
DEMONSTRATIO MATHEMATICA

Vol. XLV No 3 2012

Marek Galewski, Joanna Smejda

SOME REMARKS ON NONLINEAR DISCRETE BOUNDARY

VALUE PROBLEMS

Abstract. Using critical point theory and some monotonicity results we consider
the existence and multiplicity of solutions to nonlinear discrete boundary value problems
represented as a nonlinear system Au = λf(u) with parameter λ > 0 and with matrix A

being not necessarily positive definite. We provide applications for discrete version of the
Emden–Fowler equation.

1. Introduction

Discrete boundary value problems have attracted a lot of attention re-
cently. The boundary value problems connected with discrete equations can
be tackled with almost similar methods as their continuous counterparts.
The variational techniques applied for discrete problems include, among oth-
ers, the mountain pass methodology, the linking theorem, the Morse theory,
the three critical point, compare with [2], [3], [10], [15], [16]. Moreover, the
fixed point approach is in fact much more prolific in the case of discrete
problem, see for example [1], [7].

In this submission we are going to employ variational techniques and
monotonicity methods for a nonlinear system

(1.1) Au = λf(u), u ∈ R
n

with a parameter λ > 0 and a continuous nonlinear term f : Rn → R
n in case

when the necessarily symmetric n×n matrix A need not be positive definite.
We recall that for a given λ > 0, a column of vector u = (u1, u2, . . . , un)

T ∈
R
n is a solution corresponding to λ, if substitution of λ and u into (1.1)

renders it an identity.
System (1.1) can be treated as a representation of some discrete bound-

ary value problem which in turn arises as discretization of some continuous

2000 Mathematics Subject Classification: 39A12, 39A10, 49J10.
Key words and phrases:



576 M. Galewski, J. Smejda

models. Let us consider this in a more detailed manner by means of some
example. As it is well known difference equations serve as mathematical
models in diverse areas, such as economy, biology, physics, mechanics, com-
puter science, finance. One of such models is the Emden–Fowler equation

d

dt

(

tρ
du

dt

)

+ tδuγ = 0

which originated in the gaseous dynamics in astrophysics and further was
used in the study of fluid mechanics, relativistic mechanics, nuclear physics
and in the study of chemically reacting systems, see [14]. The discrete version
of the generalized Emden–Fowler equation, namely of the following second
order ODE

(p(t)y
′

)
′

+ q(t)y = f(t, y)

received some considerable interest lately mainly by the use of critical point
theory, see for example [6], [8], [9] with a wide display of variational tech-
niques.

The discretization of the generalized Emden–Fowler type boundary value
problem can be put as follows

(1.2) ∆(p (k − 1)∆x (k − 1)) + q (k)x (k) + λf (k, x (k)) = 0

with boundary conditions

(1.3) x (0) = x (T ) , p (0)∆x (0) = p (T )∆x (T )

and where f ∈ C ([1, T ]× R,R), p ∈ C ([0, T + 1] ,R) , q ∈ C ([1, T ] ,R),
p (T ) 6= 0. The realization of the form of (1.1) requires the following matrices,
see [8]

M =



















p (0) + p (1) −p (1) 0 . . . 0 −p (0)

−p (1) p (1) + p (2) −p (2) . . . 0 0

0 −p (2) p (2) + p (3) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . p (T − 2) + p (T − 1) −p (T − 1)

−p (0) 0 0 . . . −p (T − 1) p (T − 1) + p (0)



















and

Q =























−q (1) 0 0 . . . 0 0

0 −q (2) 0 . . . 0 0

0 0 −q (3) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −q (T − 1) 0

0 0 0 . . . 0 −q (T )























.
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Setting A = M + Q and using the assumption that p (T ) 6= 0 we see that
problem (1.2)–(1.3) has a form of a nonlinear system (1.1). Indeed, in this
case there is a 1 − 1 correspondence between solutions to (1.1) with n = T

and solutions to (1.2)–(1.3). There is a clear relation between the forward
difference operator ∆ and operator A since matrix M provided above mul-
tiplied by n-dimensional vector x provides in fact another n-dimensional
vector with coordinates ∆(p (k − 1)∆x (k − 1)) for k = 1, 2, ..., n.

2. The assumptions

Before providing our main results, we give the assumptions.

M1 fk : R → R, for k = 1, ..., n, are continuous functions;
M2 A = (aij)(n×n) is an n×n symmetric matrix with eigenvalues λ1, λ2, . . . ,

λn ordered as λ1 ≤ λ2 ≤ · · · ≤ λk−1 < 0 < λk ≤ · · · ≤ λn;
M3 A = (aij)(n×n) is an n×n symmetric matrix with eigenvalues λ1, λ2, . . . ,

λn ordered as λ1 ≤ λ2 ≤ · · · ≤ λk−1 = 0 < λk ≤ · · · ≤ λn;
M4 A is positive definite, with eigenvalues λ1, λ2, . . . , λn ordered as 0 <

λ1 ≤ λ2 ≤ · · · ≤ λn;
M5 A is negative definite, with eigenvalues λ1, λ2, . . . , λn ordered as λ1 ≤

λ2 ≤ · · · ≤ λn < 0.

For eigenvalues λ1, λ2, . . . , λn we consider the corresponding orthonormal
eigenvectors ξ1, ξ2, . . . , ξn.

Concerning the nonlinear term, we assume that for any k ∈ {1, . . . , n}
F1 there exist ak > 0 such that lim inf |z|→∞

Fk(z)
z2

> ak, for z ∈ R;

F2 there exist bk > 0 such that lim sup|z|→∞
Fk(z)
z2

< bk, for z ∈ R;

F3 there exist ck > 0 such that lim inf |z|→0
fk(z)
z

> ck, for z ∈ R;

F4 there exist dk > 0 such that Fk(z) ≤ dkz
2, for z ∈ R;

F5 there exist µ ∈ (12 , 1) and M > 0 such that Fk(z) ≥ µzfk(z), for
|z| ≥ M ;

F6 there exist µ ∈ (0, 12) and M > 0 such that Fk(z) ≥ µzfk(z), for
|z| ≥ M ;

F7 there exist δ, Ak, Bk ∈ (0,+∞) and an integer i ≥ 1, which satisfy
Ak > Bk > λi

λi+1
Ak > 0, such that Bkz

2 ≤ Fk(z) ≤ Akz
2, for all

|z| ≤ δ;
F8 there exist pk > 0 such that

(

fk(z1) − fk(z2)
)

(z1 − z2) ≥ pk|z1 − z2|2
for z1, z2 ∈ R;

F9 there exist qk > 0 such that fk(z)z ≥ qk|z|2 for z ∈ R.

Let us denote

a = min
1≤k≤n

{ak}, b = max
1≤k≤n

{bk},
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c = min
1≤k≤n

{ck}, d = max
1≤k≤n

{dk},

p = min
1≤k≤n

{pk}, q = min
1≤k≤n

{qk},

A = max
1≤k≤n

{Ak}, B = min
1≤k≤n

{Bk}.

We will assume that inequalities 2b < c, 2d < c and a > B are satisfied
without further recalling them.

Concerning for example the discrete Emden–Fowler equation, the as-
sumptions M2–M5 have impact on the coefficients of matrix A and so on the
sign of the values of function p. Let us consider for example T = 4. Then

M =













p (0) + p (1) −p (1) 0 −p (0)

−p (1) p (1) + p (2) −p (2) 0

0 −p (2) p (2) + p (3) −p (3)

−p (0) 0 −p (3) p (3) + p (0)













.

Let q(k) = 0 for k = 1, 2, 3, 4. When p(0) = −1, p(1) = 1, p(2) = −1,
p(3) = −1 we have condition M2 satisfied with eigenvalues

√
2 − 2,−

√
2 −

2,
√
2,−

√
2, while when p(0) = p(3) = 0, p(1) = −1, p(2) = 2 we have M3

with eigenvalues
√
7 + 1, 1−

√
7, 0.

3. Existence by critical point theory

We will use the following functional J : Rn → R

(3.1) J(u) = λ

n
∑

k=1

uk�

0

fk(s)ds−
1

2
(u,Au)

whose critical points are in fact solution to (1.1) and in turn solutions to (1.1)
are precisely critical points to (3.1). The solutions which we investigate are
the strong ones. This is in contrast to the infinite dimensional case, when the
critical point theory allows usually for obtaining weak solutions. We shall
start with the results describing some properties of the action functional.

Lemma 3.1. We assume (M1) and also one of (M2), (M3), (M4), (M5).
Let f satisfy (F1). Then for all λ ∈ (max{0, λn

2a },∞) functional J is coercive

on R
n and it therefore satisfies the (PS) condition.

Proof. We see that in either case (u,Au) ≤ λn‖u‖2, where λn is the largest
eigenvalue of A. Hence, the arguments used are the same as in [5], Lemma
3.1.

Lemma 3.2. We assume (M1). Let f satisfy either (F5), (M4) or (F6) and

one of (M2), (M3), (M5). For all λ > 0, J satisfies the (PS) condition.
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Proof. Case (F5), (M4) follows by [5]. Concerning the other one we reason
as in [5], proof of Lemma 3.2, for some fixed constant C∗ > 0 that

−µ‖J ′

(um)‖‖um‖ − λnc1 +

(

µ− 1

2

)

λ1‖um‖2 ≤ C∗.

Fix ε > 0. Since J
′

(um) → 0, there exists N0 ∈ N such that ‖J ′

(um)‖ ≤ ε

for all m ≥ N0. Therefore
(

µ− 1

2

)

λ1‖um‖2 − µε‖um‖ − λnc1 − C∗ ≤ 0

which indicates that the sequence {um} ⊂ R
n is bounded and thus it has a

convergent subsequence.

Theorem 3.1. We assume (M1) and also one of (M2), (M3), (M4), (M5).
If f satisfies (F1), then for λ ∈ (max{0, λn

2a },∞), (1.1) has at least one

solution in R
n.

Proof. By Lemma 3.1 J is coercive and obviously it is continuous. Since also
J is Gâteaux differentiable, it has a critical point on R

n which solves (1.1).

Theorem 3.2. We assume either (M1), (M4), (F2), (F3), (F5) or (M1),
(F2), (F3), (F6) with one of assumptions (M2), (M3). Then for λ ∈ (λn

c
, λn

2b ),
problem (1.1) has at least one nonzero solution in R

n.

Proof. The lines of the proof follow [5] with the use of Mountain pass
lemma—see proof of Theorem 3.5 therein.

Next result requires the version of the Linking Theorem, which we provide
below.

Theorem 3.3. (Linking theorem) [11] Let E = V ⊕ X be a real Banach

space with dimV < ∞. Let ρ > r > 0 and let z ∈ X be such that ‖z‖ = r.

Define

M = {u = y + λz : ‖u‖ ≤ ρ, λ ≥ 0, y ∈ V },
M0 = {u = y + λz : y ∈ V, ‖u‖ = ρ, λ ≥ 0, or ‖u‖ ≤ ρ, λ = 0},

N = {u ∈ X : ‖u‖ = r}.
Let J ∈ C1(E,R) be such that

b = inf
u∈N

J(u) > a = max
u∈M0

J(u).

If J satisfies the (PS)c condition with

c = inf
γ∈Γ

max
u∈M

J(γ(u)), Γ = {γ ∈ C(M,E) : γ|M0
= id},

then c is a critical value of J .
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Theorem 3.4. We assume (M1) and (M2). Assume that conditions (F3),

(F4) and (F6) hold. Let λi < 0, λi+1 > 0. Then for λ ∈ (0, λi+1

2d ], equation

(1.1) has at least one nonzero solution in R
n.

Proof. We use Theorem 3.3. We will verify that functional J , defined by
(3.1), satisfies the conditions of Theorem 3.3. By Lemma 3.2, it follows that

J satisfies (PS)c condition. We fix λ ∈ (0,
λi+1

2d ]. There exists δ > 0 such
that

Fk(z) =
z�

0

fk(s)ds ≥
1

2
ckz

2, |z| ≤ δ, k ∈ {1, . . . , n}.

Let V1 = span{ξ1, ξ2, . . . , ξi} (i < n), V2 = V ⊥
1 . Hence on V1 we see that

1
2(u,Au) < 0 and so

λ

n
∑

k=1

uk�

0

fk(s)ds ≥ λ

n
∑

k=1

1

2
cku

2
k.

Thus infu∈V1∩∂Bδ
J(u) > 0.

By condition (F4), we get on V2

J(u) ≤ λ

n
∑

k=1

dku
2
k −

1

2
λi+1‖u‖2 ≤ (λd− 1

2
λi+1)‖u‖2 ≤ 0.

Defining β = δξi we obtain that

J(u) → −∞ as u ∈ V2 ⊕ R
1 and ‖u‖ → ∞,

and that there exists r > δ such that

b = inf
u∈V1∩∂Bδ

J(u) ≥ α > 0 = max
u∈M0

J(u),

where

M0 = {u = y + γβ : y ∈ V2, ‖u‖ = r and γ ≥ 0, or ‖u‖ ≤ r, and γ = 0}.
Thus, according to Theorem 3.3, J has a critical value c∗ > 0, i.e. there
exists v∗ ∈ R

n such that J(v∗) = c∗ and J
′

(v∗) = λf(v∗) − Av∗ = 0. It is
obvious that v∗ 6= 0 since J(0) = 0.

Theorem 3.5. We assume (M1) and (M2). Let f satisfies (F1) and (F7).

Let λi < 0, λi+1 > 0 then for λ ∈ (0,
λi+1

2A ] ⊂ (λn

2a ,∞) (1.1) has at least two

nontrivial solutions in R
n.

Remark 3.1. We also get Theorem 3.6 and Theorem 3.7 from [5] when
we replace assumption (M2) imposed in [5] with less demanding assumption
(M5).
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4. Existence by monotonicity theory

Theorem 4.6. We assume (M1) and also one of (M2), (M3), (M4), (M5).
Let f satisfies (F8). Then for λ ∈ (max{0, λn

p
},∞), (1.1) has a unique

solution in R
n.

Proof. Recalling that (u,Au) ≤ λn‖u‖2, where λn is the largest eigenvalue
of A, we define an operator K : Rn → R

n by Ku = λf(u) − Au and we
obtain that

(Ku−Kv, u− v) ≥ (λp− λn)‖u− v‖2.
Now the Strongly Monotone Principle, see [4], applies and Ku = 0 has a
unique solution u∗ ∈ R

n which in turn is a solution to (1.1).

The following principle can be applied in investigating the existence of
discrete equations.

Theorem 4.7. [4] Let X be a finite dimensional real Banach space and let

T : X → X∗ be a continuous operator. Suppose that there exists a function

r : (0,∞) → R such that

(4.2) lim
t→∞

r (t) = +∞

and that inequality

(T (x) , x) ≥ r (‖x‖X) ‖x‖X
holds for all x ∈ X. Then for each f ∈ X∗ equation T (x) = f has at least

one solution.

Theorem 4.8. We assume (M1) and also one of (M2), (M3), (M4), (M5).
Suppose further that (F9) holds, then for all λ ∈ (max{0, λn

q
},∞) equation

(1.1) has at least one solution.

Proof. We define K as above and we take r (t) = (λq − λn) t. Relation (4.2)
holds when λ > max{0, λn

q
}.

5. Conclusions

We note that our results constitute somehow dual approach towards prob-
lem (1.1) when compared with [12]. That duality is based on the following
observation in the context of variational methods applied to discrete prob-
lems: together with a functional

(5.3) J(u) =
1

2
(u,Au)− λ

n
∑

k=1

uk�

0

fk(s)ds

which was investigated in [12], we can investigate the somehow dual func-
tional (3.1). Since in [13] the authors already investigated the case when the
eigenvalues are not necessarily positive with the use of functional (5.3), we
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complete these results in the sense that we can consider different kinds of non-
linear terms. Moreover, we use monotonicity methods - not applied in [13].
The reason that monotonicity methods were not applied in [13] was as fol-
lows. When monotonicity results are applied we are looking for fixed points
of certain operators. In the context of discrete problems we can consider
both, the operator K (u) = Au− λf(u), and operator K1 (u) = λf(u)−Au

which involve different monotonicity and definiteness assumptions on f and
A. While K requires that A must be positive definite, K1 does not. Thus our
observation concerning both functionals has also impact over the application
of the monotonicity theory. Note that matrices arising in discrete problems
are usually symmetric, while they need not be positive definite, compare
with [8] where the already mentioned discretization of the Emden–Fowler
boundary value problem is considered. Therefore, it seems that our results
are more flexible.

Remark 5.2. Concerning the discrete Emden–Fowler equation we may
provide existence results putting A = M +Q, and using the following action
functional

J (x) = λ

T
∑

k=1

F (k, x (k) , u (k))− 1

2
〈(M +Q)x, x〉 .

In fact Theorems 4.6, 4.8, 3.1, 3.2, 3.4 and 3.5 can be repeated for matrix A

given as above.
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