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SOME CLASSES OF ALMOST CONVERGENT

PARANORMED SEQUENCE SPACES DEFINED

BY ORLICZ FUNCTIONS

Abstract. In this paper we define ℓ∞(M,p, φ, q, s), c(M,p, φ, q, s) and c0(M,p, φ, q, s),
the sequence spaces on a seminormed complex linear space, using an Orlicz function. We
give various properties and some inclusion relations on this space.

1. Introduction

Let ℓ∞ and c denote the Banach spaces of real bounded and convergent
sequences x = (xn) respectively, normed by ‖x‖ = supn |xn|.

Let σ be a one-to-one mapping of the set of positive integers into itself
such that σk (n) = σ(σk−1(n)), k = 1, 2, . . . . A continuous linear functional
ϕ on ℓ∞ is said to be an invariant mean or a σ-mean if and only if

(i) ϕ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n,
(ii) ϕ (e) = 1, where e = (1, 1, 1, . . . ) and
(iii) ϕ

({

xσ(n)
})

= ϕ ({xn}) for all x ∈ ℓ∞.

If σ is the translation mapping n → n + 1, a σ-mean is often called a
Banach limit [4], and Vσ, the set of σ-convergent sequences, that is, the set

of bounded sequences all of whose invariant means are equal, is the set f̂ of
almost convergent sequences [11].

If x = (xn) , set Tx = (Txn) =
(

xσ(n)
)

. It can be shown (see Schaefer
[18]) that

(1.1) Vσ =
{

x = (xn) : lim
k

tkn(x) = Le uniformly in n, L = σ − limx
}

,

where

tkn(x) =
1

k + 1

k
∑

j=0

T jxn.
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The special case of (1.1), in which σ (n) = n + 1 was given by Lorentz
[11].

Subsequently invariant means have been studied by Ahmad and Mursa-
leen [1], Mursaleen [14], Raimi [17] and many others.

The space

BVσ =
{

x ∈ ℓ∞ :
∑

k

|φk,n (x)| < ∞, uniformly in n
}

was defined by Mursaleen [13], where

φk,n(x) = tkn(x)− tk−1,n(x)

assuming that tkn(x) = 0, for k = −1.

A straightforward calculation shows that

φk,n(x) =

{

1
k(k+1)

∑k
j=1 j

(

xσj(n) − xσj−1(n)

)

(k ≥ 1) ,

xn (k = 0) .

Note that for any sequences x, y and scalar λ, we have

φk,n (x+ y) = φk,n(x) + φk,n (y) and φk,n (λx) = λφk,n(x).

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,
non decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →
∞ as x → ∞ (for detail see Krasnoselskii and Rutickii [9]).

It is well known that if M is a convex function and M (0) = 0, then
M (λx) ≤ λM(x) for all λ with 0 < λ < 1.

Let (Ω,Σ, µ) be a finite measure space. We denote by E (µ) the space
of all (equivalence classes of) Σ-measurable functions x from Ω into [0,∞).
Given an Orlicz function M, we define on E (µ) a convex functional IM by

IM (x) =
�

Ω

M (x (t)) dµ,

and an Orlicz space LM (µ) by LM (µ) = {x ∈ E (µ) : IM (λx) < +∞ for
some λ > 0} (for detail see [16], [9]).

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to con-
struct the sequence space

ℓM =

{

x ∈ w :
∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

.

The space ℓM is a Banach space with the norm

‖x‖ = inf

{

ρ > 0 :
∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}



Some classes of almost convergent paranormed sequence spaces. . . 587

and this space is called an Orlicz sequence space. For M (t) = tp, 1 ≤ p < ∞,
the space ℓM coincides with the classical sequence space ℓp.

Definition 1.1. Any two Orlicz functions M1 and M2 are said to
be equivalent if there are positive constants α and β, and x0 such that
M1 (αx) ≤ M2(x) ≤ M1 (βx) for all x with 0 ≤ x ≤ x0 (see Kamthan and
Gupta [8]).

Later on, different types of sequence spaces were introduced by using
an Orlicz function by Mursaleen et al. [15], Choudhary and Parashar [5],
Et et al. [6], Tripathy and Mahanta ([20], [21]), Tripathy and Sarma ([24],
[26]), Tripathy and Sen [22], Tripathy and Dutta [25], Tripathy et al. [23],
Srivastava and Ghosh [19], Khan[7], Altin ([3], [2]) and many others.

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E whenever
(xk) ∈ E for all sequences (αk) of scalars with |αk| ≤ 1.

It is well known that a sequence space E is normal implies that E is
monotone (see for instance Kamthan and Gupta [8]).

Definition 1.2. Let q1, q2 be seminorms on a vector space X. Then
q1 is said to be stronger than q2 if whenever (xn) is a sequence such that
q1(xn) → 0, then also q2(xn) → 0. If each is stronger than the others, q1
and q2 are said to be equivalent (one may refer to Wilansky [27]).

Lemma 1.3. Let q1 and q2 be seminorms on a linear space X. Then

q1 is stronger than q2 if and only if there exists a constant T such that

q2(x) ≤ Tq1 (x) for all x ∈ X (see for instance Wilansky [27]).

The following inequalities will be used throughout the paper. Let p =
(pk) be a bounded sequence of positive real numbers with 0 < pk ≤ sup pk =
H, D = max

(

1, 2H−1
)

, then

(1.2) |ak + bk|
pk ≤ D {|ak|

pk + |bk|
pk} ,

where ak, bk ∈ C.

Throughout the article p = (pk) will represent a sequence of strictly
positive real numbers and (X, q) a seminormed space over the field C of
complex numbers with the seminorm q. The symbol ℓ∞ (X) denotes the
spaces of all bounded sequences defined over X. We define the following
sequence spaces:

ℓ∞ (M,p, φ, q, s) =







x ∈ ℓ∞ (X) : supn,k k
−s

[

M

(

q

(

φk,n(x)

ρ

))]pk

< ∞

for some ρ > 0, s ≥ 0







,
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c (M,p, φ, q, s) =







x ∈ ℓ∞ (X) : lim
k→∞

k−s

[

M

(

q

(

φk,n(x)− ℓ

ρ

))]pk

= 0

uniformly in n, for some ρ > 0, ℓ ∈ X and s ≥ 0







,

c0 (M,p, φ, q, s) =







x ∈ ℓ∞ (X) : lim
k→∞

k−s

[

M

(

q

(

φk,n(x)

ρ

))]pk

= 0

uniformly in n, for some ρ > 0, s ≥ 0







.

2. Main results

Theorem 2.1. Let p = (pk) be a bounded sequence, then Z (M,p, φ, q, s)
are linear spaces over the set of complex numbers, for Z = ℓ∞, c and c0.

Proof. We give the proof for Z = c0 only. The other cases can be treated
similarly. Let x, y ∈ c0 (M,p, φ, q, s) and α, β ∈ C. There exist positive
numbers ρ1 and ρ2 such that

k−s

[

M

(

q

(

φk,n(x)

ρ1

))]pk

→ 0 as k → ∞, uniformly in n, s ≥ 0

and

k−s

[

M

(

q

(

φk,n(y)

ρ2

))]pk

→ 0 as k → ∞, uniformly in n, s ≥ 0.

Define ρ3 = max (2 |α| ρ1, 2 |β| ρ2). Since M is non-decreasing and convex

k−s

[

M

(

q

(

αφk,n(x) + βφk,n(y)

ρ3

))]pk

≤ k−s

[

M

(

q

(

αφk,n(x)

ρ3

)

+ q

(

βφk,n(y)

ρ3

))]pk

≤ k−s 1

2pk

[

M

(

q

(

φk,n (x)

ρ1

)

+M

(

q

(

φk,n(y)

ρ2

)))]pk

≤ Dk−s

[

M

(

q

(

φk,n(x)

ρ1

))]pk

+Dk−s

[

M

(

q

(

φk,n(y)

ρ2

))]pk

→ 0, as k → ∞, uniformly in n, s ≥ 0.

This proves that c0 (M,p, φ, q, s) is linear.

Theorem 2.2. The spaces Z (M,p, φ, q, s) (for Z = ℓ∞, c and c0) are

paranormed space (not necessarily totally paranormed), paranormed by

g(x) = inf

{

ρpm/H : sup
k≥1

k−sM

(

q

(

φk,n(x)

ρ

))

≤ 1, ρ > 0, uniformly in n

}

,

where H = max (1, supk pk).
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Proof. Clearly g(x) = g(−x) and g(θ̄) = 0, where θ̄ is the zero sequence of
X. Let (xk), (yk) ∈ c0 (M,p, φ, q, s).

Then there exist ρ1, ρ2 such that

sup
k≥1

k−sM

(

q

(

φk,n(x)

ρ1

))

≤ 1, uniformly in n

and

sup
k≥1

k−sM

(

q

(

φk,n(y)

ρ2

))

≤ 1, uniformly in n.

Let ρ = ρ1 + ρ2, then we have

sup
k≥1

k−sM

(

q

(

φk,n(x) + φk,n(y)

ρ

))

≤

(

ρ1
ρ1 + ρ2

)

sup
k≥1

k−sM

(

q

(

φk,n(x)

ρ1

))

+

(

ρ2
ρ1 + ρ2

)

sup
k≥1

k−sM

(

q

(

φk,n(y)

ρ2

))

≤ 1, uniformly in n.

Hence

g(x+ y)

= inf







(ρ1+ρ2)
pm/H : supk≥1 k

−sM

(

q

(

φk,n(x)+φk,n(y)

ρ

))

≤ 1, ρ > 0,

uniformly in n







≤ inf

{

(ρ1)
pm/H : sup

k≥1
k−sM

(

q

(

φk,n(x)

ρ1

))

≤ 1, ρ1 > 0, uniformly in n

}

+ inf

{

(ρ2)
pm/H : sup

k≥1
k−sM

(

q

(

φk,n(y)

ρ2

))

≤ 1, ρ2 > 0, uniformly in n

}

= g(x)+g(y).

Hence g satisfies the triangle inequality.

The continuity of product follows from the following equality:

g(λx)

= inf

{

ρpm/H : sup
k≥1

k−sM

(

q

(

λφk,n(x)

ρ

))

≤ 1, ρ > 0, uniformly in n

}

= inf

{

(|λ|t)pm/H : sup
k≥1

k−sM

(

q

(

φk,n(x)

t

))

≤ 1, t > 0, uniformly in n

}

,

where t = ρ/ |λ|.

Hence the space c0 (M,p, φ, q, s) is a paranormed space, paranormed by g.
The other cases can be proved in a similar way.
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Theorem 2.3. Let M1 and M2 be two Orlicz functions. Then

Z (M1, p, φ, q, s) ∩ Z (M2, p, φ, q, s) ⊆ Z(M1 +M2, p, φ, q, s),

for Z = ℓ∞, c and c0.

Proof. We prove the result for Z = c0 and for other spaces it will follow
on applying similar arguments. Let x ∈ c0 (M1, p, φ, q, s)∩ c0 (M2, p, φ, q, s).
Then there exist ρ1 and ρ2 such that

lim
k→∞

k−s

[

M1

(

q

(

φk,n(x)

ρ1

))]pk

= 0 uniformly in n,

and

lim
k→∞

k−s

[

M2

(

q

(

φk,n(x)

ρ2

))]pk

= 0 uniformly in n.

Let ρ = max (ρ1, ρ2). Then we have

k−s

[

(M1 +M2)

(

q

(

φk,n(x)

ρ

))]pk

≤ k−sD

[

M1

(

q

(

φk,n(x)

ρ1

))]pk

+ k−sD

[

M2

(

q

(

φk,n(x)

ρ2

))]pk

→ 0 uniformly in n.

We have x ∈ c0 (M1 +M2, p, φ, q, s).

Theorem 2.4. Let M be an Orlicz function then c0 (M,p, φ, q, s) ⊂
c (M,p, φ, q, s) ⊂ ℓ∞ (M,p, φ, q, s).

Proof. Let x ∈ c (M,p, φ, q, s). Then we have

k−s

[

M

(

q

(

φk,n(x)

ρ

))]pk

≤ Dk−s

[

M

(

q

(

φk,n(x)− L

ρ

))]pk

+Dk−s

[

M

((

q (L)

ρ

))]pk

≤ Dk−s

[

M

(

q

(

φk,n(x)− L

ρ

))]pk

+Dk−smax

[

1,

(

M

(

q (L)

ρ

))H
]

.

Thus we get x ∈ ℓ∞ (M,p, φ, q, s). The inclusion c0 (M,p, φ, q, s) ⊂
c (M,p, φ, q, s) is obvious.

Theorem 2.5. For any two sequences p = (pk) and t = (tk) of positive

real numbers and for any two seminorms q1 and q2 on X we have

Z (M,p, φ, q1, s) ∩ Z (M, t, φ, q2, s) 6= ∅.

Proof. The proof follows from the fact that the zero element θ̄ belongs to
each of the classes of sequences involved in the intersection.
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Theorem 2.6. Let M be an Orlicz function, q1 and q2 be two seminorms

on X. Then

i) Z (M,p, φ, q1, s) ∩ Z (M,p, φ, q2, s) ⊆ Z (M,p, φ, q1 + q2, s),
ii) if q1 is stronger than q2, then Z (M,p, φ, q1, s) ⊆ Z (M,p, φ, q2, s),
iii) if q1 ≃ (equivalent to) q2, then Z (M,p, φ, q1, s) = Z (M,p, φ, q2, s).

Proof. Straightforward and hence omitted.

Theorem 2.7. i) Let 0 < pk ≤ rk and (rk/pk) be bounded. Then

Z (M, r, φ, q, s) ⊂ Z (M,p, φ, q, s),
ii) s1 ≤ s2 implies Z (M,p, φ, q, s1) ⊂ Z (M,p, φ, q, s2).

Proof. i) Let us take wkn = k−s

[

M

(

q

(

φk,n(x)

ρ

))]rk

for all k. Following

the technique applied for establishing Theorem 5 of Maddox [12], we can
easily prove the theorem.

ii) Since k−s2
[

M
(

q
(

φk,n(x)
ρ

))]pk
≤ k−s1

[

M
(

q
(

φk,n(x)
ρ

))]pk
for all k

and n, so we have Z (M,p, φ, q, s1) ⊂ Z (M,p, φ, q, s2).

Theorem 2.8. The spaces ℓ∞(M,p, φ, q, s) and c0(M,p, φ, q, s) are solid

and as such are monotone, but c(M,p, φ, q, s) is not monotone and hence is

not solid.

Proof. Let (xk) ∈ ℓ∞(M,p, φ, q, s) or c0(M,p, φ, q, s) and (αk) be a sequence
of scalars such that |αk| ≤ 1 for all k ∈ N. Then the result follows from the
following inequality:

[

M

(

q

(

αkφk,n(x)

ρ

))]pk

≤

[

M

(

q

(

φk,n(x)

ρ

))]pk

, for all k ∈ N.
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