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SOME CLASSES OF ALMOST CONVERGENT
PARANORMED SEQUENCE SPACES DEFINED
BY ORLICZ FUNCTIONS

Abstract. In this paper we define £o (M, p, ¢, q, s),c(M,p, ¢, q, s) and co(M, p, ¢, q, s),
the sequence spaces on a seminormed complex linear space, using an Orlicz function. We
give various properties and some inclusion relations on this space.

1. Introduction

Let /o and ¢ denote the Banach spaces of real bounded and convergent
sequences = = (x,) respectively, normed by ||z| = sup,, |zx/|.

Let o be a one-to-one mapping of the set of positive integers into itself
such that o® (n) = o(¢*~(n)), k =1,2,.... A continuous linear functional
@ on { is said to be an invariant mean or a o-mean if and only if

(i) ¢(x) > 0 when the sequence = = (x,,) has x,, > 0 for all n,
(ii) ¢ (e) =1, where e = (1,1,1,...) and
(i) © ({Zo@m)}) = ¢ {xn}) for all z € lo.

If o is the translation mapping n — n + 1, a o-mean is often called a
Banach limit [4], and V;, the set of o-convergent sequences, that is, the set
of bounded sequences all of whose invariant means are equal, is the set f of
almost convergent sequences [11].

If 2 = (zn), set Tw = (Txy) = (Ty(n)). It can be shown (see Schaefer
[18]) that
(1.1) Vo={z=(zn): lilgnt;m@) = Le uniformly in n, L =0 —limz},

where
1
tkn(l') = ]{;——|—]_ ]_E - zjn.
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The special case of (1.1), in which ¢ (n) = n + 1 was given by Lorentz
[11].

Subsequently invariant means have been studied by Ahmad and Mursa-
leen [1], Mursaleen [14], Raimi [17] and many others.

The space

BV, = {x €l Z |¢kn ()] < 0o, uniformly in n}

was defined by Mursaleen [13], where

¢k,n($) = tkn($) - tk—l,n($)
assuming that tg,(z) =0, for k = —1.
A straightforward calculation shows that

(,bk ( ) k+1) Z] 1]( Loi(n) _$Uj*1(n)) (k

Note that for any sequences x, y and scalar A\, we have

P (T +Y) = k() + Orn (y)  and  Ppp (Az) = Adgn ().

An Orlicz function is a function M : [0, 00) — [0, 00), which is continuous,
non decreasing and convex with M (0) = 0, M (z) > 0 for x > 0 and M (x) —
00 as ¢ — oo (for detail see Krasnoselskii and Rutickii [9]).

It is well known that if M is a convex function and M (0) = 0, then
M (Ax) < AM(x) for all A with 0 < A < 1.

Let (2,3, ) be a finite measure space. We denote by E (i) the space
of all (equivalence classes of) ¥-measurable functions x from € into [0, co).
Given an Orlicz function M, we define on F () a convex functional s by

I(@) = | M (2 (1)) dp,
Q
and an Orlicz space LM (u) by LM (u) = {x € E(u) : Iy (A\x) < +oo for
some A > 0} (for detail see [16], [9]).
Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to con-
struct the sequence space

by = {l'Gw ZM(’M’) < 0o, for somep>0}.

k=1 P

v

1),
0).

The space £j; is a Banach space with the norm

|| = mf{p >0 ZM ('“"’Z@') < 1}

k=1
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and this space is called an Orlicz sequence space. For M (t) =P, 1 < p < o0,
the space ¢); coincides with the classical sequence space £p,.

DEFINITION 1.1. Any two Orlicz functions M; and My are said to
be equivalent if there are positive constants « and (8, and xy such that
M (ax) < Ma(z) < M (Bz) for all z with 0 < z < xy (see Kamthan and
Gupta [8]).

Later on, different types of sequence spaces were introduced by using
an Orlicz function by Mursaleen et al. [15], Choudhary and Parashar [5],
Et et al. [6], Tripathy and Mahanta (|20], [21]), Tripathy and Sarma ([24],
[26]), Tripathy and Sen [22], Tripathy and Dutta [25], Tripathy et al. [23],
Srivastava and Ghosh [19]|, Khan|7], Altin ([3], [2]) and many others.

A sequence space E is said to be solid (or normal) if (agx) € E whenever
(zg) € E for all sequences (o) of scalars with |ay| < 1.

It is well known that a sequence space E is normal implies that E is
monotone (see for instance Kamthan and Gupta [8]).

DEFINITION 1.2. Let g1, g2 be seminorms on a vector space X. Then
q1 is said to be stronger than g if whenever (x,) is a sequence such that
q1(zn) — 0, then also ga(zy,) — 0. If each is stronger than the others, ¢
and g2 are said to be equivalent (one may refer to Wilansky [27]).

LEMMA 1.3. Let q1 and g2 be seminorms on a linear space X. Then
q1 s stronger than qo if and only if there exists a constant T such that
@(x) < Tqi (z) for all x € X (see for instance Wilansky [27]).

The following inequalities will be used throughout the paper. Let p =
(pr) be a bounded sequence of positive real numbers with 0 < pp < sup py =
H, D = max (1,2H_1) , then

(1.2) lag + b [P* < D {|ag|"* + |bp"*},

where ay, by € C.

Throughout the article p = (pg) will represent a sequence of strictly
positive real numbers and (X, q) a seminormed space over the field C of
complex numbers with the seminorm g. The symbol ¢ (X) denotes the
spaces of all bounded sequences defined over X. We define the following

sequence spaces:
Pr
T € loo (X) s sup, p k~° [M(q(%))} < 0o

for some p >0, s >0

loo (M,p,¢,q,5) =

)
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T () — L b
c(M,p,,q,s) = 7 € Lo (X) 2 lim K _M<q< p ))] =0 :

uniformly in n, for some p > 0,/ € X and s > 0

e 0t r{( 22 )] <o

Co (M7p7¢7Q7S) - k—o0
uniformly in n, for some p >0, s >0

2. Main results

THEOREM 2.1. Let p = (px) be a bounded sequence, then Z (M,p,®,q,s)
are linear spaces over the set of complex numbers, for Z = lo,c and cg.

Proof. We give the proof for Z = ¢y only. The other cases can be treated
similarly. Let x,y € co(M,p,¢,q,s) and a,3 € C. There exist positive
numbers p; and po such that

P
k™ {M (q <M>>] — 0 as k — oo, uniformly inn, s >0
P1

and

D
k—° [M <q <¢1ch@)>” — 0 as k — oo, uniformly in n, s > 0.
2

Define p3 = max (2 |a| p1,2|5] p2). Since M is non-decreasing and convex

o o (oSt
P3
<o o (#4282 o (220)
g o (2 o o (252))))
<o [ (o (22) | o o (222)

— 0, as k — 00, uniformly in n, s > 0.

This proves that ¢y (M, p, ¢,q,s) is linear. m

THEOREM 2.2. The spaces Z (M,p,¢,q,s) (for Z = ls,c and cy) are
paranormed space (not necessarily totally paranormed), paranormed by

g(xz) = inf{pp’”/H csupk™°M <q<¢k%(m)>) <1, p> 0, uniformly in n},

E>1

where H = max (1, supy, px)-
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Proof. Clearly g(x) = g(—x) and g(f) = 0, where 0 is the zero sequence of

X. Let (zx), (yk) € co (M, p, 9,4, 5).
Then there exist p1, p2 such that

supk M <q<w>> <1, uniformly in n
k>1 p1

and

sup k:_sM<q<¢k’n(y)>> <1, uniformly in n.
k>1 P2

Let p = p1 + p2, then we have

sup 0 (g P T ) ) (L Yot rar (o )

+ ( P2 ) sup k™M <q<¢kn(y)>) < 1, uniformly in n.

P1L+p2) k>1 P2
Hence
9z +y)
n x + n
i (p1+p2)Pm/H : supys, k_SM<Q<¢k’ ( )p¢k’ (y)>) <1 p>0,

uniformly in n

< inf{(pl)p’"/H csup k™M <q<w>> <1, p1 > 0, uniformly in n}

k>1 P1
—l—inf{(pg)pm/H : sup k:_SM(q<M>> <1, pg > 0, uniformly in n}
E>1 p2

= 9(x)+9(y).
Hence g satisfies the triangle inequality.
The continuity of product follows from the following equality:

g(Az)
A
= inf{pp’"/H csup k™M <q(¢k—n(x)>> <1, p >0, uniformly in n}

k>1 P

= inf{(!)\]t)pm/H csupk*M <q<¢k7;(x)>> <1, t >0, uniformly in n},
k>1

where t = p/ |A|.

Hence the space ¢y (M, p, ¢, q, s) is a paranormed space, paranormed by g.
The other cases can be proved in a similar way. =
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THEOREM 2.3. Let My and My be two Orlicz functions. Then
Z(Mlvpv ¢7Q7 S) Nz (M27p7 ¢7 q, 8) c Z(Ml + M27p7 ¢7Q7 8)7
for Z =l,c and cy.

Proof. We prove the result for Z = ¢g and for other spaces it will follow
on applying similar arguments. Let x € c¢o (M1,p, ¢, q,s) Nco (Ma,p, 9, q,s).
Then there exist p; and po such that

P
lim k~° [Ml (q <M>>] = 0 uniformly in n,

k—o00 P1
and »
k
lim £° |:M2 (q <M>>] = 0 uniformly in n.
k—oo P2

Let p = max (p1, p2). Then we have

o (S <o ()]

Pk
+k7°D |:M2 <q <M>>} — 0 uniformly in n.
P2

We have = € ¢o (M) + Ma,p,¢,q,5). =

THEOREM 2.4. Let M be an Orlicz function then co (M,p,d,q,s) C
c(M,p,9,q,5) C loo (M,p, 0,4, 5).

Proof. Let z € ¢(M, p, ¢,q,s). Then we have

()]
<o (oS oo e ()]
s (o ()] o (0 (2))']

Thus we get € {lo (M,p,¢,q,s). The inclusion ¢y (M,p,¢,q,s) C
c¢(M,p,¢,q,s) is obvious. =

THEOREM 2.5. For any two sequences p = (py) and t = (tx) of positive
real numbers and for any two seminorms q1 and go on X we have

Z(M’pa ¢,(I173) ﬂZ(M,t, ¢,q2,3) 7’5 @

Proof. The proof follows from the fact that the zero element 6 belongs to
each of the classes of sequences involved in the intersection. m
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THEOREM 2.6. Let M be an Orlicz function, q1 and q2 be two seminorms
on X. Then

1) Z(M7p7¢7q178) mZ(M7p7¢7q275) g Z(M7P7¢7Q1 +Q275)}
ii) if q1 is stronger than qa, then Z (M,p, ¢,q1,5) € Z (M,p, b, q2, s),
i) if @1 ~ (equivalent to) qa, then Z (M,p, ¢,q1,5) = Z (M,p, d, g2, S).

Proof. Straightforward and hence omitted. m

THEOREM 2.7. i) Let 0 < pp < 1 and (rx/px) be bounded. Then
Z(M77ﬂ7¢7q78) CZ(M7p7¢7q7S))
ii) s1 < sy implies Z (M, p,d,q,51) C Z(M,p,$,q,52).

. _ 1.—s ¢k‘,n(x) " .
Proof. i) Let us take wy, = k™% |M (¢ (| ——— for all k. Following
P

the technique applied for establishing Theorem 5 of Maddox [12]|, we can
easily prove the theorem.

ii) Since k™2 [M (q (%@))ﬂpk < ks [M (q (%(JB)))]M for all k
and n, so we have Z (M,p,¢,q,s1) C Z (M, p,$,q,s2). =

THEOREM 2.8. The spaces loo(M,p, ¢, q,s) and co(M,p, ¢, q,s) are solid
and as such are monotone, but ¢(M,p, ¢, q,s) is not monotone and hence is
not solid.

Proof. Let (zy) € loo(M,p, ¢, q,s) or co(M, p, ¢,q,s) and (ay) be a sequence
of scalars such that |ag| <1 for all k¥ € N. Then the result follows from the
following inequality:

o ()| <o )]s
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