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Abstract. The purpose of this paper is to determine spectrum and fine spectrum of
newly introduced operator A2, on sequence space ;. The operator A2, . on sequence
space 11 is defined by A2,z = (UnTrn + Vn—1Tn—1 + Wn—2Tn—2)0eo With x_1,2_2 = 0,
where © = (z,,) € l1, u = (ug) is either constant or strictly increasing sequence of positive
real numbers with U = klim uk, v = (vg) is a sequence of real numbers such that vy # 0

— 00
for each k € Ny with V' = lim v # 0 and w = (wy) is a non-increasing sequence of
k— o0
positive real numbers such that wy # 0 for each k£ € Ny with W = hm wr # 0. In

this paper we have obtained the results on spectrum and point bpectrum for the operator
A2 over sequence space l;. We have also obtained the results on continuous spectrum
oe(A2,,,11), residual spectrum o,.(A2,,,11) and fine spectrum of the operator A2,,, on
sequence space [1.

1. Introduction

The study of spectrum and fine spectrum for various operators are made
by various authors. The fine spectra of the Cesaro operator on the sequence
space [, has been studied by Gonzalez [8], where 1 < p < co. Also weighted
mean operators on I, have been investigated by Cartlidge [5]. The fine spec-
tra of difference operator A over the sequence spaces [, and bv,, is determined
by Akhmedov and Basar [1, 2|. Also the fine spectra of difference operator A
over the sequence spaces [; and bv is studied by Kayaduman and Furkan [9];
later the fine spectrum of the generalized difference operator B(r, s) over se-
quence spaces 1 and bv is established by Furkan et al. [6]. The fine spectrum
of the same operator over the sequence space [, and bvy, (1 < p < co) has
been studied by Bilgic and Furkan [4]. The fine spectrum of the generalized
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difference operator B(r, s,t) over sequence spaces 1 and bv is established by
[3], where 7, s,t are taken as scalars.

The present work is a continuation of earlier papers which give the charac-
terization of spectrum and fine spectrum of the generalized second order for-
ward difference operator A2 for various real sequences u = (u),v = (vy)
and w = (wy) under certain restrictions over the sequence space [y. It is easy
to verify that by choosing suitably u,v and w sequences, i.e., for suitable
A2 one can get easily the operators such as B(r,s,t). If u = (r),v = (s)
and w = (t), then the operator A2 reduces to B(r,s,t). Similarly, if
u = (1),v = (=2) and w = (1) are constant sequences, then the operator
A2 . reduces to second order forward difference operator A2. Thus, the
results of this paper unify the corresponding results of many operator whose

matrix representation is a triple-band matrix.

2. Preliminaries and notation

Let X and Y be the Banach spaces and T : X — Y be a bounded linear
operator. We denote the range of T as R(T), where R(T) ={y €Y :y =
Tz, x € X}, and the set of all bounded linear operators on X into itself is
denoted by B(X). Further, the adjoint T* of T' is a bounded linear operator
on the dual space X* of X defined by

(T*p)(x) = ¢(Tx) for all ¢ € X* and z € X.

Let X # {0} be a complex normed space and T' : D(T) — X be a
linear operator with domain D(7T) C X. With T, we associate the operator
T, = (T — o), where « is a complex number and I is the identity operator
on D(T). The inverse of T, (if exists) is denoted by T, !, where T, =
(T — al)~! and is known as the resolvent operator of T It is easy to verify
that T, ! is linear, if T, is linear. Since the spectral theory is concerned with
many properties of T, and 7T, ! which depend on «a, so we are interested
in the set of those a in the complex plane for which T, ! exists or T, ! is
bounded or domain of T, ! is dense in X. For this, we need some definitions
and known results given below which will be used in the sequel.

DEFINITION 2.1. ([10], pp. 371) Let X # {0} be a complex normed space
and T : D(T) — X be a linear operator with domain D(T") C X. A regular
value of T' is a complex number « such that

(R1) T ! exists,

(R2) T,;! is bounded,

(R3) T,;! is defined on a set which is dense in X.

Resolvent set p(T,X) of T is the set of all regular values o of T. TIts
complement o(7T, X) = C\ p(T, X) in the complex plane C is called spec-
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trum of T. The spectrum o (7, X) is further partitioned into three disjoint
sets namely point spectrum, continuous spectrum and residual spectrum as
follows:

Point Spectrum o,(T, X) is the set of all a € C such that 7T, ! does not
exists, i.e., condition (R1) fails. The element of 0,,(T, X) is called eigenvalue
of T

Continuous spectrum o.(T, X) is the set of all « € C such that conditions
(R1) and (R3) hold but condition (R2) fails, i.e., T); ! exists, domain of T},
is dense in X but 7, ! is unbounded.

Residual Spectrum o,(T, X) is the set of all a € C such that T, ! exists
but do not satisfy conditions (R3), i.e., domain of 7;;! is not dense in X.
The condition (R2) may or may not holds good.

Goldberg’s classification of operator T, ([7], pp. 58): Let X be
a Banach space and T, € B(X), where « is a complex number. Again let
R(T,) and T;; ! denote the range and inverse of the operator Ty, respectively.
Then the following possibilities may occur;

(A) R(T,) = X,
(B> R(Ta) 7é R(Toc) =X,
(C) R(Tn) # X,

and

(1) T, is injective and T, ! is continuous,
(2) T, is injective and T, ! is discontinuous,
(3) T, is not injective.

REMARK 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine
different cases. These are labelled by Ay, As, As, B1, Bs, Bs, C, Cy and Cs.
The notation o € Ay (T, X) means the operator T, € Ay, i.e., R(T,) = X
and T, is injective but T, ! is discontinuous. Similarly others.

REMARK 2.3. If « is a complex number such that T, € A; or T,, € By, then
a belongs to the resolvent set p(T, X) of T on X. The other classification
gives rise to the fine spectrum of 7.

DEFINITION 2.4. ([11], pp. 220-221) Let A, u be two nonempty subsets of
the space w of all real or complex sequences and A = (a,)) be an infinite
matrix of complex numbers a,j, where n,k € Ng = {0,1,2,...}. For every
x = (xx) € A and every integer n, we write

An(m) = Z AnkT,
k
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where the sum without limits is always taken from £ = 0 to £ = oo. The
sequence Az = (Ay(x)), if it exists, is called the transformation of = by the
matrix A. Infinite matrix A € (A, ) if and only if Az € u whenever z € A.

LEMMA 2.5. ([12], pp. 126) The matriz A = (ank) gives rise to a bounded
linear operator T € B(ly) from Iy to itself if and only if the supremum of [
norms of the columns of A is bounded.

Note: The operator norm of 7' is the supremum of the [; norms of the
columns.

LEMMA 2.6. (|7], pp. 59) T has a dense range if and only if T* is one to
one, where T denotes the adjoint operator of the operator T .

LEMMA 2.7. (|7], pp. 60) The adjoint operator T* of T is onto if and only
if T has a bounded inverse.

2

3. Spectrum and point spectrum of the operator A:,

space [

In this section we introduce the new second order forward difference
operator A2 and compute spectrum, point spectrum of the operator A2,
over space [j.

Let u = (uy) is either constant or strictly increasing sequence of positive

real numbers with U = klim ug, and v = (vg) be a sequence of real numbers
— 00
such that v # 0 for each k € Ny with V = klim vp # 0 and w = (wg) is a
— 00

non-increasing sequence of positive real numbers such that wy # 0 for each
k € Ng with W = klim wy, # 0. We define the operator A2~ on sequence
— 00

space [ as

on sequence

w

2 00 .
A%t = (UnZp + Up—1Tn—1 + Wn—2Tp—2)peg With x_1,2_5 = 0,

where z = (z,,) € [;.

2
uvwW

It is easy to verify that the operator A can be represented by the
matrix

uy 0 0 O

v9o uwp 0 0

Afww = |lwy vi w2 O
0 wi v wu3

Through out this work, we take /z, if z is a complex number, as the
square root of z with non-negative real part. If Re(y/z) = 0 then /2 repre-
sents the square root of z with Im(y/z) > 0.
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THEOREM 3.1. The generalized second order forward difference operator

AZ il = 11 is a bounded linear operator and ||AZ,, |4y 1) = sgp(|uk| +

|vg| + |wg]).

Proof. Proof is simple. So we omit.

_ : 2|(U—a)]| <
THEOREM 3.2. Define the setS by S = {a eC: v o) S 1}
and assume VV2 = =V . Then spectrum of the operator A% . on sequence

uvw
2

space 1y is giwen by o(A%,.,,l1) =S.
Proof. The proof of the theorem is divided into two parts.
In the first part, we show that o(A2,,,1;) C S, which we prove by contra-

uvw?
2(U— a)
—V +/V2—4W (U— a)

diction. That is assuming o € C with > 1, we will

show that o € p(A2,,, 11).
In second part, we establish the reverse inequality, i.e., S C p(A2, ., [1).
2(U— a)
Vo) > 1. Clearly, « # U
and a # uy for each k € Ny as it does not satisfy the condition. Further,
(A2 —al) reduces to a triangle and hence has an inverse. Thus, (A2

Part I: Let o« € C with

uvwW uvw
al)™t = (bu), where
1
ug—cv 0 0 O0...
— 1
_ o= a) (=) S0 00...
(bnk) - VU1 wo _— 1 0 ,

(wo—a)(u1—a)(uz—a) ~ (up—a)(uz—a) (ui—a)(uz—a) uz—o

—Un—1bp_1 k—Wn—2bn_2k
(un—a) ’

By Lemma 2.5, the operator (A

and bn,kz =

2
uvw

—al)™t € (I3, 1) if the supremum of

I1 norms of the columns of (b,) is bounded, i.e., supz |bpg| < 00.

n=0

(0.)
In order to show that supz |bpi| < o0, first we prove that the series
k

n=0

o0
Z |bni| is convergent for each k € Ny.

n=0

o0
For this, consider Sj, = Z |brk| = bk |+ |bkt1.5 |+ |bkt2,k]|+ - .. Clearly,
n=0
series for k
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. 1 (—1)’Uk
%= = )| | ar = ) — )
(=1)0rv11 (—1)wy

+

(ur, — @) (U1 — @) (g2 — ) (ugp — @) (up2 — @)

+ (=1)% vk vk 110812
(wr — @) (upt1 — o) (g2 — ) (Upts — @)
N (—1)%wpvp 42
(ur, — @) (upt2 — @) (up43 — @)
(—1)2vpwp 41 N
(uk — ) (Upr2 — ) (upys —a)|

Now by letting
SV V2—AW (U - a)

—V = /VZAW(U - a)

= 20 — ) and 1z = 20 — o) !
we can observe,
1 1 1
li = =a; = _
L s Bl sl T o) [(r1) = (r2)]
lim Ok -V
koo (up — a)(upy1 — ) (U —a)? 2
1 2 2
= r1)° — (r
\/V2—4W(U—a)[( 1)” = (r2)7]
i UkUk+1 B wy
L | S Bl e [ p—y
& W 1 3 5
= - =az = r1)° — (r2)°].
U—-ap (©U-a2 7 \/V2—4W(U—a)[( )" = (ra)]
Clearly, a,, = m[(ﬁ)” — (ro)" forn=1,2,....

Since « is not in S, we have |ri| < 1. Now we show that |r3] < 1. Since
|r1] < 1, we have

2(U — «)

’1+\/1—4W(U—a)/V2 —

‘

Since |1 — /z| < |1 4+ /]| for any z € C, we must have

2(U — «)
—

‘1— V1—4W (U — a)/V?

< ‘

which leads us to the fact that |ra| < 1.



Spectrum and fine spectrum. . . 599

First consider the case V2 # 4W (U — ), then |ra| < |r1|. Clearly, the
series

o0
Sk = Z bk = [br k| + b1k + [bror] + ...

is convergent because,

|ar 2| T |(7"1)k+2 - (7“2)“2\

k—o00 |ak+1| k—o00 |(T’1)k+1 — (Tg)k+1‘
< I 71| F+2 + |rg|FH2
~ k—oo |T‘1|k+1 — ’T2|k+1

k+2 [ra| K+2
) 71l <1 +
= 111m

k—oo [ <1 B Mkﬂ)

bok+1k|

lim
bog

k—o00

[71]
= ’7”1’ < 1.
So, Sk is convergent for each £ € Ny. Now to show that sup S; < oo.

k
Taking limit both sides of Sk and since |r1| < 1 and ]7“2] <1, we get

k]j_{EOSRfZ]aM_‘\/VQ (Z’ 1!"+Z‘7‘2| ><oo.

Since (Sk) is a sequence of positive real numbers and khm S < o0, so
—00

sup Sg < 00.
k
Suppose V2 = 4W (U — «) then

2n -V "
A, = _— —
" -V /){120U-a)] "’
so, the series S; is convergent because,

bok+1,k
bor. i

= lim ’ak+2’ = mid

li =
e heroo |aps] ‘ 2(U — )

k—o0

<1,

since a ¢ S, implies 2(U—‘2¢)' < 1. So, Sk is convergent for each k € Np.

Now to show that sup S, < co. Then
k

n

20U — o)

< 00,

o0 o0 2n
lim S = =Y =
Jum, S = 2 laal ;\_v

by using ratio test and since

Z(U—‘;)' < 1. Therefore @ ¢ S implies
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supz |bnx| < oco. Thus,
n=0

(3.1) (A%, —al)™' € B(l)) fora € C

2(U — «)

>1
~V+/V2—4W (U - «)

with ‘

Next, we will show that domain of the operator (A2, — al)~! is dense

uvw

in [;. This statement holds if and only if range of the operator (A2, — al)
is dense in Iy. Since (A2, — al)~! € (I1,11), which implies that range of
the operator (A2, — al) is dense in ;. Hence we have
2(U —
(32)  o(A2,,.h) C{acC: ‘ Ulnl) <1},
~V +/V2—4W({U — «)
Part (II): We now prove the reverse inequality, i.e.,
2 —
(3.3) {aeC: ‘ -0 <1} Co(A2,,. 1)
~V+/V2—4W({U - «)

First we prove the inclusion 3.3 under the assumption that o # U and
a # ug for each k € Ny, i.e., we want to show that one of the conditions of
Definition 2.1 fails. Let a € S. Clearly, (A2,,, — ) is a triangle and hence
(A2, —al)~!exists. So, condition (R1) is satisfied but condition (R2) fails
as can be seen below:

Let us first consider V2 # 4W (U — «) implies |rq| > |ra].

. 2(U—a)
Suppose a € C with ’V+\/V24W(Ua) < 1. Then |r{| > 1, consequently,
. bok+1k| laksal . [(r)FPE = ()Pt
im | —=| = =
k—o00 bg]ﬁk

|T1|k+2|1 ( )k+2|

2)
k—oo agy1] koo [(r)FHE — (rg)FH|
T2
T1
T2

- llm =T > 17
koo [r1 [FF1]1 — (Z )k+1| 71l
which gives Sy, is divergent for each k& € Ny. Hence
(3.4) (A%, —al)™' ¢ B(l)) fora € C
with ’ 20U o) < 1.
V4 /V2—4W (U - a)
20U o) = 1 implies |r1] =1

Next, we consider a € C with ’

—VA/V2—aW (U~a)
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and 1 > |ra]. So,

— qim 22l g
k=00 |ag41]

bok+1,k
bog. i

lim
k—o00

Thus, ratio test fails. Now we apply Raabe’s test.

We have < bf}fi’fk - 1) = 0 for all £ > 1. Therefore,
b
lim k:( B L 1) —0<1,
k—oo  \ | bok+1,k

S0, the series Sy, diverges for k € Ny. Hence

(3.5) (A%, —al)™' ¢ B(l) fora € C

2(U - «)
TV V2-_aW (U —a)

with ‘

Now consider the case V2 = 4W (U — a), then a, = (3_13/) [ —V ] .

2(U—a)
Then,
y bokyik| . lagso| | =V
im = lim = ,
k—o0 bglﬁk k—o0 ]ak_,_l] 2(U — a)
when Q(E—Ya) > 1, the series S divergent for each k € Ny. But when
Q(E—Ya) =1, then ratio test fails. Then we apply Raabe’s test.
We have < b:,j%kk — 1) =0 for all k£ > 1. Therefore,
b
lim k(ﬂ —1) —0<1
k—o00 b2k+1,k

so, the series Sy diverges for k € Ny. Hence (R2) fails.
Thus,

(3.6) (A%, —al)™' ¢ B(l) fora € C

2(U — «)
~V +/V2—4W (U - «a)

with ‘

Finally, we prove the inclusion 3.3 under the assumption that a = U and
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a = uy, for each k € Ng. We have

(uo — @)z
vozo + (u1 — a)x;
(A2, —al)x = | wozo+ vir1 + (u2 — )z

w1z + vaxo + (uz — )3

Case (i): If (ug) is a constant sequence, say ug = U for each k € Ny, then
(A2, —UDNz=0 =x290=0,21=0,29=0,...
This shows that the operator (A2, — UI) is one to one, but R(A?

uvw uvw

is not dense in /3. So, condition (R3) fails. Hence U € O'(Auvw, l1).

Case (ii): If (ug) is a strictly increasing sequence of positive real numbers,
then for fixed &,

—UI)

(A7

uvw

—upl)zr =0

—v
=x9=0,21=0,...,25,_1 =0, Tpy1 = (Uk+lﬁuk)$k'

We take zj # 0 gives non zero solution of (A2, — u,I). This shows
that (A2

20w — url) is not injective. So, condition (R1) fails. Hence uy €
o(A2,,,11) for all k € Ng. Hence we have

2(U — o)
~V+/V2—4W(U - «)

From inclusions 3.2 and 3.7, we get

(A2, 1) = {aEC:’

(3.7) {aeC: ‘

2(U — «)
~V+/V2—4W (U - a)

)

This completes the proof. m

REMARK 3.3. If VV2 = V| then spectrum of the operator A2~ on se-
L . 2(U—a)| <
quence space 1 is given by o(A2 1) = {a eC: S S 1}.

THEOREM 3.4. Point spectrum of the operator A2, . on sequence space Iy

18

w

op(A;

uvw?

L) = { 0, if (ug) is a constant sequence,

{uo,u1,...}, if (ug) is a strictly increasing sequence.

Proof. The proof of this theorem divided into two cases.
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Case (i): Suppose (uy) is a constant sequence, say up = U for each
k € Ny. Consider A2, x = az for x # 0 = (0,0,...,) € l;, which gives
ugxry = axo
Voo + U1Tr1 = axy
WoTo + V1T1 + U2T2 = QX2
W1T1 + V2o + U3T3 = QX3
(3.8)

Wg—2Tk—2 + Vgp—1Tk—1 + URTE = QT

J
Let (x) is the first non-zero entry of the sequence z = (z,). So equation
Wi_9Xt—2 + V41241 + Uz = axy, implies o = U, and from the equation
Wy—1Ti—1 + vexy + Uz = aweq1, we get 2y = 0, which is a contradiction to
our assumption, therefore

Up(Angv ll) = 0.

Case (ii): Suppose (uy) is a strictly increasing sequence. Consider A2,
= ax for x # 0= (0,0,...,) € l;, which gives system of equation (3.8).

If o = uy, for all k > 1, then (A2, —upl)z = 0 gives = x9 = 0,21 =
0,...,2,-1 =0 and
()
Tpp1 = | ——— | Tk
Uk+1 — Uk
If we take zj # 0, then we get the non-zero solution of (A2, — al)x = 0.

Hence,
ap(A?ww,ll) = {ug,ur,ua,...}.

This completes the proof. =

4. Point spectrum of the adjoint operator A2 of A2~ on dual
sequence space [;

Let T : X — X be a bounded linear operator having matrix representa-
tion A and the dual space of X denoted by X*. Again, let T™ be its adjoint
operator on X*. Then the matrix representation of T* is the transpose of
the matrix A.

2%
uvwW

THEOREM 4.1. Point spectrum of the adjoint operator A
op(AZ: 13) =S.

uvw?

over 1] is
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Proof. The set S is already proved as (A2, .11). To prove this theorem,
we first need to show that o(AZ, [ 11) C op(AZ,,11).
Let @ € S = o(A2,,,1;) then H < 1. Suppose A2 f = af for
0+# felf =lx, where
u wvo wog 0 0 ... fo
0 Uul (%1 w1 0 e fl
A =10 0 wuy wvo wy ... and f= | fo

0 0 0 us V3 NN f3

Then we get the system of linear equations

uo fo + vof1 + wofo = afo
urfi +vifo+wifs =afi

(49) uz fo +vafs +wafs = afs

Solving the system of linear equations (4.9) in terms of fy and fi, we
obtain

i = (erofy — by fo) =)o Ly 2 )

where b_1 o and by_; 1 are defined as in last section.
For @« = a3 + iag € C and u = (uy) is strictly increasing sequence and

w = (wy) non-increasing positive real sequence, we get forn =0,1,...,k—2
= Up—01) F+(a9))2 < —((U—a1)*+(9)*)2 = )
O = (o) ()] < (U o) (e = |
Then
| frl < |bk—1,0f1 — be—1,1f0||U — @ W
Taking limit on both sides and choosing fy = 1 and f; = ==, we obtain
U—-a«a

k—1
(410 Jim 1] < Jim {loufs s fl| |U—w}

_hm{W?wﬂﬁ—wl—w>m
[V/VZ—4W (U - )

k—1
w—m}

W

k—o0
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) [ro|F=1ry — 1o U—altt
= lim |U — «of
k=20 [ri[[/V2 —4W (U - a)|| W
[ro|F~1 U — « k-1
N k—o00 ’?”1’
We have the relation
_ 2T — €U —
(4.11) U—o (U —a) " (U —a)
w V4 VZ2—AWU —a) -V —/V2—4W({U - a)
_ b
iy

Then using (4.11) in (4.10), we obtain

‘T.2|k71 1

’7“1‘ |T’17‘2|k_1 - k—o0

i < 1i
Jim [fi] < lim

since a € S. Hence,

(szwv ll) C O-P(Az:wv l*)

In the second part, we have to show that o,(AZf I3) C o(A2, ). Tt
is clear that o,(AZ 1) C (A%, 1%) and from Corollary 11.5.3 (i) [7],
o(A2, 1) = o(AZ,,17). So, combining we get

ap(Alns 7)) C o (A

uvwvl )

This completes the proof. =

5. Residual and continuous spectrum of the operator A2,
quence space [

w On se-

THEOREM 5.1. Residual spectrum o, (A?

2w 11) of the operator A2, over
ll 18
(A2 1) = S, if (ug) is a constant sequence,
o S\ {ug,u1,...}, if (ug) is a strictly increasing sequence.

Proof. The proof of the theorem is divided into two cases.

Case (i): Let (ug) be a constant sequence, say ux = U for each k € Ny.
For € C with 2|U — o < | =V + /V2Z—4W (U — a)|, the operator
(A2, —al) is a triangle except o = U and consequently (A2, —al) has an
inverse. Further by Theorem 3.4, the operator (A2, — al) is one to one for
a = U and hence has an inverse.

But by Theorem 4.1, the operator (A2

2|U—a|
|[=V+1/V2—4W (U—q)|

—al)* = A% — ol is not one

uvw uvw

< 1. Hence by Lemma 2.6, range

to one for o« € C with
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of the operator (A2, — al) is not dense in ;. Thus,

uvw
2|1U — «f }
o (A2 ¢ —{ae(C: <1;.
(B 0) |~V +/VZ—aW (U —a)
Case (ii): Let (ug) be a strictly increasing sequence. For o € C such

that 7 \/al;:fv‘vwia)‘ < 1, the operator (A2, —al) is a triangle except

o = uy, for all k € Ny and consequently the operator (A2

cow — l) has an
inverse. Further by Theorem 3.4, the operator (A2, — al) is not one to one
for a = wy, for all k € Ny. So, (A2,, — al)~! does not exist.

On the basis of argument as given in Case (i), it is easy to verify that

the range of the operator (A2, — ) is not dense in /;. Thus,

9 2|U — a\
(Auvuﬂl) {OéEC |—V—|—\/V2 ( )|— }\{u07u17u27--'}'

THEOREM 5.2. Continuous spectrum o.(A2

2 o2 11) of the operator A2,
over ly s

O-C(Auvw? ll) 0.

Proof. It is known that o,(AZ . 11), O’T(A%vw,ll), and o.(A2, ), 11) are
pairwise disjoint and union of these is o(A2,,,11). But by Theorems 3.2,

3.4, and 5.1, we get
U(Ang,l ) - Up(Angv ll) U JT(Auvwv ll)

for both constant and non-constant sequence. Therefore, o.(A2, ,,11) = 0. =

6. Fine spectrum of the operator A2 on sequence space Iy

w
. 2|U—aq| 2 _
THEOREM 6.1. If a satisfies TV > 1, then (AZ,, — al)
€ Ay
Proof. It is required to show that the operator (A2, — al) is bijective
and has an inverse for a € C with 2lU—o)l > 1. Since a # U,
|[=V+4/V2—4W (U-0a)|
therefore the operator (A%vw —al) is a triangle. Hence it has an inverse. The
— - S ; 2[(U—a)|

operator (A2, —al)~!is continuous for o € C with SV o] >1
by statement 3.1. Also the equation
(A?ww O[I)$ =y gives x = (A?ww - aI)ily

ie., z, = ((A%,, — al)"'y,),n € Ny.

Thus, for every y € [, we can find x € [; such that
(A2, —al)x =y, since (A%, —al)™t € (Iy,1h).

uvw
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This shows that the operator (A2

uvwW - aI) €
Aq. This completes the proof. =

—al) is onto and hence (A2,

THEOREM 6.2. Let (uy) be a constant sequence, say up = U and o = U.
Then a € Cyo(A2,,,,11).

Proof. We have

7p(Buur ) = {ae@ |-V +/ V2= 4W(U—a)|<1}'

For a = U, the operator (A2, — al)* is not one to one. By Lemma 2.6,

R(A2, ., — al) is not dense in l;. Again by Theorem 3.4, since a = U does

uvw

not belong to the set a,(A2, 1), therefore the operator (A2, — al) has
an inverse.

Next, we show that the operator (A2, —al)~! is continuous. By Lemma

2.7, it is enough to show that (A2, —al)* is onto, i.e., for given y = (y,) €
l7, we have to find x = (z,,) € [j such that (A2 —al)*x = y. Now,

(A2 —Ul)*x =y, ie.,

uvw

Vox1 + WoT2 = Yo

V122 +wW1T3 = Y1
Vi—1%j + Wi—1Tj4+1 = Yi—1

Thus, vp—1Zn + Wn—1Zp+1 = Yn—1 for all n > 1, which implies sup |z, | < oo,
n

since y € loo. This shows that the operator (A2,
o€ CIU(Auvwall) ]

THEOREM 6.3. Let (uy) be a constant sequence, say up = U and o # U,
a € o (A2, 11). Then a € Cao(A2,,,,11).

Proof. Since o # U, therefore the operator (A2, —al) is a triangle. Hence

it has an inverse. For U # o € C with 2|U—o)l < 1, the
|=V+4/V2—4W (U—0a)|
2 w—al)™1is discontinuous by statement (3.4) and (3.5). Thus,

(A2~ —al) is injective and (A2, — al)~! is discontinuous.

Again by Theorem 4.1, the operator (A2, — al)* is not one to one for

uvw
a € C with 2U—o)l < 1. But Lemma 2.6 yields the fact that
|[—V+/V2—AW (U—q)|

range of the (A2 — al) is not dense in 1 and o € Coo (A2, ,11). =

uvw

— al)* is onto and hence

operator (A2

THEOREM 6.4. Let (uk) be constant sequence and if |wy| < |vg| for each k,
then U € C1o(A2,,,11). If lwg| > |vg| for each k, then U € Cao(A2,,,,11).

uvw?
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Proof. If @ = U, then by Theorem 5.1 (A2, — «l) is in state Cy or Ca. A
left inverse of A2 is

0 (l> 0 0
vo
—w 1
A2 -1 _ 0 vo—v? v1 0
B*(Auvw UI) -
() () 2) -
VU1V V1V2 v2

The matrix B is in B(ly) for |wg| < |vg| and is not in B(ly) for |wg| > |vkl,
k € Ng . Thatis (A2,,—UI) has a continuous inverse for |wy| < |vi|, k¥ € Ng

uvw
but it does not have a continuous inverse for |wg| > |vg|, & € Ng. Therefore,

U € Cio(A2,,11) for |wy| < |vk|, & € Ng, and U € Cyo(A2,,,11) for

uvw? uvw?

|wg| > |vg|, & € No. This completes the proof. m

THEOREM 6.5. Let (uy,) be non-constant sequence and o € a,.(A2,,,,11).
Then o € Coo (A2, 11).

Proof. We have,

2/(U = o)

or(A2 1)) ={aeC: < 1H\{uo, uq,ug, ... }.
r(Apwr 1) = { VT AT o) P\{uo, ur,ug, .. }
Since o # wy, for all k, therefore the operator (A2, =~— «al) is a triangle.
Hence it has an inverse. For uy # o € C with 2|U—a)| <1, the

|-V+y/V2—4W (U—a)| —
inverse of the operator (A2, — al) is discontinuous by statement (3.4) and
(3.5). Thus (A2

2w — al) injective and (A2, — al)~! is discontinuous.
On the basis of argument as given in Theorem 6.3, it is easy to verify

that the range of the operator (A2, — af) is not dense in l; and hence
o€ CQU(A%LUw,ll). ]
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