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SPECTRUM AND FINE SPECTRUM OF GENERALIZED

SECOND ORDER FORWARD DIFFERENCE OPERATOR

∆2
uvw ON SEQUENCE SPACE l1

Abstract. The purpose of this paper is to determine spectrum and fine spectrum of
newly introduced operator ∆2

uvw on sequence space l1. The operator ∆2
uvw on sequence

space l1 is defined by ∆2
uvwx = (unxn + vn−1xn−1 + wn−2xn−2)

∞

n=0 with x−1, x−2 = 0,
where x = (xn) ∈ l1, u = (uk) is either constant or strictly increasing sequence of positive
real numbers with U = lim

k→∞

uk, v = (vk) is a sequence of real numbers such that vk 6= 0

for each k ∈ N0 with V = lim
k→∞

vk 6= 0 and w = (wk) is a non-increasing sequence of

positive real numbers such that wk 6= 0 for each k ∈ N0 with W = lim
k→∞

wk 6= 0. In

this paper we have obtained the results on spectrum and point spectrum for the operator
∆2

uvw over sequence space l1. We have also obtained the results on continuous spectrum
σc(∆

2
uvw, l1), residual spectrum σr(∆

2
uvw, l1) and fine spectrum of the operator ∆2

uvw on
sequence space l1.

1. Introduction

The study of spectrum and fine spectrum for various operators are made
by various authors. The fine spectra of the Cèsaro operator on the sequence
space lp has been studied by Gonzàlez [8], where 1 < p < ∞. Also weighted
mean operators on lp have been investigated by Cartlidge [5]. The fine spec-
tra of difference operator ∆ over the sequence spaces lp and bvp is determined
by Akhmedov and Basar [1, 2]. Also the fine spectra of difference operator ∆
over the sequence spaces l1 and bv is studied by Kayaduman and Furkan [9];
later the fine spectrum of the generalized difference operator B(r, s) over se-
quence spaces l1 and bv is established by Furkan et al. [6]. The fine spectrum
of the same operator over the sequence space lp and bvp, (1 < p < ∞) has
been studied by Bilgic and Furkan [4]. The fine spectrum of the generalized

2000 Mathematics Subject Classification: 47A10, 47B39, 46A45.
Key words and phrases: spectrum of an operator, generalized second order forward

difference operator, sequence space l1.



594 B. L. Panigrahi, P. D. Srivastava

difference operator B(r, s, t) over sequence spaces l1 and bv is established by
[3], where r, s, t are taken as scalars.

The present work is a continuation of earlier papers which give the charac-
terization of spectrum and fine spectrum of the generalized second order for-
ward difference operator ∆2

uvw for various real sequences u = (uk), v = (vk)
and w = (wk) under certain restrictions over the sequence space l1. It is easy
to verify that by choosing suitably u, v and w sequences, i.e., for suitable
∆2

uvw one can get easily the operators such as B(r, s, t). If u = (r), v = (s)
and w = (t), then the operator ∆2

uvw reduces to B(r, s, t). Similarly, if
u = (1), v = (−2) and w = (1) are constant sequences, then the operator
∆2

uvw reduces to second order forward difference operator ∆2. Thus, the
results of this paper unify the corresponding results of many operator whose
matrix representation is a triple-band matrix.

2. Preliminaries and notation

Let X and Y be the Banach spaces and T : X → Y be a bounded linear
operator. We denote the range of T as R(T ), where R(T ) = {y ∈ Y : y =
Tx, x ∈ X}, and the set of all bounded linear operators on X into itself is
denoted by B(X). Further, the adjoint T ∗ of T is a bounded linear operator
on the dual space X∗ of X defined by

(T ∗φ)(x) = φ(Tx) for all φ ∈ X∗ and x ∈ X.

Let X 6= {0} be a complex normed space and T : D(T ) → X be a
linear operator with domain D(T ) ⊆ X. With T , we associate the operator
Tα = (T − αI), where α is a complex number and I is the identity operator
on D(T ). The inverse of Tα (if exists) is denoted by T−1

α , where T−1
α =

(T − αI)−1 and is known as the resolvent operator of T . It is easy to verify
that T−1

α is linear, if Tα is linear. Since the spectral theory is concerned with
many properties of Tα and T−1

α which depend on α, so we are interested
in the set of those α in the complex plane for which T−1

α exists or T−1
α is

bounded or domain of T−1
α is dense in X. For this, we need some definitions

and known results given below which will be used in the sequel.

Definition 2.1. ([10], pp. 371) Let X 6= {0} be a complex normed space
and T : D(T ) → X be a linear operator with domain D(T ) ⊆ X. A regular
value of T is a complex number α such that
(R1) T−1

α exists,
(R2) T−1

α is bounded,
(R3) T−1

α is defined on a set which is dense in X.

Resolvent set ρ(T,X) of T is the set of all regular values α of T . Its
complement σ(T,X) = C \ ρ(T,X) in the complex plane C is called spec-
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trum of T . The spectrum σ(T,X) is further partitioned into three disjoint
sets namely point spectrum, continuous spectrum and residual spectrum as
follows:

Point Spectrum σp(T,X) is the set of all α ∈ C such that T−1
α does not

exists, i.e., condition (R1) fails. The element of σp(T,X) is called eigenvalue
of T .

Continuous spectrum σc(T,X) is the set of all α ∈ C such that conditions
(R1) and (R3) hold but condition (R2) fails, i.e., T−1

α exists, domain of T−1
α

is dense in X but T−1
α is unbounded.

Residual Spectrum σr(T,X) is the set of all α ∈ C such that T−1
α exists

but do not satisfy conditions (R3), i.e., domain of T−1
α is not dense in X.

The condition (R2) may or may not holds good.

Goldberg’s classification of operator Tα ([7], pp. 58): Let X be
a Banach space and Tα ∈ B(X), where α is a complex number. Again let
R(Tα) and T−1

α denote the range and inverse of the operator Tα, respectively.
Then the following possibilities may occur;

(A) R(Tα) = X,
(B) R(Tα) 6= R(Tα) = X,
(C) R(Tα) 6= X,

and

(1) Tα is injective and T−1
α is continuous,

(2) Tα is injective and T−1
α is discontinuous,

(3) Tα is not injective.

Remark 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine
different cases. These are labelled by A1, A2, A3, B1, B2, B3, C1, C2 and C3.
The notation α ∈ A2σ(T,X) means the operator Tα ∈ A2, i.e., R(Tα) = X
and Tα is injective but T−1

α is discontinuous. Similarly others.

Remark 2.3. If α is a complex number such that Tα ∈ A1 or Tα ∈ B1, then
α belongs to the resolvent set ρ(T,X) of T on X. The other classification
gives rise to the fine spectrum of T .

Definition 2.4. ([11], pp. 220–221) Let λ, µ be two nonempty subsets of
the space w of all real or complex sequences and A = (ank) be an infinite
matrix of complex numbers ank, where n, k ∈ N0 = {0, 1, 2, . . . }. For every
x = (xk) ∈ λ and every integer n, we write

An(x) =
∑

k

ankxk,
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where the sum without limits is always taken from k = 0 to k = ∞. The
sequence Ax = (An(x)), if it exists, is called the transformation of x by the
matrix A. Infinite matrix A ∈ (λ, µ) if and only if Ax ∈ µ whenever x ∈ λ.

Lemma 2.5. ([12], pp. 126) The matrix A = (ank) gives rise to a bounded

linear operator T ∈ B(l1) from l1 to itself if and only if the supremum of l1
norms of the columns of A is bounded.

Note: The operator norm of T is the supremum of the l1 norms of the
columns.

Lemma 2.6. ([7], pp. 59) T has a dense range if and only if T ∗ is one to

one, where T ∗ denotes the adjoint operator of the operator T .

Lemma 2.7. ([7], pp. 60) The adjoint operator T ∗ of T is onto if and only

if T has a bounded inverse.

3. Spectrum and point spectrum of the operator ∆2
uvw on sequence

space l1
In this section we introduce the new second order forward difference

operator ∆2
uvw and compute spectrum, point spectrum of the operator ∆2

uvw

over space l1.
Let u = (uk) is either constant or strictly increasing sequence of positive

real numbers with U = lim
k→∞

uk, and v = (vk) be a sequence of real numbers

such that vk 6= 0 for each k ∈ N0 with V = lim
k→∞

vk 6= 0 and w = (wk) is a

non-increasing sequence of positive real numbers such that wk 6= 0 for each
k ∈ N0 with W = lim

k→∞
wk 6= 0. We define the operator ∆2

uvw on sequence

space l1 as

∆2
uvwx = (unxn + vn−1xn−1 + wn−2xn−2)

∞
n=0 with x−1, x−2 = 0,

where x = (xn) ∈ l1.

It is easy to verify that the operator ∆2
uvw can be represented by the

matrix

∆2
uvw =



















u0 0 0 0 . . .

v0 u1 0 0 . . .

w0 v1 u2 0 . . .

0 w1 v2 u3 . . .
...

...
...

...
. . .



















.

Through out this work, we take
√
z, if z is a complex number, as the

square root of z with non-negative real part. If Re(
√
z) = 0 then

√
z repre-

sents the square root of z with Im(
√
z) ≥ 0.
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Theorem 3.1. The generalized second order forward difference operator

∆2
uvw : l1 → l1 is a bounded linear operator and ‖∆2

uvw‖(l1,l1) = sup
k

(|uk| +
|vk|+ |wk|).
Proof. Proof is simple. So we omit.

Theorem 3.2. Define the set S by S =

{

α ∈ C : 2|(U−α)|

|−V+
√

V 2−4W (U−α)|
≤ 1

}

and assume
√
V 2 = −V . Then spectrum of the operator ∆2

uvw on sequence

space l1 is given by σ(∆2
uvw, l1) = S.

Proof. The proof of the theorem is divided into two parts.
In the first part, we show that σ(∆2

uvw, l1) ⊆ S, which we prove by contra-

diction. That is assuming α ∈ C with

∣

∣

∣

∣

2(U− α)

−V +
√

V 2− 4W (U− α)

∣

∣

∣

∣

> 1, we will

show that α ∈ ρ(∆2
uvw, l1).

In second part, we establish the reverse inequality, i.e., S ⊆ ρ(∆2
uvw, l1).

Part I: Let α ∈ C with

∣

∣

∣

∣

2(U− α)

−V +
√

V 2− 4W (U− α)

∣

∣

∣

∣

> 1. Clearly, α 6= U

and α 6= uk for each k ∈ N0 as it does not satisfy the condition. Further,
(∆2

uvw − αI) reduces to a triangle and hence has an inverse. Thus, (∆2
uvw −

αI)−1 = (bnk), where

(bnk) =















1
u0−α

0 0 0 . . .
−v0

(u0−α)(u1−α)
1

u1−α
0 0 . . .

v0v1
(u0−α)(u1−α)(u2−α) − w0

(u0−α)(u2−α)
−v1

(u1−α)(u2−α)
1

u2−α
0 . . .

...
...

...
...

. . .















,

and bn,k =
−vn−1bn−1,k−wn−2bn−2,k

(un−α) .

By Lemma 2.5, the operator (∆2
uvw −αI)−1 ∈ (l1, l1) if the supremum of

l1 norms of the columns of (bnk) is bounded, i.e., sup
k

∞
∑

n=0

|bnk| < ∞.

In order to show that sup
k

∞
∑

n=0

|bnk| < ∞, first we prove that the series

∞
∑

n=0

|bnk| is convergent for each k ∈ N0.

For this, consider Sk =
∞
∑

n=0

|bnk| = |bk,k|+|bk+1,k|+|bk+2,k|+. . . . Clearly,

series for k
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Sk =

∣

∣

∣

∣

1

(uk − α)

∣

∣

∣

∣

+

∣

∣

∣

∣

(−1)vk
(uk − α)(uk+1 − α)

∣

∣

∣

∣

+

∣

∣

∣

∣

(−1)2vkvk+1

(uk − α)(uk+1 − α)(uk+2 − α)
+

(−1)wk

(uk − α)(uk+2 − α)

∣

∣

∣

∣

+

∣

∣

∣

∣

(−1)3vkvk+1vk+2

(uk − α)(uk+1 − α)(uk+2 − α)(uk+3 − α)

+
(−1)2wkvk+2

(uk − α)(uk+2 − α)(uk+3 − α)

+
(−1)2vkwk+1

(uk − α)(uk+2 − α)(uk+3 − α)

∣

∣

∣

∣

+ . . . .

Now by letting

r1 =
−V +

√

V 2 − 4W (U − α)

2(U − α)
and r2 =

−V −
√

V 2 − 4W (U − α)

2(U − α)
,

we can observe,

lim
k→∞

1

(uk − α)
=

1

U − α
= a1 =

1
√

V 2 − 4W (U − α)
[(r1)− (r2)]

lim
k→∞

−vk
(uk − α)(uk+1 − α)

=
−V

(U − α)2
= a2

=
1

√

V 2 − 4W (U − α)
[(r1)

2 − (r2)
2]

lim
k→∞

vkvk+1

(uk − α)(uk+1 − α)(uk+2 − α)
− wk

(uk − α)(uk+2 − α)

=
V 2

(U − α)3
− W

(U − α)2
= a3 =

1
√

V 2 − 4W (U − α)
[(r1)

3 − (r2)
3].

Clearly, an = 1√
V 2−4W (U−α)

[(r1)
n − (r2)

n] for n = 1, 2, . . . .

Since α is not in S, we have |r1| < 1. Now we show that |r2| < 1. Since
|r1| < 1, we have

∣

∣

∣

∣

1 +
√

1− 4W (U − α)/V 2

∣

∣

∣

∣

<

∣

∣

∣

∣

2(U − α)

−V

∣

∣

∣

∣

.

Since |1−√
z| ≤ |1 +√

z| for any z ∈ C, we must have
∣

∣

∣

∣

1−
√

1− 4W (U − α)/V 2

∣

∣

∣

∣

<

∣

∣

∣

∣

2(U − α)

−V

∣

∣

∣

∣

which leads us to the fact that |r2| < 1.
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First consider the case V 2 6= 4W (U − α), then |r2| < |r1|. Clearly, the
series

Sk =

∞
∑

n=0

|bnk| = |bk,k|+ |bk+1,k|+ |bk+2,k|+ . . . .

is convergent because,

lim
k→∞

∣

∣

∣

∣

b2k+1,k

b2k,k

∣

∣

∣

∣

= lim
k→∞

|ak+2|
|ak+1|

= lim
k→∞

|(r1)k+2 − (r2)
k+2|

|(r1)k+1 − (r2)k+1|

≤ lim
k→∞

|r1|k+2 + |r2|k+2

|r1|k+1 − |r2|k+1

= lim
k→∞

|r1|k+2

(

1 + |r2|
|r1|

k+2
)

|r1|k+1

(

1− |r2|
|r1|

k+1
)

= |r1| < 1.

So, Sk is convergent for each k ∈ N0. Now to show that sup
k

Sk < ∞.

Taking limit both sides of Sk and since |r1| < 1 and |r2| < 1, we get

lim
k→∞

Sk =
∞
∑

n=1

|an| ≤
1

|
√

V 2 − 4W (U − α)|

(

∞
∑

n=1

|r1|n +
∞
∑

n=1

|r2|n
)

< ∞.

Since (Sk) is a sequence of positive real numbers and lim
k→∞

Sk < ∞, so

sup
k

Sk < ∞.

Suppose V 2 = 4W (U − α) then

an =

(

2n

−V

)[ −V

2(U − α)

]n

,

so, the series Sk is convergent because,

lim
k→∞

∣

∣

∣

∣

b2k+1,k

b2k,k

∣

∣

∣

∣

= lim
k→∞

|ak+2|
|ak+1|

=

∣

∣

∣

∣

−V

2(U − α)

∣

∣

∣

∣

< 1,

since α /∈ S, implies

∣

∣

∣

∣

−V
2(U−α)

∣

∣

∣

∣

< 1. So, Sk is convergent for each k ∈ N0.

Now to show that sup
k

Sk < ∞. Then

lim
k→∞

Sk =

∞
∑

n=1

|an| =
∞
∑

n=1

∣

∣

∣

∣

2n

−V

∣

∣

∣

∣

∣

∣

∣

∣

−V

2(U − α)

∣

∣

∣

∣

n

< ∞,

by using ratio test and since

∣

∣

∣

∣

−V
2(U−α)

∣

∣

∣

∣

< 1. Therefore α /∈ S implies
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sup
k

∞
∑

n=0

|bnk| < ∞. Thus,

(3.1) (∆2
uvw − αI)−1 ∈ B(l1) for α ∈ C

with

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

> 1.

Next, we will show that domain of the operator (∆2
uvw − αI)−1 is dense

in l1. This statement holds if and only if range of the operator (∆2
uvw −αI)

is dense in l1. Since (∆2
uvw − αI)−1 ∈ (l1, l1), which implies that range of

the operator (∆2
uvw − αI) is dense in l1. Hence we have

(3.2) σ(∆2
uvw, l1) ⊆ {α ∈ C :

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

≤ 1}.

Part (II): We now prove the reverse inequality, i.e.,

(3.3) {α ∈ C :

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

≤ 1} ⊆ σ(∆2
uvw, l1).

First we prove the inclusion 3.3 under the assumption that α 6= U and
α 6= uk for each k ∈ N0, i.e., we want to show that one of the conditions of
Definition 2.1 fails. Let α ∈ S. Clearly, (∆2

uvw − αI) is a triangle and hence
(∆2

uvw−αI)−1 exists. So, condition (R1) is satisfied but condition (R2) fails
as can be seen below:

Let us first consider V 2 6= 4W (U − α) implies |r1| > |r2|.
Suppose α ∈ C with

∣

∣

∣

∣

2(U−α)

−V+
√

V 2−4W (U−α)

∣

∣

∣

∣

< 1. Then |r1| > 1, consequently,

lim
k→∞

∣

∣

∣

∣

b2k+1,k

b2k,k

∣

∣

∣

∣

= lim
k→∞

|ak+2|
|ak+1|

= lim
k→∞

|(r1)k+2 − (r2)
k+2|

|(r1)k+1 − (r2)k+1|

= lim
k→∞

|r1|k+2|1− ( r2
r1
)k+2|

|r1|k+1|1− ( r2
r1
)k+1| = |r1| > 1,

which gives Sk is divergent for each k ∈ N0. Hence

(3.4) (∆2
uvw − αI)−1 /∈ B(l1) for α ∈ C

with

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

< 1.

Next, we consider α ∈ C with

∣

∣

∣

∣

2(U− α)

−V+
√

V 2−4W (U−α)

∣

∣

∣

∣

= 1 implies |r1| = 1
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and 1 > |r2|. So,

lim
k→∞

∣

∣

∣

∣

b2k+1,k

b2k,k

∣

∣

∣

∣

= lim
k→∞

|ak+2|
|ak+1|

= |r1| = 1.

Thus, ratio test fails. Now we apply Raabe’s test.

We have

(∣

∣

∣

∣

b2k,k
b2k+1,k

∣

∣

∣

∣

− 1

)

= 0 for all k ≥ 1. Therefore,

lim
k→∞

k

(∣

∣

∣

∣

b2k,k
b2k+1,k

∣

∣

∣

∣

− 1

)

= 0 < 1,

so, the series Sk diverges for k ∈ N0. Hence

(3.5) (∆2
uvw − αI)−1 /∈ B(l1) for α ∈ C

with

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

= 1.

Now consider the case V 2 = 4W (U − α), then an =

(

2n
−V

)[

−V
2(U−α)

]n

.

Then,

lim
k→∞

∣

∣

∣

∣

b2k+1,k

b2k,k

∣

∣

∣

∣

= lim
k→∞

|ak+2|
|ak+1|

=

∣

∣

∣

∣

−V

2(U − α)

∣

∣

∣

∣

,

when

∣

∣

∣

∣

−V
2(U−α)

∣

∣

∣

∣

> 1, the series Sk divergent for each k ∈ N0. But when
∣

∣

∣

∣

−V
2(U−α)

∣

∣

∣

∣

= 1, then ratio test fails. Then we apply Raabe’s test.

We have

(∣

∣

∣

∣

b2k,k
b2k+1,k

∣

∣

∣

∣

− 1

)

= 0 for all k ≥ 1. Therefore,

lim
k→∞

k

(∣

∣

∣

∣

b2k,k
b2k+1,k

∣

∣

∣

∣

− 1

)

= 0 < 1

so, the series Sk diverges for k ∈ N0. Hence (R2) fails.

Thus,

(3.6) (∆2
uvw − αI)−1 /∈ B(l1) for α ∈ C

with

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

≤ 1.

Finally, we prove the inclusion 3.3 under the assumption that α = U and
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α = uk for each k ∈ N0. We have

(∆2
uvw − αI)x =



















(u0 − α)x0

v0x0 + (u1 − α)x1

w0x0 + v1x1 + (u2 − α)x2

w1x1 + v2x2 + (u3 − α)x3
...



















.

Case (i): If (uk) is a constant sequence, say uk = U for each k ∈ N0, then

(∆2
uvw − UI)x = 0 ⇒ x0 = 0, x1 = 0, x2 = 0, . . .

This shows that the operator (∆2
uvw −UI) is one to one, but R(∆2

uvw −UI)
is not dense in l1. So, condition (R3) fails. Hence U ∈ σ(∆2

uvw, l1).

Case (ii): If (uk) is a strictly increasing sequence of positive real numbers,
then for fixed k,

(∆2
uvw − ukI)x = 0

⇒ x0 = 0, x1 = 0, . . . , xk−1 = 0, xk+1 =
(

−vk
uk+1−uk

)

xk.

We take xk 6= 0 gives non zero solution of (∆2
uvw − ukI). This shows

that (∆2
uvw − ukI) is not injective. So, condition (R1) fails. Hence uk ∈

σ(∆2
uvw, l1) for all k ∈ N0. Hence we have

(3.7) {α ∈ C :

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

≤ 1} ⊆ σ(∆2
uvw, l1).

From inclusions 3.2 and 3.7, we get

σ(∆2
uvw, l1) =

{

α ∈ C :

∣

∣

∣

∣

2(U − α)

−V +
√

V 2 − 4W (U − α)

∣

∣

∣

∣

≤ 1

}

.

This completes the proof.

Remark 3.3. If
√
V 2 = V , then spectrum of the operator ∆2

uvw on se-

quence space l1 is given by σ(∆2
uvw, l1) =

{

α ∈ C : 2|(U−α)|

|−V−
√

V 2−4W (U−α)|
≤1

}

.

Theorem 3.4. Point spectrum of the operator ∆2
uvw on sequence space l1

is

σp(∆
2
uvw, l1) =

{

∅, if (uk) is a constant sequence,

{u0, u1, . . . }, if (uk) is a strictly increasing sequence.

Proof. The proof of this theorem divided into two cases.



Spectrum and fine spectrum. . . 603

Case (i): Suppose (uk) is a constant sequence, say uk = U for each
k ∈ N0. Consider ∆2

uvwx = αx for x 6= 0 = (0, 0, . . . , ) ∈ l1, which gives

(3.8)

u0x0 = αx0

v0x0 + u1x1 = αx1

w0x0 + v1x1 + u2x2 = αx2

w1x1 + v2x2 + u3x3 = αx3
...

wk−2xk−2 + vk−1xk−1 + ukxk = αxk
...



































































Let (xt) is the first non-zero entry of the sequence x = (xn). So equation
wt−2xt−2 + vt−1xt−1 + Uxt = αxt, implies α = U , and from the equation
wt−1xt−1+ vtxt+Uxt+1 = αxt+1, we get xt = 0, which is a contradiction to
our assumption, therefore

σp(∆
2
uvw, l1) = ∅.

Case (ii): Suppose (uk) is a strictly increasing sequence. Consider ∆2
uvwx

= αx for x 6= 0 = (0, 0, . . . , ) ∈ l1, which gives system of equation (3.8).

If α = uk for all k ≥ 1, then (∆2
uvw − ukI)x = 0 gives ⇒ x0 = 0, x1 =

0, . . . , xk−1 = 0 and

xk+1 =

( −vk
uk+1 − uk

)

xk.

If we take xk 6= 0, then we get the non-zero solution of (∆2
uvw − αI)x = 0.

Hence,

σp(∆
2
uvw, l1) = {u0, u1, u2, . . . }.

This completes the proof.

4. Point spectrum of the adjoint operator ∆2∗
uvw of ∆2

uvw on dual

sequence space l1

Let T : X → X be a bounded linear operator having matrix representa-
tion A and the dual space of X denoted by X∗. Again, let T ∗ be its adjoint
operator on X∗. Then the matrix representation of T ∗ is the transpose of
the matrix A.

Theorem 4.1. Point spectrum of the adjoint operator ∆2∗
uvw over l∗1 is

σp(∆
2∗
uvw, l

∗
1) = S.
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Proof. The set S is already proved as σ(∆2
uvw, l1). To prove this theorem,

we first need to show that σ(∆2
uvw, l1) ⊂ σp(∆

2∗
uvw, l

∗
1).

Let α ∈ S = σ(∆2
uvw, l1) then

∣

∣

∣

1
r1

∣

∣

∣ ≤ 1. Suppose ∆2∗
uvwf = αf for

0 6= f ∈ l∗1
∼= l∞, where

∆2∗
uvw =



















u0 v0 w0 0 0 . . .

0 u1 v1 w1 0 . . .

0 0 u2 v2 w2 . . .

0 0 0 u3 v3 . . .
...

...
...

...
...

. . .



















and f =



















f0

f1

f2

f3
...



















.

Then we get the system of linear equations

(4.9)

u0f0 + v0f1 + w0f2 = αf0

u1f1 + v1f2 + w1f3 = αf1

u2f2 + v2f3 + w2f4 = αf2
...























Solving the system of linear equations (4.9) in terms of f0 and f1, we
obtain

fk = (bk−1,0f1 − bk−1,1f0)
(u0 − α)(u1 − α) . . . (uk−1 − α)

w0w1 . . . wk−2
,

where bk−1,0 and bk−1,1 are defined as in last section.
For α = α1 + iα2 ∈ C and u = (uk) is strictly increasing sequence and
w = (wk) non-increasing positive real sequence, we get for n = 0, 1, . . . , k−2
∣

∣

∣

∣

un − α

wn

∣

∣

∣

∣

=
1

|wn|
((un−α1)

2+(α2)
2)

1

2 ≤ 1

|W |((U−α1)
2+(α2)

2)
1

2 =

∣

∣

∣

∣

U − α

W

∣

∣

∣

∣

.

Then

|fk| ≤ |bk−1,0f1 − bk−1,1f0||U − α|
∣

∣

∣

∣

U − α

W

∣

∣

∣

∣

k−1

.

Taking limit on both sides and choosing f0 = 1 and f1 =
1
r1

, we obtain

(4.10) lim
k→∞

|fk| ≤ lim
k→∞

{

|akf1 − ak−1f0|
∣

∣

∣

∣

U − α

W

∣

∣

∣

∣

k−1

|U − α|
}

= lim
k→∞

{ |(rk1 − rk2)f1 − (rk−1
1 − rk−1

2 )f0|
|
√

V 2 − 4W (U − α)|

∣

∣

∣

∣

U − α

W

∣

∣

∣

∣

k−1

|U − α|
}
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= lim
k→∞

|r2|k−1|r1 − r2|
|r1||

√

V 2 − 4W (U − α)|

∣

∣

∣

∣

U − α

W

∣

∣

∣

∣

k−1

|U − α|

= lim
k→∞

|r2|k−1

|r1|

∣

∣

∣

∣

U − α

W

∣

∣

∣

∣

k−1

.

We have the relation

(4.11)
U − α

W
=

2(U − α)

−V +
√

V 2 − 4W (U − α)
× 2(U − α)

−V −
√

V 2 − 4W (U − α)

=
1

r1r2
.

Then using (4.11) in (4.10), we obtain

lim
k→∞

|fk| ≤ lim
k→∞

|r2|k−1

|r1|
1

|r1r2|k−1
= lim

k→∞

∣

∣

∣

∣

1

r1

∣

∣

∣

∣

k

< ∞,

since α ∈ S. Hence,

σ(∆2
uvw, l1) ⊂ σp(∆

2∗
uvw, l

∗
1).

In the second part, we have to show that σp(∆
2∗
uvw, l

∗
1) ⊂ σ(∆2

uvw, l1). It
is clear that σp(∆

2∗
uvw, l

∗
1) ⊂ σ(∆2∗

uvw, l
∗
1) and from Corollary II.5.3 (i) [7],

σ(∆2
uvw, l1) = σ(∆2∗

uvw, l
∗
1). So, combining we get

σp(∆
2∗
uvw, l

∗
1) ⊂ σ(∆2

uvw, l1).

This completes the proof.

5. Residual and continuous spectrum of the operator ∆2
uvw on se-

quence space l1

Theorem 5.1. Residual spectrum σr(∆
2
uvw, l1) of the operator ∆2

uvw over

l1 is

σr(∆
2
uvw, l1)=

{

S, if (uk) is a constant sequence,

S \ {u0, u1, . . . }, if (uk) is a strictly increasing sequence.

Proof. The proof of the theorem is divided into two cases.

Case (i): Let (uk) be a constant sequence, say uk = U for each k ∈ N0.
For α ∈ C with 2|U − α| ≤ | − V +

√

V 2 − 4W (U − α)|, the operator
(∆2

uvw −αI) is a triangle except α = U and consequently (∆2
uv −αI) has an

inverse. Further by Theorem 3.4, the operator (∆2
uvw −αI) is one to one for

α = U and hence has an inverse.

But by Theorem 4.1, the operator (∆2
uvw −αI)∗ = ∆2∗

uvw −αI is not one

to one for α ∈ C with 2|U−α|

|−V+
√

V 2−4W (U−α)|
≤ 1. Hence by Lemma 2.6, range
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of the operator (∆2
uvw − αI) is not dense in l1. Thus,

σr(∆
2
uvw, c0) =

{

α ∈ C :
2|U − α|

| − V +
√

V 2 − 4W (U − α)|
≤ 1

}

.

Case (ii): Let (uk) be a strictly increasing sequence. For α ∈ C such

that 2|U−α|

|−V+
√

V 2−4W (U−α)|
≤ 1, the operator (∆2

uvw −αI) is a triangle except

α = uk for all k ∈ N0 and consequently the operator (∆2
uvw − αI) has an

inverse. Further by Theorem 3.4, the operator (∆2
uv − αI) is not one to one

for α = uk for all k ∈ N0. So, (∆2
uvw − αI)−1 does not exist.

On the basis of argument as given in Case (i), it is easy to verify that
the range of the operator (∆2

uvw − αI) is not dense in l1. Thus,

σr(∆
2
uvw, l1)=

{

α ∈ C :
2|U − α|

| − V +
√

V 2 − 4W (U − α)|
≤1

}

\{u0, u1, u2, . . . }.

Theorem 5.2. Continuous spectrum σc(∆
2
uvw, l1) of the operator ∆2

uvw

over l1 is

σc(∆
2
uvw, l1) = ∅.

Proof. It is known that σp(∆
2
uvw, l1), σr(∆

2
uvw, l1), and σc(∆

2
uvw, l1) are

pairwise disjoint and union of these is σ(∆2
uvw, l1). But by Theorems 3.2,

3.4, and 5.1, we get

σ(∆2
uvw, l1) = σp(∆

2
uvw, l1) ∪ σr(∆

2
uvw, l1),

for both constant and non-constant sequence. Therefore, σc(∆
2
uvw, l1) = ∅.

6. Fine spectrum of the operator ∆2
uvw on sequence space l1

Theorem 6.1. If α satisfies
2|U−α|

|−V+
√

V 2−4W (U−α)|
> 1, then (∆2

uvw − αI)

∈ A1.

Proof. It is required to show that the operator (∆2
uvw − αI) is bijective

and has an inverse for α ∈ C with 2|(U−α)|

|−V+
√

V 2−4W (U−α)|
> 1. Since α 6= U ,

therefore the operator (∆2
uvw−αI) is a triangle. Hence it has an inverse. The

operator (∆2
uvw−αI)−1 is continuous for α ∈ C with 2|(U−α)|

|−V+
√

V 2−4W (U−α)|
> 1

by statement 3.1. Also the equation

(∆2
uvw − αI)x = y gives x = (∆2

uvw − αI)−1y,

i.e., xn = ((∆2
uvw − αI)−1yn), n ∈ N0.

Thus, for every y ∈ l1, we can find x ∈ l1 such that

(∆2
uvw − αI)x = y, since (∆2

uvw − αI)−1 ∈ (l1, l1).
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This shows that the operator (∆2
uvw −αI) is onto and hence (∆2

uvw −αI) ∈
A1. This completes the proof.

Theorem 6.2. Let (uk) be a constant sequence, say uk = U and α = U .

Then α ∈ C1σ(∆
2
uvw, l1).

Proof. We have

σp(∆
2∗
uvw, l

∗
1) =

{

α ∈ C :
2|(U − α)|

| − V +
√

V 2 − 4W (U − α)|
≤ 1

}

.

For α = U , the operator (∆2
uvw − αI)∗ is not one to one. By Lemma 2.6,

R(∆2
uvw − αI) is not dense in l1. Again by Theorem 3.4, since α = U does

not belong to the set σp(∆
2
uvw, l1), therefore the operator (∆2

uvw − αI) has
an inverse.

Next, we show that the operator (∆2
uvw−αI)−1 is continuous. By Lemma

2.7, it is enough to show that (∆2
uvw−αI)∗ is onto, i.e., for given y = (yn) ∈

l∗1, we have to find x = (xn) ∈ l∗1 such that (∆2
uvw − αI)∗x = y. Now,

(∆2
uvw − UI)∗x = y, i.e.,

v0x1 + w0x2 = y0

v1x2 + w1x3 = y1
...

vi−1xi + wi−1xi+1 = yi−1

...

Thus, vn−1xn+wn−1xn+1 = yn−1 for all n ≥ 1, which implies sup
n

|xn| < ∞,

since y ∈ l∞. This shows that the operator (∆2
uvw − αI)∗ is onto and hence

α ∈ C1σ(∆
2
uvw, l1).

Theorem 6.3. Let (uk) be a constant sequence, say uk = U and α 6= U ,

α ∈ σr(∆
2
uvw, l1). Then α ∈ C2σ(∆

2
uvw, l1).

Proof. Since α 6= U , therefore the operator (∆2
uvw−αI) is a triangle. Hence

it has an inverse. For U 6= α ∈ C with 2|(U−α)|

|−V+
√

V 2−4W (U−α)|
≤ 1, the

operator (∆2
uvw−αI)−1 is discontinuous by statement (3.4) and (3.5). Thus,

(∆2
uvw − αI) is injective and (∆2

uvw − αI)−1 is discontinuous.
Again by Theorem 4.1, the operator (∆2

uvw − αI)∗ is not one to one for

α ∈ C with 2|(U−α)|

|−V+
√

V 2−4W (U−α)|
≤ 1. But Lemma 2.6 yields the fact that

range of the (∆2
uvw − αI) is not dense in l1 and α ∈ C2σ(∆

2
uvw, l1).

Theorem 6.4. Let (uk) be constant sequence and if |wk| < |vk| for each k,
then U ∈ C1σ(∆

2
uvw, l1). If |wk| ≥ |vk| for each k, then U ∈ C2σ(∆

2
uvw, l1).
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Proof. If α = U , then by Theorem 5.1 (∆2
uvw − αI) is in state C1 or C2. A

left inverse of ∆2
uvw is

B = (∆2
uvw − UI)−1 =























0

(

1
v0

)

0 0 . . .

0

(

−w0

v0v1

) (

1
v1

)

0 . . .

0

(

w0w1

v0v1v2

) (

−w1

v1v2

) (

1
v2

)

. . .

...
...

...
...

. . .























.

The matrix B is in B(l1) for |wk| < |vk| and is not in B(l1) for |wk| ≥ |vk|,
k ∈ N0 . That is (∆2

uvw−UI) has a continuous inverse for |wk| < |vk|, k ∈ N0

but it does not have a continuous inverse for |wk| ≥ |vk|, k ∈ N0. Therefore,
U ∈ C1σ(∆

2
uvw, l1) for |wk| < |vk|, k ∈ N0, and U ∈ C2σ(∆

2
uvw, l1) for

|wk| ≥ |vk|, k ∈ N0. This completes the proof.

Theorem 6.5. Let (uk) be non-constant sequence and α ∈ σr(∆
2
uvw, l1).

Then α ∈ C2σ(∆
2
uvw, l1).

Proof. We have,

σr(∆
2
uvw, l1) = {α ∈ C :

2|(U − α)|
| − V +

√

V 2 − 4W (U − α)|
≤ 1}\{u0, u1, u2, . . . }.

Since α 6= uk for all k, therefore the operator (∆2
uvw − αI) is a triangle.

Hence it has an inverse. For uk 6= α ∈ C with 2|(U−α)|

|−V+
√

V 2−4W (U−α)|
≤ 1, the

inverse of the operator (∆2
uvw −αI) is discontinuous by statement (3.4) and

(3.5). Thus (∆2
uvw − αI) injective and (∆2

uvw − αI)−1 is discontinuous.
On the basis of argument as given in Theorem 6.3, it is easy to verify

that the range of the operator (∆2
uvw − αI) is not dense in l1 and hence

α ∈ C2σ(∆
2
uvw, l1).

References

[1] A. M. Akhmedov, F. Basar, On the fine spectra of the difference operator △ over the

sequence spaces lp, (1 ≤ p < ∞), Demonstratio Math. 39 (2006), 585–595.
[2] A. M. Akhmedov, F. Basar, The fine spectra of the difference operator △ over the

sequence spaces bvp, (1 ≤ p < ∞), Acta Math. Sin. Eng. Ser. 23 (2007), 1757–1768.
[3] H. Bilgic, H. Furkan, On the fine spectrum of the operator B(r, s, t) over the sequence

spaces l1 and bv, Math. Comput. Modelling 45 (2007), 883–891.
[4] H. Bilgic, H. Furkan, On the fine spectrum of the generalized difference operator

B(r, s) over the sequence spaces lp and bvp, (1 < p < ∞), Nonlinear Anal. 68 (2008),
499–506.



Spectrum and fine spectrum. . . 609

[5] J. P. Cartlidge, Weighted mean matrices as operators on lp, Ph. D Dissertation,
Indiana University, 1978.

[6] H. Furkan, H. Bilgic, K. Kayaduman, On the fine spectrum of the generalized dif-

ference operator B(r, s) over the sequence spaces l1 and bv, Hokkaido Math. J. 35
(2006), 897–908.

[7] S. Goldberg, Unbounded Linear Operators, Dover Publications, Inc. New York, 1985.
[8] M. Gonzalez, The fine spectrum of the Cesaro operator in lp, (1 < p < ∞), Arch.

Math. 44 (1985), 355–358.
[9] K. Kayaduman, H. Furkan, The fine spectra of the difference operator △ over the

sequence space l1 and bv, Int. Math. Forum 1 (2006), 1153–1160.
[10] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons,

Inc. New York - Chichester - Brisbane - Toronto, 1978.
[11] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1988.
[12] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics

Studies, Amsterdam - New York - Oxford, 1984.

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

KHARAGPUR-721302, INDIA

E-mail: bijayalaxmi_rs@maths.iitkgp.ernet.in,

Corresponding author. E-mail: pds@maths.iitkgp.ernet.in

Received June 26, 2010.


	Code: 10.1515/dema-2013-0404


