), with respect to a t-conorm ⋄, is a fuzzy α-anti-Cauchy sequence in
(V,A∗), α ∈ (0, 1).

Proof. Obvious.

Theorem 4.8. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄, satisfying (vi) and (viii). Then every Cauchy sequence in
(V, ‖ · ‖∗α) is a fuzzy α-anti-Cauchy sequence in (V,A∗), where ‖ · ‖∗α denotes
the increasing family of norms on V defined by (ix), α ∈ (0, 1).

Proof. Choose α0 ∈ (0, 1) arbitrary but fixed. Let {yn}n∈N be a Cauchy
sequence in V with respect to ‖ · ‖∗α0

. Then

lim
n→∞

‖yn − yn+p‖
∗
α0

= 0.

Then for any given ǫ (> 0) there exists a positive integer n0(ǫ) such that
‖yn − yn+p‖

∗
α0

< ǫ, ∀n ≥ n0(ǫ) and p = 1, 2, 3, . . . .

⇒
∧

{t > 0 : ν(yn − yn+p, t) ≤ 1− α0} < ǫ,

⇒ there exists t(n, p, ǫ) < ǫ such that

ν(yn − yn+p, t(n, p, ǫ)) ≤ 1− α0, ∀n ≥ n0(ǫ) and p = 1, 2, 3, . . . .

⇒ ν(yn − yn+p, ǫ) ≤ 1− α0.

Since ǫ (> 0) is arbitrary, lim
n→∞

ν(yn−yn+p, t) ≤ 1−α0, ∀t > 0 ⇒ {yn}n∈N

is fuzzy α0-anti-Cauchy sequence in (V,A∗).

Since α0 ∈ (0, 1) is arbitrary, every Cauchy sequence in (V, ‖·‖∗α) is fuzzy
α-anti-Cauchy sequence in (V,A∗) for each α ∈ (0, 1).

Definition 4.9. Let (V,A∗) be a fuzzy antinormed linear space with
respect to a t-conorm ⋄ and α ∈ (0, 1). It is said to be fuzzy α-anti-complete
if every fuzzy α-anti-Cauchy sequence in V fuzzy α-anti-converges to a point
of V .

Theorem 4.10. Let (V,A∗) be a fuzzy antinormed linear space with respect
to a t-conorm ⋄, satisfying (vi) and (viii). If (V,A∗) is fuzzy α-anti-complete
then V is complete with respect to ‖·‖∗α , α ∈ (0, 1).
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Proof. Choose α0 ∈ (0, 1) arbitrary but fixed. Let {yn}n∈N be a Cauchy
sequence in V with respect to ‖·‖∗α0

, then {yn}n∈N is fuzzy α0-anti-Cauchy
sequence in (V,A∗).

Since (V,A∗) is fuzzy α0-anti-complete, there exists y ∈ V such that
lim
n→∞

ν(yn − y, t) < 1− α0, ∀t > 0 ⇒ lim
n→∞

‖yn − y‖∗α0
= 0, by Theorem 4.4.

⇒ yn → y with respect to ‖·‖∗α0
.

⇒ (V, ‖·‖∗α0
) is complete.

Since α0 is arbitrary, (V, ‖·‖∗α) is complete.
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