

Mahmut Işık

**SOME CLASSES OF ALMOST CONVERGENT
PARANORMED SEQUENCE SPACES DEFINED
BY ORLICZ FUNCTIONS**

Abstract. In this paper we define $\ell_\infty(M, p, \phi, q, s)$, $c(M, p, \phi, q, s)$ and $c_0(M, p, \phi, q, s)$, the sequence spaces on a seminormed complex linear space, using an Orlicz function. We give various properties and some inclusion relations on this space.

1. Introduction

Let ℓ_∞ and c denote the Banach spaces of real bounded and convergent sequences $x = (x_n)$ respectively, normed by $\|x\| = \sup_n |x_n|$.

Let σ be a one-to-one mapping of the set of positive integers into itself such that $\sigma^k(n) = \sigma(\sigma^{k-1}(n))$, $k = 1, 2, \dots$. A continuous linear functional φ on ℓ_∞ is said to be an invariant mean or a σ -mean if and only if

- (i) $\varphi(x) \geq 0$ when the sequence $x = (x_n)$ has $x_n \geq 0$ for all n ,
- (ii) $\varphi(e) = 1$, where $e = (1, 1, 1, \dots)$ and
- (iii) $\varphi(\{x_{\sigma(n)}\}) = \varphi(\{x_n\})$ for all $x \in \ell_\infty$.

If σ is the translation mapping $n \rightarrow n + 1$, a σ -mean is often called a Banach limit [4], and V_σ , the set of σ -convergent sequences, that is, the set of bounded sequences all of whose invariant means are equal, is the set \hat{f} of almost convergent sequences [11].

If $x = (x_n)$, set $Tx = (Tx_n) = (x_{\sigma(n)})$. It can be shown (see Schaefer [18]) that

$$(1.1) \quad V_\sigma = \{x = (x_n) : \lim_k t_{kn}(x) = Le \text{ uniformly in } n, L = \sigma - \lim x\},$$

where

$$t_{kn}(x) = \frac{1}{k+1} \sum_{j=0}^k T^j x_n.$$

2000 *Mathematics Subject Classification*: 40A05, 40C05, 40D05.

Key words and phrases: Orlicz function, invariant mean, seminorm.

The special case of (1.1), in which $\sigma(n) = n + 1$ was given by Lorentz [11].

Subsequently invariant means have been studied by Ahmad and Mursaleen [1], Mursaleen [14], Raimi [17] and many others.

The space

$$BV_\sigma = \left\{ x \in \ell_\infty : \sum_k |\phi_{k,n}(x)| < \infty, \text{ uniformly in } n \right\}$$

was defined by Mursaleen [13], where

$$\phi_{k,n}(x) = t_{kn}(x) - t_{k-1,n}(x)$$

assuming that $t_{kn}(x) = 0$, for $k = -1$.

A straightforward calculation shows that

$$\phi_{k,n}(x) = \begin{cases} \frac{1}{k(k+1)} \sum_{j=1}^k j (x_{\sigma^j(n)} - x_{\sigma^{j-1}(n)}) & (k \geq 1), \\ x_n & (k = 0). \end{cases}$$

Note that for any sequences x, y and scalar λ , we have

$$\phi_{k,n}(x + y) = \phi_{k,n}(x) + \phi_{k,n}(y) \quad \text{and} \quad \phi_{k,n}(\lambda x) = \lambda \phi_{k,n}(x).$$

An Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$, which is continuous, non decreasing and convex with $M(0) = 0$, $M(x) > 0$ for $x > 0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$ (for detail see Krasnoselskii and Rutickii [9]).

It is well known that if M is a convex function and $M(0) = 0$, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

Let (Ω, Σ, μ) be a finite measure space. We denote by $E(\mu)$ the space of all (equivalence classes of) Σ -measurable functions x from Ω into $[0, \infty)$. Given an Orlicz function M , we define on $E(\mu)$ a convex functional I_M by

$$I_M(x) = \int_{\Omega} M(x(t)) d\mu,$$

and an Orlicz space $L^M(\mu)$ by $L^M(\mu) = \{x \in E(\mu) : I_M(\lambda x) < +\infty \text{ for some } \lambda > 0\}$ (for detail see [16], [9]).

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to construct the sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M is a Banach space with the norm

$$\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \leq 1 \right\}$$

and this space is called an Orlicz sequence space. For $M(t) = t^p$, $1 \leq p < \infty$, the space ℓ_M coincides with the classical sequence space ℓ_p .

DEFINITION 1.1. Any two Orlicz functions M_1 and M_2 are said to be equivalent if there are positive constants α and β , and x_0 such that $M_1(\alpha x) \leq M_2(x) \leq M_1(\beta x)$ for all x with $0 \leq x \leq x_0$ (see Kamthan and Gupta [8]).

Later on, different types of sequence spaces were introduced by using an Orlicz function by Mursaleen *et al.* [15], Choudhary and Parashar [5], Et *et al.* [6], Tripathy and Mahanta ([20], [21]), Tripathy and Sarma ([24], [26]), Tripathy and Sen [22], Tripathy and Dutta [25], Tripathy *et al.* [23], Srivastava and Ghosh [19], Khan [7], Altin ([3], [2]) and many others.

A sequence space E is said to be solid (or normal) if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$.

It is well known that a sequence space E is normal implies that E is monotone (see for instance Kamthan and Gupta [8]).

DEFINITION 1.2. Let q_1, q_2 be seminorms on a vector space X . Then q_1 is said to be stronger than q_2 if whenever (x_n) is a sequence such that $q_1(x_n) \rightarrow 0$, then also $q_2(x_n) \rightarrow 0$. If each is stronger than the others, q_1 and q_2 are said to be equivalent (one may refer to Wilansky [27]).

LEMMA 1.3. Let q_1 and q_2 be seminorms on a linear space X . Then q_1 is stronger than q_2 if and only if there exists a constant T such that $q_2(x) \leq T q_1(x)$ for all $x \in X$ (see for instance Wilansky [27]).

The following inequalities will be used throughout the paper. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $0 < p_k \leq \sup p_k = H$, $D = \max(1, 2^{H-1})$, then

$$(1.2) \quad |a_k + b_k|^{p_k} \leq D \{ |a_k|^{p_k} + |b_k|^{p_k} \},$$

where $a_k, b_k \in \mathbb{C}$.

Throughout the article $p = (p_k)$ will represent a sequence of strictly positive real numbers and (X, q) a seminormed space over the field \mathbb{C} of complex numbers with the seminorm q . The symbol $\ell_\infty(X)$ denotes the spaces of all bounded sequences defined over X . We define the following sequence spaces:

$$\ell_\infty(M, p, \phi, q, s) = \left\{ x \in \ell_\infty(X) : \sup_{n,k} k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k} < \infty \right\},$$

for some $\rho > 0$, $s \geq 0$

$$c(M, p, \phi, q, s) = \left\{ \begin{array}{l} x \in \ell_\infty(X) : \lim_{k \rightarrow \infty} k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x) - \ell}{\rho} \right) \right) \right]^{p_k} = 0 \\ \text{uniformly in } n, \text{ for some } \rho > 0, \ell \in X \text{ and } s \geq 0 \end{array} \right\},$$

$$c_0(M, p, \phi, q, s) = \left\{ \begin{array}{l} x \in \ell_\infty(X) : \lim_{k \rightarrow \infty} k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k} = 0 \\ \text{uniformly in } n, \text{ for some } \rho > 0, s \geq 0 \end{array} \right\}.$$

2. Main results

THEOREM 2.1. *Let $p = (p_k)$ be a bounded sequence, then $Z(M, p, \phi, q, s)$ are linear spaces over the set of complex numbers, for $Z = \ell_\infty, c$ and c_0 .*

Proof. We give the proof for $Z = c_0$ only. The other cases can be treated similarly. Let $x, y \in c_0(M, p, \phi, q, s)$ and $\alpha, \beta \in \mathbb{C}$. There exist positive numbers ρ_1 and ρ_2 such that

$$k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho_1} \right) \right) \right]^{p_k} \rightarrow 0 \text{ as } k \rightarrow \infty, \text{ uniformly in } n, s \geq 0$$

and

$$k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(y)}{\rho_2} \right) \right) \right]^{p_k} \rightarrow 0 \text{ as } k \rightarrow \infty, \text{ uniformly in } n, s \geq 0.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is non-decreasing and convex

$$\begin{aligned} k^{-s} \left[M \left(q \left(\frac{\alpha \phi_{k,n}(x) + \beta \phi_{k,n}(y)}{\rho_3} \right) \right) \right]^{p_k} \\ \leq k^{-s} \left[M \left(q \left(\frac{\alpha \phi_{k,n}(x)}{\rho_3} \right) + q \left(\frac{\beta \phi_{k,n}(y)}{\rho_3} \right) \right) \right]^{p_k} \\ \leq k^{-s} \frac{1}{2^{p_k}} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho_1} \right) \right) + M \left(q \left(\frac{\phi_{k,n}(y)}{\rho_2} \right) \right) \right]^{p_k} \\ \leq D k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho_1} \right) \right) \right]^{p_k} + D k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(y)}{\rho_2} \right) \right) \right]^{p_k} \\ \rightarrow 0, \text{ as } k \rightarrow \infty, \text{ uniformly in } n, s \geq 0. \end{aligned}$$

This proves that $c_0(M, p, \phi, q, s)$ is linear. ■

THEOREM 2.2. *The spaces $Z(M, p, \phi, q, s)$ (for $Z = \ell_\infty, c$ and c_0) are paranormed space (not necessarily totally paranormed), paranormed by*

$$g(x) = \inf \left\{ \rho^{p_m/H} : \sup_{k \geq 1} k^{-s} M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \leq 1, \rho > 0, \text{ uniformly in } n \right\},$$

where $H = \max(1, \sup_k p_k)$.

Proof. Clearly $g(x) = g(-x)$ and $g(\bar{\theta}) = 0$, where $\bar{\theta}$ is the zero sequence of X . Let $(x_k), (y_k) \in c_0(M, p, \phi, q, s)$.

Then there exist ρ_1, ρ_2 such that

$$\sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(x)}{\rho_1}\right)\right) \leq 1, \quad \text{uniformly in } n$$

and

$$\sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(y)}{\rho_2}\right)\right) \leq 1, \quad \text{uniformly in } n.$$

Let $\rho = \rho_1 + \rho_2$, then we have

$$\begin{aligned} \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(x) + \phi_{k,n}(y)}{\rho}\right)\right) &\leq \left(\frac{\rho_1}{\rho_1 + \rho_2}\right) \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(x)}{\rho_1}\right)\right) \\ &\quad + \left(\frac{\rho_2}{\rho_1 + \rho_2}\right) \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(y)}{\rho_2}\right)\right) \leq 1, \quad \text{uniformly in } n. \end{aligned}$$

Hence

$$\begin{aligned} g(x+y) &= \inf \left\{ (\rho_1 + \rho_2)^{p_m/H} : \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(x) + \phi_{k,n}(y)}{\rho}\right)\right) \leq 1, \rho > 0, \right. \\ &\quad \left. \text{uniformly in } n \right\} \\ &\leq \inf \left\{ (\rho_1)^{p_m/H} : \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(x)}{\rho_1}\right)\right) \leq 1, \rho_1 > 0, \text{ uniformly in } n \right\} \\ &\quad + \inf \left\{ (\rho_2)^{p_m/H} : \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(y)}{\rho_2}\right)\right) \leq 1, \rho_2 > 0, \text{ uniformly in } n \right\} \\ &= g(x) + g(y). \end{aligned}$$

Hence g satisfies the triangle inequality.

The continuity of product follows from the following equality:

$$\begin{aligned} g(\lambda x) &= \inf \left\{ \rho^{p_m/H} : \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\lambda \phi_{k,n}(x)}{\rho}\right)\right) \leq 1, \rho > 0, \text{ uniformly in } n \right\} \\ &= \inf \left\{ (|\lambda|t)^{p_m/H} : \sup_{k \geq 1} k^{-s} M\left(q\left(\frac{\phi_{k,n}(x)}{t}\right)\right) \leq 1, t > 0, \text{ uniformly in } n \right\}, \end{aligned}$$

where $t = \rho/|\lambda|$.

Hence the space $c_0(M, p, \phi, q, s)$ is a paranormed space, paranormed by g . The other cases can be proved in a similar way. ■

THEOREM 2.3. *Let M_1 and M_2 be two Orlicz functions. Then*

$$Z(M_1, p, \phi, q, s) \cap Z(M_2, p, \phi, q, s) \subseteq Z(M_1 + M_2, p, \phi, q, s),$$

for $Z = \ell_\infty, c$ and c_0 .

Proof. We prove the result for $Z = c_0$ and for other spaces it will follow on applying similar arguments. Let $x \in c_0(M_1, p, \phi, q, s) \cap c_0(M_2, p, \phi, q, s)$. Then there exist ρ_1 and ρ_2 such that

$$\lim_{k \rightarrow \infty} k^{-s} \left[M_1 \left(q \left(\frac{\phi_{k,n}(x)}{\rho_1} \right) \right) \right]^{p_k} = 0 \text{ uniformly in } n,$$

and

$$\lim_{k \rightarrow \infty} k^{-s} \left[M_2 \left(q \left(\frac{\phi_{k,n}(x)}{\rho_2} \right) \right) \right]^{p_k} = 0 \text{ uniformly in } n.$$

Let $\rho = \max(\rho_1, \rho_2)$. Then we have

$$\begin{aligned} k^{-s} \left[(M_1 + M_2) \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k} &\leq k^{-s} D \left[M_1 \left(q \left(\frac{\phi_{k,n}(x)}{\rho_1} \right) \right) \right]^{p_k} \\ &\quad + k^{-s} D \left[M_2 \left(q \left(\frac{\phi_{k,n}(x)}{\rho_2} \right) \right) \right]^{p_k} \rightarrow 0 \text{ uniformly in } n. \end{aligned}$$

We have $x \in c_0(M_1 + M_2, p, \phi, q, s)$. ■

THEOREM 2.4. *Let M be an Orlicz function then $c_0(M, p, \phi, q, s) \subset c(M, p, \phi, q, s) \subset \ell_\infty(M, p, \phi, q, s)$.*

Proof. Let $x \in c(M, p, \phi, q, s)$. Then we have

$$\begin{aligned} k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k} &\leq D k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x) - L}{\rho} \right) \right) \right]^{p_k} + D k^{-s} \left[M \left(\left(\frac{q(L)}{\rho} \right) \right) \right]^{p_k} \\ &\leq D k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x) - L}{\rho} \right) \right) \right]^{p_k} + D k^{-s} \max \left[1, \left(M \left(\frac{q(L)}{\rho} \right) \right)^H \right]. \end{aligned}$$

Thus we get $x \in \ell_\infty(M, p, \phi, q, s)$. The inclusion $c_0(M, p, \phi, q, s) \subset c(M, p, \phi, q, s)$ is obvious. ■

THEOREM 2.5. *For any two sequences $p = (p_k)$ and $t = (t_k)$ of positive real numbers and for any two seminorms q_1 and q_2 on X we have*

$$Z(M, p, \phi, q_1, s) \cap Z(M, t, \phi, q_2, s) \neq \emptyset.$$

Proof. The proof follows from the fact that the zero element $\bar{\theta}$ belongs to each of the classes of sequences involved in the intersection. ■

THEOREM 2.6. *Let M be an Orlicz function, q_1 and q_2 be two seminorms on X . Then*

- i) $Z(M, p, \phi, q_1, s) \cap Z(M, p, \phi, q_2, s) \subseteq Z(M, p, \phi, q_1 + q_2, s)$,
- ii) if q_1 is stronger than q_2 , then $Z(M, p, \phi, q_1, s) \subseteq Z(M, p, \phi, q_2, s)$,
- iii) if $q_1 \simeq$ (equivalent to) q_2 , then $Z(M, p, \phi, q_1, s) = Z(M, p, \phi, q_2, s)$.

Proof. Straightforward and hence omitted. ■

THEOREM 2.7. i) *Let $0 < p_k \leq r_k$ and (r_k/p_k) be bounded. Then*

$$Z(M, r, \phi, q, s) \subset Z(M, p, \phi, q, s),$$

- ii) $s_1 \leq s_2$ implies $Z(M, p, \phi, q, s_1) \subset Z(M, p, \phi, q, s_2)$.

Proof. i) Let us take $w_{kn} = k^{-s} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{r_k}$ for all k . Following the technique applied for establishing Theorem 5 of Maddox [12], we can easily prove the theorem.

ii) Since $k^{-s_2} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k} \leq k^{-s_1} \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k}$ for all k and n , so we have $Z(M, p, \phi, q, s_1) \subset Z(M, p, \phi, q, s_2)$. ■

THEOREM 2.8. *The spaces $\ell_\infty(M, p, \phi, q, s)$ and $c_0(M, p, \phi, q, s)$ are solid and as such are monotone, but $c(M, p, \phi, q, s)$ is not monotone and hence is not solid.*

Proof. Let $(x_k) \in \ell_\infty(M, p, \phi, q, s)$ or $c_0(M, p, \phi, q, s)$ and (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Then the result follows from the following inequality:

$$\left[M \left(q \left(\frac{\alpha_k \phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k} \leq \left[M \left(q \left(\frac{\phi_{k,n}(x)}{\rho} \right) \right) \right]^{p_k}, \text{ for all } k \in \mathbb{N}. \quad ■$$

References

- [1] Z. U. Ahmad, M. Mursaleen, *An application of Banach limits*, Proc. Amer. Math. Soc. 103 (1988), 244–246.
- [2] Y. Altin, M. Et, B. C. Tripathy, *The sequence space $|\bar{N}_p|(M, r, q, s)$ on seminormed spaces*, Appl. Math. Comput. 154 (2004), 423–430.
- [3] Y. Altin, *Properties of some sets of sequences defined by a modulus function*, Acta Math. Sci. (English Ed.) 29 (2009), 427–434.
- [4] S. Banach, *Theorie des Operations Linearies*, Warszawa, 1932.
- [5] B. Choudhary, S. D. Parashar, *A sequence space defined by Orlicz functions*, Approx. Theory Appl. (N.S.) 18(4) (2002), 70–75.
- [6] M. Et, Y. Altin, B. Choudhary, B. C. Tripathy, *On some classes of sequences defined by sequences of Orlicz functions*, Math. Inequal. Appl. 9 (2006), 335–342.
- [7] V. A. Khan, *On Riesz–Musielak–Orlicz sequence spaces*, Numer. Funct. Anal. Optim. 28 (2007), 883–895.

- [8] P. K. Kamthan, M. Gupta, *Sequence Spaces and Series*, Lecture Notes in Pure and Applied Mathematics, 65, Marcel Dekker Inc., New York, 1981.
- [9] M. A. Krasnoselskii, Y. B. Rutickii, *Convex Functions and Orlicz Spaces*, Groningen, Netherlands, 1961.
- [10] J. Lindenstrauss, L. Tzafriri, *On Orlicz sequence spaces*, Israel J. Math. 10 (1971), 379–390.
- [11] G. G. Lorentz, *A contribution to the theory of divergent sequences*, Acta Math. 80 (1948), 167–190.
- [12] I. J. Maddox, *Spaces of strongly summable sequences*, Quart. J. Math. (Oxford 2nd Ser.) 18(72) (1967), 345–355.
- [13] M. Mursaleen, *On some new invariant matrix methods of summability*, Quart. J. Math. Oxford 34(2) (1983), 77–86.
- [14] M. Mursaleen, *Matrix transformations between some new sequence spaces*, Houston J. Math. 9 (1983), 505–509.
- [15] M. Mursaleen, Q. A. Khan, T. A. Chishti, *Some new convergent sequences defined by Orlicz functions and statistical convergence*, Ital. J. Pure Appl. Math. 9 (2001), 25–32.
- [16] W. Orlicz, Über Räume (L^M) , Bull. Int. Acad. Polon. Sci. A (1936), 93–107.
- [17] R. A. Raimi, *Invariant means and invariant matrix method of summability*, Duke Math. J. 30 (1963), 81–94.
- [18] P. Schaefer, *Infinite matrices and invariant means*, Proc. Amer. Math. Soc. 36 (1972), 104–110.
- [19] P. D. Srivastava, Ghosh, K. Dalim, *On vector valued sequence spaces $h_N(E_k)$, $\ell_M(B(E_k, Y))$ and $\ell_M(E'_k)$* , J. Math. Anal. Appl. 327 (2007), 1029–1040.
- [20] B. C. Tripathy, S. Mahanta, *On a class of sequences related to the ℓ^p spaces defined by Orlicz function*, Soochow J. Math. 29 (2003), 379–391.
- [21] B. C. Tripathy, S. Mahanta, *On a class of generalized lacunary difference sequence spaces defined by Orlicz functions*, Acta Math. Appl. Sinica (English Ser.) 20 (2004), 231–238.
- [22] B. C. Tripathy, M. Sen, *Characterization of some matrix classes involving paranormed sequence spaces*, Tamkang J. Math. 37 (2006), 155–162.
- [23] B. C. Tripathy, Y. Altin, M. Et, *Generalized difference sequence spaces on semi-normed space defined by Orlicz functions*, Math. Slovaca 58 (2008), 315–324.
- [24] B. C. Tripathy, B. Sarma, *Sequence spaces of Fuzzy real numbers defined by Orlicz functions*, Math. Slovaca 58 (2008), 621–628.
- [25] B. C. Tripathy, H. Dutta, *On some new paranormed difference sequence spaces defined by Orlicz functions*, Kyungpook Math. J. 50 (2010), 59–69.
- [26] B. C. Tripathy, B. Sarma, *Vector valued double sequence spaces defined by Orlicz function*, Math. Slovaca 59 (2009), 767–776.
- [27] A. Wilansky, *Functional Analysis*, Blaisdell Publishing Company, New York, 1964.

DEPARTMENT OF STATISTICS
 FIRAT UNIVERSITY
 23119, Elazığ, TURKEY
 E-mail: misik63@yahoo.com

Received January 2, 2010; revised version January 3, 2011.