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EXISTENCE OF SOLUTIONS OF THE DYNAMIC CAUCHY

PROBLEM IN BANACH SPACES

Abstract. In this paper we obtain the existence of solutions and Carathéodory type
solutions of the dynamic Cauchy problem in Banach spaces for functions defined on time
scales

x∆(t) = f(t, x(t)),

x(0) = x0, t ∈ Ia,

where f is continuous or f satisfies Carathéodory conditions and some conditions expressed
in terms of measures of noncompactness. The Mönch fixed point theorem is used to prove
the main result, which extends these obtained for real valued functions.

1. Introduction

Time scale (or a measure chain) was introduced by Hilger in his Ph. D.
thesis in 1988 in order to unify discrete and continuous analysis [27]. Since
Hilger formed the definitions of derivative and integral on time scale several
authors have extended on various aspects of the theory [1, 14, 15]. Time scale
has been shown that it is applicable to any field which can be described with
various kinds of discrete or continuous models. This notion is also useful
when we consider q-difference calculus (quantum calculus cf. [29]). In recent
years there have been many research activities on dynamic equations, in
order to unify the results from difference equations and differential equations
[1, 2, 3, 7, 14, 15, 24]. However, the dynamic equations in Banach spaces
are quite new research area. A first result on this topic is due to Hilger [28,
Theorem 5.7], but this idea is not sufficiently developed. Nevertheless, from
the results of Aulbach and Hilger, it is obvious, that the constructed calculus
on time scales was designed for Banach-space valued dynamic equations right
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from the beginning. We follow this idea. Let us note, that the results of this
paper are particularly useful for the discretization of continuous problems
in Banach spaces. It is possible via difference equations with uniform or
non-uniform steps which lead to different time scales: Z or very useful for
the discretization time scales of the form T = {s} ∪ {tk : k ∈ Z}, where
tk ∈ R, tk < tk+1 for all k ∈ Z, where (tk) is a convergent sequence (to some
s). Due to a growing number of papers dealing with q-difference (quantum)
models cf. [9, 12, 29], it seems to be very interesting to cover such a kind
of discretization in Banach spaces too. This is also the reason to take into
account the compactness assumption in the right-hand side of our problem
(f is a countable α-contraction), which is not necessary for the case T =
Z (cf. Remark 3.4), but useful in the case of convergence for discretized
models.

The Cauchy problems for differential equation x′(t) = f(t, x(t)) and dif-
ference equation ∆x(t) = f(t, x(t)) in Banach spaces have been widely stud-
ied by many authors [4, 5, 17, 18, 21, 22, 23, 26, 34] in the literature. Under
various kind of conditions, the existence and the properties of the solutions
are presented, but there is no new results which can be treated as a unifica-
tion and extension for different kind of time scales (q-difference equations in
Banach spaces, for instance).

In this paper we focus on the existence of solution and Carathéodory
solution of the dynamic Cauchy problem (in a Banach space):

(1.1)
x∆(t) = f(t, x(t)),

x(0) = x0, t ∈ Ia.

The existence results for differential problem are well-known (see [23] for a
survey). But we were motivated, among others, by some interesting papers
on difference equations in Banach spaces [4, 21, 26]. Their authors present
results which guarantee the existence of one or more solutions to particular
cases of (1.1). The theorems of this paper extends also those results. Let
us stress, that for some papers the authors considered simultaneously con-
tinuous and discrete problems ([32] or [6], for instance). We skip such an
approach, by considering dynamic equations, which include, as particular
cases, the results mentioned above.

A Mönch fixed point theorem [33] and the techniques of the theory of the
measure of noncompactness [13] are used to prove the existence of solution
of the problem (1.1) (advantages of using of this theorem are clarified in
Remark 3.5). By imposing some conditions expressed in terms of the mea-
sure of noncompactness on f , we define an operator over the Banach space
(the space of rd-continuous functions from a time scale interval to a Banach
space), whose fixed points are solutions of (1.1).
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Finally, we need to remark, that the paper form a basis for future work
with different kind of problems in Banach spaces (cf. [20], for instance),
including differential inclusions and the problems for equations of the type
x∆(t) = f(t, x(t), x(σ(t))). Although the presence of both x and x(σ(t))
in this equation may appear to be somewhat strange, their appearance can
naturally occur, as the example from economics presented in [36] clearly
illustrates. Let us note, that the results for ∇ derivatives are quite the
same, so we omit this case.

2. Preliminaries

To understand so-called dynamic equation and follow this paper easily
we present some preliminary definitions and notations of time scale which
are very common in the literature (see [1, 14, 15, 27, 28, 30] and references
therein).

A time scale T is a nonempty closed subset of real numbers R, with the
subspace topology inherited from the standard topology of R. Thus R, Z,
N, T = qZ = {qt : t ∈ Z}, where q > 1 and the Cantor set are the examples
of time scales while Q,C and (0, 1) are not time scales.

Throughout this paper, by an interval [a, b] we mean a time scale interval
i.e. {t ∈ T : a ≤ t ≤ b}. In particular, Ia = {t ∈ T : 0 ≤ t ≤ a}. By a
subinterval Ib of Ia we mean the time scale subinterval.

Let (E, || · ||) be a Banach space and let Br = {x ∈ E : ||x|| ≤ r}, r > 0
be a ball in E.

Definition 2.1. The forward jump operator σ : T → T and the backward
jump operator ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t}
and ρ(t) = sup{s ∈ T : s < t}, respectively. We put inf ∅ = supT (i.e.
σ(M) = M if T has a maximum M) and sup ∅ = inf T (i.e. ρ(m) = m if T
has a minimum m).
The jump operators σ and ρ allow the classification of points in time scale
in the following way: t is called right dense, right scattered, left dense, left
scattered, dense and isolated if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) =
t = σ(t) and ρ(t) < t < σ(t), respectively.

We next define the so-called delta derivative and delta integral for Banach
valued functions similar as ∆-derivative and ∆-integral on time scales [14,
15].

Definition 2.2. Fix t ∈ T. Let u : T → E. Then we define u∆(t) by

u∆(t) = lim
s→t

u(σ(t))− u(s)

σ(t)− s
.
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The ∆-derivative turns out that

(i) u∆ = u′ is the usual derivative if T = R,
(ii) u∆ = ∆u is the usual forward difference operator if T = Z and

(iii) u∆ = Dqu is the q-differential operator i.e Dqu(x) = u(qx)−u(x)
(q−1)x if

T = qZ = {qt : t ∈ Z}.

Hence time scale allows us the unification of differential, difference and q-
difference equations as particular cases (but our results hold also for more
exotic time scales which appear in mathematical biology or economics cf.
[14, 15, 36], for instance).

Definition 2.3. We say that u : T → E is right dense continuous (rd-
continuous) if u is continuous at every right dense point t ∈ Ia and lim

s→t−
u(s)

exists and is finite at every left dense point t ∈ Ia.

Definition 2.4. If U∆(t) = u(t) then we define the integral by

t�

a

u(τ)∆τ = U(t)− U(a).

Remark 2.5. [14] (existence of antiderivatives) Every rd-continuous func-
tion has an antiderivative. In particular, if t0 ∈ T then U defined by

U(t) :=
t�

t0

u(τ)∆τ, t ∈ T

is an antiderivative of u.

We consider a Cauchy problem on a time scale T. Without loosing the
generality we will assume, that 0 ∈ T

x∆(t) = f(t, x(t)),

x(0) = x0, t ∈ Ia,

where f is a function with values in a Banach space E.
Let us denote by Crd(Ia, E) the space of all rd-continuous functions mapping
a time scale interval Ia into a Banach space E. Note that this space is a
Banach space with the supremum norm.
Our fundamental tool is the (Kuratowski) measure of noncompactness [13].
For any bounded subset A of E we denote by α(A) the Kuratowski measure
of noncompactness of A, i.e. the infimum of all ε > 0 such that there exists
a finite covering of A by sets of diameter smaller than ε. For the convenience
we present the properties of the measure of noncompactness α.

(i) If A ⊂ B then α(A) ≤ α(B),
(ii) α(A) = α(Ā), where Ā denotes the closure of A,
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(iii) α(A) = 0 if and only if A is relatively compact,
(iv) α(A ∪B) = max {α(A), α(B)},
(v) α(λA) = |λ|α(A) (λ ∈ R),
(vi) α(A+B) ≤ α(A) + α(B),
(vii) α (convA) = α(A), where conv(A) denotes the convex extension of A.

For the proof of our main result we need the following lemmas.

Lemma 2.6. [31] If ||E1|| = sup{||x|| : x ∈ E1} < 1 then

α(E1 + E2) ≤ α(E2) + ||E1||α(K(E2, 1))

where K(E2, 1) = {x ∈ E2 : d(x, 1) ≤ 1}.

Next we prove Ambrosetti’s Lemma for the functions defined on a time
scale (cf. [8]).

Lemma 2.7. Let H ⊂ C(Ia, E) be a family of strongly equicontinuous

functions. Let, for t ∈ Ia, H(t) = {h(t) ∈ E : h ∈ H}. Then

αC(H) = sup
t∈Ia

α(H(t)) = α(H(Ia)),

where αC(H) denotes the measure of noncompactness in C(Ia, E) and the

function t 7→ α(H(t)) is continuous.

Proof. Since H(t) ⊂ H(Ia) by the first property of measure of noncompact-
ness α(H(t)) ≤ α(H(Ia)) and consequently

(2.1) sup
t∈Ia

α(H(t)) ≤ α(H(Ia)).

Let u ∈ H be arbitrary. In order to prove the converse inequality suppose
that for ǫ > 0, 0 < t0 < t1 < · · · < tn = a is a partition of the real
interval [0, a] such that ||u(t) − u(s)|| ≤ ǫ for all t, s ∈ [ti, ti+1] ∩ T, i =
0, 1, . . . , n− 1, u ∈ H. As

u(t) = ui + u(t)− ui ∈ ui + ǫK(0, 1),

where

ui =

{

u(ti), ti ∈ T;

u(σ̃(ti)), ti 6∈ T,

we have

u(t) ∈
n
⋃

i=1

H(ti) + ǫK(0, 1) and H(Ia) ⊂
n
⋃

i=1

H(ti) + ǫK(0, 1).

Here σ̃ is the deformation of forward jump operator σ and defined for t ∈ R

by σ̃(t) = inf{s ∈ R : s > t}. By the properties of measure of noncompact-
ness and Lemma 2.6, we obtain
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α(H(Ia)) ≤ α
(

n
⋃

i=1

H(ti)
)

+ ||ǫK(0, 1)|| · α
(

K
(

n
⋃

i=1

H(ti), 1
))

≤ sup
ti∈Ia

α(H(ti)) + ǫα(K(H(Ia), 1))

≤ sup
t∈Ia

α(H(t)) + ǫα(K(H(Ia), 1)).

Since the above inequality holds for any ǫ > 0 we have

(2.2) α(H(Ia)) ≤ sup
t∈Ia

α(H(t)).

Hence from (2.1) and (2.2) we can conclude that α(H(Ia)) = sup
t∈Ia

α(H(t)).

In the proof of the main theorem we will apply the following results.

Theorem 2.8. [33] [Mönch fixed point theorem] Let D be a closed convex

subset of E, and let F be a continuous map from D into itself. If for some

x ∈ D the implication

V̄ = conv({x} ∪ F (V )) ⇒ V is relatively compact

holds for every countable subset V of D, then F has a fixed point.

Theorem 2.9. [Mean Value Theorem] If the function f : Ia → E is ∆-

integrable then �

Ib

f(t)∆t ∈ µ∆(Ib) · convf(Ib),

where Ib is an arbitrary subinterval of Ia and µ∆(Ib) is the Lebesgue ∆-

measure of Ib.

Proof. Let IE be the set of left scattered points of I. By the properties of
∆-integral on Banach spaces (see Theorem 5.2 of [16]), we obtain

�

I

f(t)∆t =
�

I\IE

f(t)dt+
∑

ti∈IE

f(ti)µ(ti).

By making use of Theorem 5.2 and Lemma 3.1 from [16] we get
�

I

f(t)∆t ∈ mes(I \ IE) · convf(I) +
∑

ti∈IE

f(ti)µ(ti)

⊂ mes(I) · convf(I) + f(I) ·
∑

ti∈IE

µ(ti)

⊂ (mes(I) +
∑

ti∈IE

µ(ti)) · convf(I)

= µ∆(I) · convf(I).

Here mes(I) denotes the measure of the interval I.
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Using the measure-theoretical approach of Hilger [28], the definition of
the Lebesgue integral is obvious. For the properties of Lebesgue ∆-measure
and Lebesgue ∆-integral we refer the readers to the papers of Aulbach and
Neidhart [11] and Guseinov [25].

3. Main results

When we investigate the existence of solutions of (1.1) with non-continu-
ous right-hand side it is natural to consider the so-called Carathéodory-type
solutions. We recall that a function f : Ia × E → E is a Carathéodory
function if for each x ∈ E, f(t, x) is measurable in t ∈ Ia and for almost all
t ∈ Ia, f(t, x) is continuous with respect to x. Moreover, assume that f is
bounded.

By a Carathéodory-type solution of (1.1) we understand a function x ∈
C(Ia, E) such that x(0) = x0 and x(·) satisfies (1.1) µ∆ a.e. in Ia. For such
solutions, problem (1.1) is equivalent to the integral problem

(3.1) x(t) = x0 +
t�

0

f(s, x(s))∆s, µ∆ a.e. on Ia.

To verify the equivalence, let a continuous function x : Ia → E be a
solution of the problem (1.1). Since

	
A f(s, x(s))∆s = 0 (see [25]) where

A = {t ∈ Ia : x∆ 6= f(t, x(t))} (µ∆(A) = 0), by definition 2.4 we have

t�

0

f(s, x(s))∆s =
�

A

f(s, x(s))∆s+
�

It\A

x∆(s)∆s

=
t�

0

x∆(s)∆s = x(t)− x(0) = x(t)− x0, µ∆ a.e. on Ia,

which means that a function x is the Carathéodory solution of the problem
(3.1). Here the integral is taken in the sense of Lebesgue.

Now, let the function x be the solution of the problem (3.1). Then by
definition 2.2 we obtain that if F is a function such that F∆(t, x(t)) =
f(t, x(t)), µ∆ a.e then

x∆(t) =
(

x0 +
t�

0

f(s, x(s))∆s
)∆

=
(
t�

0

f(s, x(s))∆s
)∆

= (F (t, x(t))− F (0, x(0)))∆ = F∆(t, x(t)) = f(t, x(t)), µ∆ a.e.

Conclude, the function x is the Carathéodory solution of the problem (1.1).
For x ∈ Crd(Ia, E), we define the norm of x by: ‖x‖=sup{‖x(t)‖, t∈Ia}.
Let f : Ia ×Br → E satisfy the sublinearity condition

(3.2) ‖f(t, x(t))‖ ≤ m1(t) +m2(t) ‖x(t)‖ ,
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for each (t, x) ∈ Ia×Br, where m1(t) and m1(t) are bounded functions taken
from Crd(Ia, E). Also let M(t) be the solution of the initial value problem

M∆(t) = m1(t) +m2(t)M(t),

M(0) = x0.

By Theorem 5.3 in [2],

(3.3) M(t) = x0 · em2
(t, 0) +

t�

0

em2
(t, σ(s))m1(s)∆s, for t ∈ J.

Assume that m1 and m2 are such functions that,

M0 = sup
t∈Ia

M(t) < ∞.

Define the ball B̃M0
as follows:

B̃M0
= {x ∈ Crd(Ia, E) : ‖x(t)‖ ≤ M0,

‖x(t)− x(s)‖ ≤ (‖m1‖+ ‖m2‖ ·M0) · |t− s| , (t, x) ∈ Ia ×Br}.

Note that B̃M0
is nonempty, closed, bounded, convex and equicontinuous.

For convenience, we denote by M1 = ‖m1‖+ ‖m2‖ ·M0 and B̃M0
= B̃.

Let the operator G : C(Ia, E) → C(Ia, E) be defined by

(3.4) G(x)(t) = x0 +
t�

0

f(s, x(s))∆s.

The fixed point of G is the solution of (1.1). As claimed in the Introduction,
for simplicity of the proof, we will assume in the main theorem, that f is a
countable α-contraction. This condition is more general than the condition of
α-contractness (cf. [35]), but can be also generalized to another (countable)
conditions (see Remark 3.5).

Theorem 3.1. Suppose that a function f : Ia×Br → E is a Carathéodory

function and there exists a constant c > 0 satisfying

(3.5) α(f(Ib, X)) ≤ c · α(X), 0 ≤ ca < 1,

for each X ⊂ Br and for each subinterval Ib of Ia. Assume that there exist

bounded functions m1,m2 ∈ Crd(Ia, E) such that

M0 = sup
t∈Ia

{

x0 · em2
(t, 0) +

t�

0

em2
(t, σ(s))m1(s)∆s

}

< ∞

and ‖f(t, x(t))‖ ≤ m1(t) + m2(t) ‖x(t)‖ for (t, x) ∈ Ia × Br. Then there

exists at least one Carathéodory solution of the problem (1.1) on Ia.

Proof. We verify that the conditions of Mönch fixed point theorem (Theorem
2.8) are fulfilled. First we show that the operator G maps B̃ into B̃. By
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the equivalence of (1.1) and (3.1), the sublinearity condition (3.2) and the
operator (3.4) we conclude that

||G(x)(t)|| ≤ x0 · em2
(t, 0) +

t�

0

em2
(t, σ(s))m1(s)∆s = M(t) ≤ M0.

(See the comparison theorem (Theorem 5.4 from [2]).)

Consequently we show that the set G(B̃) is equicontinuous.

‖G(x)(t)−G(x)(τ)‖ =
∥

∥

∥

t�

τ

f(s, x(s))∆s
∥

∥

∥
≤

t�

τ

‖f(s, x(s))‖∆s

≤
t�

τ

(m1(s) +m2(s) · ‖x‖) ∆s ≤ M1 |t− τ | ,

for every x ∈ B̃. Hence G(x) ∈ B̃.

Now we show continuity of G. Let xn → x in B̃. Then

‖G(xn)(t)−G(x)(t)‖ =
∥

∥

∥

t�

0

[f(s, xn(s))− f(s, x(s))]∆s
∥

∥

∥

≤
t�

0

‖f(s, xn(s))− f(s, x(s))‖∆s,

(see [14, 15, 25] for the above inequality). Since f is a Carathéodory function
by using Lebesgue’s dominated convergence theorem for the delta integral
(see [15]), we deduce that ‖G(xn)−G(x)‖ → 0.

Hence the operator G is well defined, continuous and maps B̃ into B̃.

Observe that the fixed point of the operator G is the solution of the
problem (1.1). Now we prove that a fixed point of the operator G exists
using fixed point Theorem 2.8.

Let V be a countable subset of B̃ and satisfy the condition

V̄ = conv({x} ∪G(V )) for some x ∈ B̃.

Let, for t ∈ Ia, V (t) = {υ(t) ∈ E, υ ∈ V }. Since V is an equicontinuous, by
Lemma 2.7 a map t → v(t) = α(V (t)) is continuous on Ia. Let

G(V )(t) =
{

x0 +
t�

0

f(s, x(s))∆s, x ∈ V, t ∈ Ia

}

= x0 +
t�

0

f(s, V (s))∆s.

By the definition of the operator G, properties of the Kuratowski measure
of noncompactness, Lebesgue ∆−measure, Theorem 2.9 and the assumption
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(3.5) we have

α(G(V )(t)) = α
(

x0 +
t�

0

f(s, V (s))∆s
)

≤ α
(
t�

0

f(s, V (s))∆s
)

≤ α (µ∆(It) · convf ([0, t]× V ([0, t])))

≤ α (t · convf ([0, t]× V ([0, t])))

≤ t · α (f ([0, t]× V ([0, t]))) ≤ b · c · α(V (Ib))

for each t ∈ Ib ⊂ Ia. Hence α(G(V )(t)) ≤ b · c · α(V (Ib)) for each t ∈ Ib.
Since V = conv({x} ∪G(V )) then

α(V (t)) = α (conv(G(V )(t) ∪ {x}) ≤ α (G(V )(t)) ≤ b · c · α(V (Ib)).

By Lemma 2.7 we have

α(V (Ib)) ≤ b · c · α(V (Ib)) ≤ a · c · α(V (Ib)).

Because 0 ≤ ca < 1 so v(t) = α(V (Ib)) = 0 and α(V (t)) = 0 for each
t ∈ Ib. Using Arzela–Ascoli theorem we obtain that V is relatively compact.
By Theorem 2.8 the operator G has a fixed point. This means that there
exists a Carathéodory solution of the problem (3.1) which is a Carathéodory
solution of the problem (1.1).

Remark 3.2. By a classical solution of (1.1) we understand a function
in Crd(Ia, E) such that x(0) = x0 and x(·) satisfies (1.1) for all t ∈ Ia. If
we suppose a kind of continuity for f instead of Carathéodory condition we
obtain the existence of at least one solution. For such solutions problem
(1.1) is equivalent to

(3.6) x(t) = x0 +
t�

0

f(s, x(x))∆s, ∀t ∈ Ia.

In this case we need to modify the notion of rd-continuity as follows:
the function f : T × E → E is rd-C-continuous provided it is (jointly-)
continuous at each point (t, x) for which t is a right-dense point of T; and
the limits lim(s,x)→(t−,x) f(s, x) and limy→x f(t, y) both exist (and are finite)
at each (t, x) where t is left-dense and has a left-sided limit at each point.
Thus the following theorem holds for classical solutions:

Theorem 3.3. Suppose that a function f : Ia × Br → E is an rd-C-

continuous function and there exists a constant c > 0 satisfying (3.5) for each

X ⊂ Br and for each subinterval Ib of Ia. Assume that there exist bounded

functions m1,m2 ∈ Crd(Ia, E) such that ‖f(t, x(t))‖ ≤ m1(t) +m2(t) ‖x(t)‖
for (t, x) ∈ Ia × Br. Then there exists at least one classical solution of the

problem (1.1) on Ia.

The proof is similar to the proof of Theorem 3.1 given above.
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We finish the paper with some important remarks.

Remark 3.4. Clearly, for purely discrete time scales (with none accumu-
lation points), the existence of (forward) solutions is trivially given without
imposing further compactness assumptions on the right-hand side of the
equation (cf. [22] for the continuous case). If a time scale admits at least
one right-dense point, then the continuity assumption is not sufficient for
the existence of (rd-continuous) solutions of the Cauchy problem (1.1) (for
a modified example of Dieudonné see [19]). Nevertheless, we will not distin-
guish such a discrete case, because some continuity and compactness condi-
tions are necessary to unify the continuous problems and their dicretizations.

Remark 3.5. Let us stress, that we used the Mönch fixed point theorem
instead of the Darbo theorem (cf. [22]) to make possible further generaliza-
tions of our compactness assumption (3.5). In particular, with no essential
changes in the proof we are able to put more general conditions like the
Sadovskii condition: α(F (I × X)) < α(X) whenever α(X) > 0 and I is a
time scale interval, the Szufla condition or the other compactness conditions
(cf. [23]). The measure α can be replaced even by some axiomatic measures
of noncompactness (cf. [13]). We refer the readers to [23] for the details of
some differences in the proofs.
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