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NOTE ON THE EXISTENCE OF A Ψ-BOUNDED SOLUTION

FOR A LYAPUNOV MATRIX DIFFERENTIAL EQUATION

Abstract. In this paper, we give a necessary and sufficient condition for the existence
of at least one Ψ-bounded solution of a linear nonhomogeneous Lyapunov matrix differ-
ential equation. In addition, we give a result in connection with the asymptotic behavior
of the Ψ-bounded solutions of this equation.

1. Introduction

The importance of the boundedness of the solutions for systems of ordi-
nary differential equations and their applications to different areas of science
and technology are well known.

This work is concerned with linear nonhomogeneous Lyapunov matrix
differential equation

(1) X ′ = A(t)X +XB(t) + F (t)

where A,B and F are continuous n×n matrix-valued function on R+ =
[0,∞).

The basic problem under consideration is the determination of the nec-
essary and sufficient condition for the existence of a solution with some
specified boundedness condition.

The problem of Ψ-boundedness of the solutions for systems of ordinary
differential equations was studied in many papers, as e.g. [1, 3–9]. Here, the
function Ψ is a continuous scalar function in [1, 3, 7, 8] as it is a continuous
matrix function in [4–6, 9].

In [9], the authors studied the problem of Ψ-boundedness of the solutions
for the corresponding Kronecker product system (2) associated with (1) (i.e.
a linear nonhomogeneous differential system of the form x′ = G(t)x+f(t)) in
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the hypothesis that the free term f of the system is a Lebesgue Ψ-integrable
function defined on R+. But the obtained results in [9] are particular cases
of our general results stated in [5]. Indeed, if in Theorems 2.1 and 2.2 ([5]),
the fundamental matrix Y is replaced with the fundamental matrix Z⊗Y
of the linear system (6), the Theorems 1 and 2 ([9]) follow. In addition,
in Theorems 1 and 2 ([9]) there are a few mistakes in connection with the
matrix Ψ.

Recently, a necessary and sufficient condition for the existence of at least
one Ψ-bounded solution on R+ of (1) for every Lebesgue Ψ-integrable matrix
function F has been obtained in our paper [6].

The purpose of the present paper is to give a necessary and sufficient
condition so that the linear nonhomogeneous Lyapunov matrix differential
equation (1) have at least one Ψ-bounded solution on R+ for every continuous
and Ψ-bounded matrix function F on R+, with additional hypotheses on
A,B,Ψ.

Here, as in [4], [5] and [6], Ψ will be a continuous matrix function. The
introduction of the matrix function Ψ permits to obtain a mixed asymptotic
behavior of the components of the solutions.

In order to be able to solve our problem, we use the technique of Kro-
necker product of matrices which has been successfully applied in various
fields of the matrix theory.

The results of the present paper extend the results from [4], [5], [9] and
include our results [4] as a particular case, when B(t) = On.

2. Preliminaries

In this section we present some basic definitions and results which are
useful later on.

Let Rn be the Euclidean n - dimensional space. For x = (x1, x2, . . . , xn)
T

∈ R
n, let ‖x‖ = max{|x1|, |x2|, . . . , |xn|} be the norm of x (T denotes trans-

pose).

Let Mm×n be the linear space of all m×n real valued matrices.

For a n× n real matrix A = (aij), we define the norm |A| = sup
‖x‖≤1

‖Ax‖.

It is well-known that |A| = max
1≤i≤n

{
n∑

j=1
|aij |}.

Definition 1. [2] Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q. The
Kronecker product of A and B, written A⊗B, is defined to be the partitioned
block matrix
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A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

...

am1B am2B · · · amnB




.

Obviously, A⊗B ∈ Mmp×nq.

Lemma 1. The Kronecker product has the following properties and rules,
provided that the dimension of the matrices are such that the various expres-
sions are defined:

1). A⊗ (B ⊗ C) = (A⊗B)⊗ C;
2). (A⊗B)T = AT ⊗BT;
3). (A⊗B)−1 = A−1 ⊗B−1;
4). (A⊗B) · (C ⊗D) = AC ⊗BD;
5). A⊗ (B + C) = A⊗B +A⊗ C;
6). (A+B)⊗ C = A⊗ C +B ⊗ C;

7). Ip ⊗A =




A O · · · O

O A · · · O
...

...
...

...

O O · · · A




;

8). (A(t)⊗ B(t))′ = A′(t)⊗ B(t) + A(t)⊗B′(t); (here, ′ denotes derivative
d
dt

).

Proof. See in [2].

Definition 2. The application Vec : Mm×n −→ R
mn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)
T,

where A = (aij) ∈ Mm×n, is called the vectorization operator.

Lemma 2. The vectorization operator Vec : Mn×n −→ R
n2

, is a linear and
one-to-one operator. In addition, Vec and Vec−1 are continuous operators.

Proof. The fact that the vectorization operator is linear and one-to-one is
immediate. Now, for A = (aij) ∈ Mn×n, we have

‖Vec(A)‖ = max
1≤i,j≤n

{|aij |} ≤ max
1≤i≤n

{ n∑

j=1

|aij |
}
= |A|.

Thus, the vectorization operator is continuous and ‖Vec‖ ≤ 1.

In addition, for A = In (identity n×n matrix) we have ‖Vec(In)‖ = |In|
and then, ‖Vec‖ = 1.
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The inverse of the vectorization operator, Vec−1 : R
n2

−→ Mn×n, is
defined by

Vec−1(u) =




u1 un+1 · · · un2−n+1

u2 un+2 · · · un2−n+2
...

...
...

...

un u2n · · · un2




,

where u = (u1, u2, · · · , un2)T ∈ R
n2

.

We have

|Vec−1(u)| = max
1≤i≤n

{n−1∑

j=0

|unj+i|
}
≤ n · max

1≤i≤n2

{|ui|} = n · ‖u‖.

Thus, Vec−1 is a continuous operator.

Remark. Obviously, if F is a continuous matrix function on R+, then
f = Vec(F ) is a continuous vector function on R+ and reciprocally.

We recall that the vectorization operator Vec has the following properties
as concerns the calculations (see in [9]):

Lemma 3. If A,B,M ∈ Mn×n, then

1). Vec(AMB) = (BT ⊗A) · Vec(M);
2). Vec(MB) = (BT ⊗ In) · Vec(M);
3). Vec(AM) = (In ⊗A) · Vec(M);
4). Vec(AM) = (MT ⊗A) · Vec(In).

Proof. It is a simple exercise.

Let Ψi : R+ −→ (0,∞), i = 1, 2, . . . , n, be continuous functions and

Ψ = diag[Ψ1,Ψ2, · · ·Ψn].

Definition 3. [4] A function f : R+ −→ R
n is said to be Ψ-bounded on

R+ if Ψf is bounded on R+ (i.e. sup
t≥0

‖Ψ(t)f(t)‖ < +∞).

Below we extend this definition for matrix functions.

Definition 4. A matrix function M : R+ −→ Mn×n is said to be
Ψ-bounded on R+ if the matrix function ΨM is bounded on R+ (i.e.
sup
t≥0

|Ψ(t)M(t)| < +∞).

We shall assume that A,B and F are continuous n× n-matrices on R+.

By a solution of (1), we mean a continuous differentiable n × n-matrix
function X satisfying the equation (1) for all t ≥ 0.

The following lemmas play a vital role in the proof of main result.
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The first Lemma is done in [9]. Because the proof was incomplete, we
presented it as Lemma 7, [6], with a complete proof.

Lemma 4. [6] The matrix function X(t) is a solution of (1) on the interval
J ⊂ R if and only if the vector valued function x(t) = Vec(X(t)) is a solution
of the differential system

(2) x′ = (In ⊗A(t) +BT(t)⊗ In)x+ f(t),

where f(t) = Vec(F (t)), on the same interval J .

Definition 5. The above system (2) is called ‘corresponding Kronecker
product system associated with (1)’.

Lemma 5. [6] The matrix function M(t) is Ψ-bounded on R+ if and only
if the vector function Vec(M(t)) is In ⊗Ψ-bounded on R+.

Proof. From the proof of Lemma 2, it results that

1

n
|A| ≤ ‖Vec(A)‖

Rn2 ≤ |A|,

for every A ∈ Mn×n.

Setting A = Ψ(t)M(t), t ≥ 0 and using Lemma 3, we have the inequality

(3)
1

n
|Ψ(t)M(t)| ≤ ‖(In ⊗Ψ(t)) · Vec(M(t))‖

Rn2 ≤ |Ψ(t)M(t)|, t ≥ 0

for every matrix function M(t).
Now, the Lemma follows immediately.

The next result is Lemma 1 in [9]. Because the proof was incomplete, we
presented it as Lemma 6, [6], with a complete proof.

Lemma 6. [6]. Let X(t) and Y (t) be a fundamental matrices for the systems

(4) x′(t) = A(t)x(t)

and

(5) y′(t) = y(t)B(t)

respectively.
Then, the matrix Z(t) = Y T(t) ⊗ X(t) is a fundamental matrix for the

system

(6) z′(t) = (In ⊗A(t) +BT(t)⊗ In)z(t).

If, in addition, X(0) = In and Y (0) = In, then Z(0) = In2 .

Now, let Z(t) be the above fundamental matrix for the system (6) with
Z(0) = In2 .

Let X̃1 denote the subspace of R
n2

consisting of all vectors which are
values of In ⊗ Ψ-bounded solutions of (6) on R+ for t = 0 and let X̃2 an
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arbitrary fixed subspace of Rn2

, supplementary to X̃1. Let P̃1, P̃2 denote the
corresponding projections of Rn2

onto X̃1, X̃2 respectively.

Finally, we recall two theorems which will be used in the proofs of our
main results.

Theorem 1. [4] Let A be a continuous d× d real matrix on R+ such that

|Ψ(t)A(t)Ψ−1(t)| ≤ L, for all t ∈ R+,

where L is a positive constant.
Let Ψ be such that

|Ψ(t)Ψ−1(s)| ≤ M, for all t ≥ s ≥ 0,

where M is a positive constant. Let Y (t) be a fundamental matrix for the
system x′ = A(t)x. Then, the system x′ = A(t)x + f(t) has at least one
Ψ-bounded solution on R+ for every continuous and Ψ-bounded function f
on R+ if and only if there are two positive constants K and α such that

(7)
|Ψ(t)Y (t)P1Y

−1(s)Ψ−1(s)| ≤ Ke−α(t−s), 0 ≤ s ≤ t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ≤ Ke−α(s−t), 0 ≤ t ≤ s.

Theorem 2. [4] Suppose that:

1◦. the matrix functions A and Ψ satisfy the conditions of the above Theo-
rem;

2◦. the fundamental matrix Y (t) of the system x′ = A(t)x satisfies the con-
dition (7), where K and α are positive constants and P1, P2 are supple-
mentary projections;

3◦. the continuous and Ψ-bounded function f : R+ −→ R
d satisfies one of

the following conditions:
a).

	∞
0 ‖Ψ(t)f(t)‖dt is convergent,

b). lim
t→+∞

	t+1
t ‖Ψ(s)f(s)‖ds = 0.

Then, every Ψ-bounded solution x of the system x′ = A(t)x+f(t) is such
that

lim
t→+∞

‖Ψ(t)x(t)‖ = 0.

Remark. In these Theorems, P1 and P2 are supplementary projections as
P̃1 and P̃2, for the system x′ = A(t)x.

3. The main result

The main result of this paper is the following:

Theorem 3. Let A and B be a continuous n× n real matrices such that

|In ⊗ (Ψ(t)A(t)Ψ−1(t)) +BT(t)⊗ In| ≤ L, for all t ≥ 0,
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where L is a positive constant. Let Ψ be such that

|Ψ(t)Ψ−1(s)| ≤ M, for all t ≥ s ≥ 0,

where M is a positive constant. Let X(t) and Y (t) be a fundamental matrices
for the systems (4) and (5) respectively. Then, the equation (1) has at least
one Ψ-bounded solution on R+ for every continuous and Ψ-bounded matrix
function F : R+ −→ Mn×n if and only if there exist two positive constants
K and α such that the functions

Φi(t, s) =
(
Y T(t)⊗ (Ψ(t)X(t))

)
P̃i

(
(Y T(s))−1 ⊗ (X−1(s)Ψ−1(s))

)
, i = 1, 2

satisfy the conditions

(8)
|Φ1(t, s)| ≤ Ke−α(t−s), 0 ≤ s ≤ t

|Φ2(t, s)| ≤ Ke−α(s−t), 0 ≤ t ≤ s.

Proof. First, we prove the ‘only if’ part.
Suppose that the equation (1) has at least one Ψ-bounded solution on

R+ for every continuous and Ψ-bounded matrix function F : R+ −→ Mn×n.

Let f : R+ −→ R
n2

be a continuous and In ⊗ Ψ-bounded function on R+.

From Lemma 5, it follows that the matrix function F (t) = Vec−1(f(t)) is
continuous and Ψ-bounded on R+. From the hypothesis, the equation

X ′ = A(t)X +XB(t) + Vec−1(f(t))

has at least one Ψ-bounded solution X(t) on R+. From Lemma 4 and Lemma
5, it follows that the vector valued function x(t) = Vec(X(t)) is a In ⊗ Ψ-
bounded solution on R+ of the differential system

x′ = (In ⊗A(t) +BT(t)⊗ In)x+ f(t).

Thus, this system has at least one In ⊗ Ψ-bounded solution on R+ for
every continuous and In⊗Ψ-bounded function f on R+. From the hypotheses
and Lemma 1, we have that

(In ⊗Ψ(t))(In ⊗A(t) +BT(t)⊗ In)(In ⊗Ψ(t))−1

= (In ⊗Ψ(t))(In ⊗A(t) +BT(t)⊗ In)(In ⊗Ψ−1(t))

= In ⊗ (Ψ(t)A(t)Ψ−1(t)) +BT(t)⊗ In

and
(In ⊗Ψ(t))(In ⊗Ψ−1(s)) = In ⊗ (Ψ(t)Ψ−1(s)).

Thus, we are in the terms of the Theorem 1 [4] for the above system.
From this Theorem, there exist two positive constants K and α such that

the fundamental matrix Z(t) of the system (6) satisfies the conditions

|(In ⊗Ψ(t))Z(t)P̃1Z
−1(s)(In ⊗Ψ(s))−1| ≤ Ke−α(t−s), 0 ≤ s ≤ t,

|(In ⊗Ψ(t))Z(t)P̃2Z
−1(s)(In ⊗Ψ(s))−1| ≤ Ke−α(s−t), 0 ≤ t ≤ s.
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By Lemma 6, we have Z(t) = Y T(t)⊗X(t). Now the computation shows
that (8) holds.

Now, we prove the ‘if’ part.

Suppose that (8) holds for some K > 0 and α > 0. Let F : R+ −→ Mn×n

be a continuous and Ψ-bounded matrix function on R+. From Lemma 5,
it follows that the vector valued function f(t) = Vec(F (t)) is continuous
and In ⊗ Ψ-bounded function on R+. Thus, for the fundamental matrix
Z(t) = Y T(t)⊗X(t) of the system

x′ = (In ⊗A(t) +BT(t)⊗ In)x

we are in the terms of the Theorem 1 [4] (the ‘if’ part). From this theorem,
it follows that the differential system

x′ = (In ⊗A(t) +BT(t)⊗ In)x+ f(t)

has at least one In ⊗Ψ-bounded solution on R+. Let x(t) be this solution.

From Lemma 4 and Lemma 5, it follows that the matrix function X(t) =
Vec−1(x(t)) is a Ψ-bounded solution on R+ of the equation (1) (because
F (t) = Vec−1(f(t))). Thus, the differential equation (1) has at least one Ψ-
bounded solution on R+ for every continuous and Ψ-bounded matrix function
F on R+.

It completes the proof.

Remark. Theorem 3 generalizes Theorem 2.1 [4].

Indeed, in particular case B(t) = On, the unique solution Z of the non-
homogeneous matrix differential equation Z ′ = A(t)Z + F (t) which takes
the value Z0 for t = t0 is given by

Z(t) = X(t)X−1(t0)Z0 +
t�

t0

X(t)X−1(s)F (s)ds, t ∈ R+.

(The proof is similar to the proof of well-known Variation of constants
formula for the linear differential system x′ = A(t)x+ f(t)).

If, in addition

F (t) =




f1(t) f1(t) · · · f1(t)

f2(t) f2(t) · · · f2(t)
...

...
...

...

fn(t) fn(t) · · · fn(t)




and Z0 =




z01 z01 · · · z01

z02 z02 · · · z02
...

...
...

...

z0n z0n · · · z0n




,

it is easy to see that the solution of the equation Z ′ = A(t)Z + F (t) is
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Z(t) =




x1(t) x1(t) · · · x1(t)

x2(t) x2(t) · · · x2(t)
...

...
...

...

xn(t) xn(t) · · · xn(t)




,

where x = (x1(t), x2(t), · · · , xn(t))
T is the solution of the problem

x′(t) = A(t)x(t) + f(t), x(t0) = (z01 , z
0
2 , · · · , z

0
n)

T,

with f(t) = (f1(t), f2(t), · · · , fn(t))
T.

In this case, the condition (8) becomes the condition (7), because the
solution x(t) is Ψ-bounded on R+ if and only if the solution Z(t) is Ψ-
bounded on R+. Thus, Theorem 3 generalizes Theorem 2.1 [4].

In the end, we prove a theorem which shows that the asymptotic behavior
of the solutions of (1) is determined completely by the asymptotic behavior
of F (t) as t −→ ∞.

Theorem 4. Suppose that:

1). the matrices A, B and Ψ satisfy the conditions of the Theorem 3;
2). the fundamental matrices X(t) and Y (t) of (4) and (5) respectively (X(0)

= Y (0) = In) satisfy the condition (8) for some K > 0 and α > 0;
3). the continuous and Ψ-bounded matrix function F : R+ −→ Mn×n satis-

fies one of the following conditions:
a).

	∞
0 |Ψ(t)F (t)|dt is convergent,

b). lim
t→+∞

	t+1
t |Ψ(s)F (s)|ds = 0.

Then, every Ψ-bounded solution X of the equation (1) is such that

lim
t→+∞

|Ψ(t)X(t)| = 0.

Proof. Let X(t) be a Ψ-bounded solution of the equation (1). From Lemma
4 and Lemma 5, it follows that the function x(t) = Vec(X(t)) is a In ⊗
Ψ-bounded solution on R+ of the differential system (2), where f(t) =
Vec(F (t)).

From Lemma 5, it follows that the function f is continuous and In ⊗Ψ-
bounded on R+.

From the hypothesis and from the inequality (3), we have

‖(In ⊗Ψ(t)) · f(t)‖
Rn2 ≤ |Ψ(t)F (t)|, t ≥ 0.

It follows that the function f satisfies one of the following conditions
a′).

	∞
0 ‖(In ⊗Ψ(t)) · f(t)‖

Rn2dt is convergent,

b′). lim
t→+∞

	t+1
t ‖(In ⊗Ψ(s)) · f(s)‖

Rn2ds = 0

respectively.
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From the Theorem 2.2 [4], it follows that

lim
t→∞

‖(In ⊗Ψ(t)) · x(t)‖
Rn2 = 0.

Now, from the inequality (3) again, we have

1

n
|Ψ(t)X(t)| ≤ ‖(In ⊗Ψ(t)) · x(t)‖

Rn2 , t ≥ 0.

It follows that

lim
t→∞

|Ψ(t)X(t)| = 0.

The proof is now complete.

Remark. Theorem 4 generalizes Theorem 2.2 [4].

Remark. If the function F does not fulfill the condition 3 of Theorem 4,
then, the Ψ-bounded solution X(t) may be such that |Ψ(t)X(t)| 9 0 as t
→ ∞.

This can be seen from the next Example.

Example. Consider the equation (1) with

A(t) =

(
−11 8

−12 9

)
, B(t) =

(
−6 −10

3 5

)
and F (t) =

(
0 0

e2t 0

)
.

The matrices A, BT have the eigenvalues

λ1 = −3, λ2 = 1 and µ1 = −1, µ2 = 0

and the Jordan canonical forms

L = diag[−3, 1] and M = diag[−1, 0]

respectively.

We have A = ULU−1, BT = VMV −1, where

U =

(
1 2

1 3

)
and V =

(
3 1

5 2

)
.

The fundamental matrices for the systems (4) and (5) are

X(t) = UeLtU−1 =

(
3e−3t − 2et −2e−3t + 2et

3e−3t − 3et −2e−3t + 3et

)

and

Y T(t) = V eMtV −1 =

(
6e−t − 5 −3e−t + 3

10e−t − 10 −5e−t + 6

)

respectively.
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The fundamental matrix for the system (6) is

Z(t) = Y T(t)⊗X(t) = V eMtV −1 ⊗ UeLtU−1 =

= (V ⊗ U)(eMt ⊗ eLt(V −1 ⊗ U−1) =

= T · diag[e−4t, 1, e−3t, et] · T−1,

where T = V ⊗ U =




3 6 1 2

3 9 1 3

5 10 2 4

5 15 2 6




.

Consider

Ψ(t) =

(
e−2t 0

0 e−2t

)
.

The solutions of the system (6) are

z0(t) = Z(t) · (c1, c2, c3, c4)
T, t ∈ R+.

We note that these solutions are I2 ⊗Ψ bounded on R+.

On the other hand,

Y T(t)(Y T(s))−1 = V eM(t−s)V −1

and

Ψ(t)X(t)X−1(s)Ψ−1(s) =

(
3e−5(t−s) − 2e−(t−s) 2e−(t−s) − 2e−5(t−s)

3e−5(t−s) − 3e−(t−s) 3e−(t−s) − 2e−5(t−s)

)
.

It follows that the condition of Theorem 4 is satisfied with

P̃1 = I4, P̃2 = O4, K = 341 and α = 1.

In addition, the matrices A, B, Ψ satisfy the conditions of Theorem 4.

On the other hand, we have |Ψ(t)F (t)| = 1, for all t ≥ 0. Now, it is easy
to see that

Xp(t) =(
2e−4t − 4e2t − 2e−3t + 10et − 6 10

3 e
−4t − 28

3 e
2t − 4e−3t + 20et − 10

2e−4t − 6e2t − 2e−3t + 15et − 9 10
3 e

−4t − 43
3 e

2t − 4e−3t + 30et − 15

)

is a particular Ψ-bounded solution of the system (1) and

lim
t→∞

|Ψ(t)Xp(t)| 6= 0.

Remark. This Example shows that the hypothesis 3 of Theorem 4 is a
essential condition for the conclusion of Theorem.
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