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NOTE ON THE EXISTENCE OF A v-BOUNDED SOLUTION
FOR A LYAPUNOV MATRIX DIFFERENTIAL EQUATION

Abstract. In this paper, we give a necessary and sufficient condition for the existence
of at least one W-bounded solution of a linear nonhomogeneous Lyapunov matrix differ-
ential equation. In addition, we give a result in connection with the asymptotic behavior
of the W-bounded solutions of this equation.

1. Introduction

The importance of the boundedness of the solutions for systems of ordi-
nary differential equations and their applications to different areas of science
and technology are well known.

This work is concerned with linear nonhomogeneous Lyapunov matrix
differential equation

(1) X'=At)X +XB(t)+ F(t)

where A, B and F' are continuous nxn matrix-valued function on Ry =
[0, 00).

The basic problem under consideration is the determination of the nec-
essary and sufficient condition for the existence of a solution with some
specified boundedness condition.

The problem of ¥-boundedness of the solutions for systems of ordinary
differential equations was studied in many papers, as e.g. |1, 3-9]. Here, the
function ¥ is a continuous scalar function in [1, 3, 7, 8| as it is a continuous
matrix function in [4-6, 9].

In [9], the authors studied the problem of U-boundedness of the solutions
for the corresponding Kronecker product system (2) associated with (1) (i.e.
a linear nonhomogeneous differential system of the form 2’ = G(¢)x+ f(¢)) in

2000 Mathematics Subject Classification: 34D05, 34C11.
Key words and phrases: W-bounded solution, Lyapunov matrix differential equation.



550 A. Diamandescu

the hypothesis that the free term f of the system is a Lebesgue W-integrable
function defined on Ry. But the obtained results in |9] are particular cases
of our general results stated in [5]. Indeed, if in Theorems 2.1 and 2.2 ([5]),
the fundamental matrix Y is replaced with the fundamental matrix Z®Y
of the linear system (6), the Theorems 1 and 2 (|9]) follow. In addition,
in Theorems 1 and 2 (|9]) there are a few mistakes in connection with the
matrix W.

Recently, a necessary and sufficient condition for the existence of at least
one ¥-bounded solution on R of (1) for every Lebesgue W-integrable matrix
function F' has been obtained in our paper [6].

The purpose of the present paper is to give a necessary and sufficient
condition so that the linear nonhomogeneous Lyapunov matrix differential
equation (1) have at least one U-bounded solution on R for every continuous
and W-bounded matrix function F on R, with additional hypotheses on
A B,W.

Here, as in [4], [5] and [6], ¥ will be a continuous matrix function. The
introduction of the matrix function ¥ permits to obtain a mixed asymptotic
behavior of the components of the solutions.

In order to be able to solve our problem, we use the technique of Kro-
necker product of matrices which has been successfully applied in various
fields of the matrix theory.

The results of the present paper extend the results from [4], [5], [9] and
include our results [4] as a particular case, when B(t) = O,,.

2. Preliminaries

In this section we present some basic definitions and results which are
useful later on.

Let R™ be the Euclidean n - dimensional space. For x = (z1,z2,...,2,)"
€ R", let ||z|| = max{|z1|,|z2],...,|zn|} be the norm of x (T denotes trans-
pose).

Let M, x» be the linear space of all mxn real valued matrices.

For a n x n real matrix A = (a;;), we define the norm |A| = sup ||Az|.
flzll<1

n
It is well-known that |A| = 1r<nla<xn{ 231 laij|}-
<isn ;2

DEFINITION 1. [2| Let A = (a;j) € My, xpn, and B = (bi;) € Mpxq. The
Kronecker product of A and B, written A® B, is defined to be the partitioned
block matrix
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anB  ai2B -+ a1p,B

a1B  axpB -+ aB
AwB=| "

amB  ameB - amnB

Obviously, A ® B € Mypxng-

LEMMA 1. The Kronecker product has the following properties and rules,
provided that the dimension of the matrices are such that the various expres-
stons are defined:

1). A® (B®C) = (A® B)® C;

. (A® B)T = AT @ BT;

. (A®B)'=A"1e B!

. (A®B)-(C® D) = AC ® BD:;
A®(B+C)=A®B+A®C;
. (A+B)®C=A®C+B&C;

\)

S T = W
NSNS

8). (A(t)® B(t)) = A'(t) ® B(t) + A(t) ® B'(t); (here, ’ denotes derivative

Proof. See in [2]. =

DEFINITION 2. The application Vec : My, x, —> R, defined by

T
Vec(A) = (a11,a21, -+, Gm1, 012,022, -, Gm2, - Qln, G2y - * 5 Gmn)

where A = (a;;) € Myxn, is called the vectorization operator.

. . 2 . .
LEMMA 2. The vectorization operator Vec : My, x,, — R™ | is a linear and
one-to-one operator. In addition, Vec and Vec™' are continuous operators.

Proof. The fact that the vectorization operator is linear and one-to-one is
immediate. Now, for A = (a;j) € M,,xn, we have

Vel = max Gll} < max {3 lasl} = 141

]_
Thus, the vectorization operator is continuous and ||Vec| < 1.

In addition, for A = I,, (identity n x n matrix) we have ||Vec(I,,)|| = |1,
and then, ||Vec|| = 1.
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. . . _ 2 .
The inverse of the vectorization operator, Vec™! : R" — M, xp, is

defined by

UL Upgl -0 Up2_pp]
Uy Upg2 0 Up2_
Vee lwy=| "0 T
Up  Uop Cee U2
where u = (u1,ug, -+, u,2)" € R,
We have
Vee™ (u)] = 1@§<X{Z!uny+z f<ne max i} =n- .

Thus, Vec™! is a continuous operator. m

REMARK. Obviously, if F' is a continuous matrix function on R, then
f =Vec(F) is a continuous vector function on R4 and reciprocally.

We recall that the vectorization operator Vec has the following properties
as concerns the calculations (see in [9]):

LEMmMA 3. If A, B,M € M,,«p, then
1). Vec(AMB) = (BT @ A) - Vec(M);
2). Vec(MB) = (BT ® I,,) - Vec(M);
3). Vec(AM) = (I, ® A) - Vec(M);
4). Vec(AM) = (M* @ A) - Vec(1,).
Proof. It is a simple exercise.
Let ¥; : Ry — (0,00), 7 =1,2,...,n, be continuous functions and
U= diag[\pla \1127 T \Iln]
DEFINITION 3. [4] A function f: Ry — R" is said to be WU-bounded on
R, if ¥f is bounded on Ry (i.e. sup||W(t)f(¢)| < +00).
>0

Below we extend this definition for matrix functions.

DEFINITION 4. A matrix function M : Ry — My, is said to be
U-bounded on Ry if the matrix function WM is bounded on R; (i.e.
sup|¥(t) M (t)] < +00).

t>0

We shall assume that A, B and F' are continuous n X n-matrices on R.

By a solution of (1), we mean a continuous differentiable n x n-matrix
function X satisfying the equation (1) for all ¢ > 0.

The following lemmas play a vital role in the proof of main result.
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The first Lemma is done in [|9]. Because the proof was incomplete, we
presented it as Lemma 7, [6], with a complete proof.

LEMMA 4. 6] The matriz function X (t) is a solution of (1) on the interval
J C R if and only if the vector valued function x(t) = Vec(X (t)) is a solution
of the differential system

(2) v = (I ® A(t) + BT (1) ® In)w + f(1),
where f(t) = Vec(F(t)), on the same interval J.

DEFINITION 5. The above system (2) is called ‘corresponding Kronecker
product system associated with (1)’

LEMMA 5. 6] The matriz function M(t) is W-bounded on Ry if and only
if the vector function Vec(M (t)) is I,, ® U-bounded on R.

Proof. From the proof of Lemma 2, it results that

1
—JA] < [Vee(4) e < AL

[
for every A € M, xn.
Setting A = W(t)M(t), t > 0 and using Lemma 3, we have the inequality
1
(3)  SNPOM@)] < [(Zn @ U(t)) - Vee(M (1)) |gnz < [T)M(E)],t 20
for every matrix function M(t).
Now, the Lemma follows immediately. m

The next result is Lemma 1 in [9]. Because the proof was incomplete, we
presented it as Lemma 6, [6], with a complete proof.

LEMMA 6. [6]. Let X(t) and Y (t) be a fundamental matrices for the systems

(4) a'(t) = A(t)x(t)
and

(5) y'(t) = y(t)B(t)
respectively.

Then, the matriz Z(t) = YT (t) ® X(t) is a fundamental matriz for the
system
(6) 2 (t) = (In® A(t) + BT (t) ® I,)2(2).
If, in addition, X (0) = I, and Y (0) = I,,, then Z(0) =
Now, let Z(t) be the above fundamental matrix for the system (6) with
Z(0) = I,2.
Let X1 denote the subspace of R consisting of all vectors which are
values of I, ® ¥-bounded solutions of (6) on Ry for ¢ = 0 and let X» an

n2-
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arbitrary fixed subspace of R”2, supplementary to X;. Let ]51, ﬁg denote the
. . . 2 oyd oyd .
corresponding projections of R™ onto X7, Xo respectively.

Finally, we recall two theorems which will be used in the proofs of our
main results.

THEOREM 1. [4] Let A be a continuous d x d real matriz on Ry such that
WHAR)T ()| <L, forallt € Ry,

where L is a positive constant.
Let W be such that

[T ()T (s)| < M, forallt >s>0,

where M is a positive constant. Let Y (t) be a fundamental matriz for the
system x' = A(t)x. Then, the system ¥’ = A(t)x + f(t) has at least one
W-bounded solution on Ry for every continuous and W-bounded function f
on Ry if and only if there are two positive constants K and « such that

W)Y () PY ()T (s)| < Ke (%) 0<s<t
W)Y () PY ()T (s)] < Ke @G, 0<t<s.
THEOREM 2. [4] Suppose that:

(7)

1°. the matriz functions A and VU satisfy the conditions of the above Theo-
rem;

2°. the fundamental matriz Y (t) of the system x' = A(t)x satisfies the con-
dition (7), where K and o are positive constants and Py, Py are supple-
mentary projections;

3°. the continuous and U-bounded function f : Ry — R? satisfies one of
the following conditions:
a). §o” [[¥(t) f(t)||dt is convergent,

b). ,dim {7 [W(s)f(s)]lds = 0.
Then, every ¥-bounded solution x of the system x' = A(t)x+ f(t) is such

that
Jim [[2(6)z ()] = 0.

REMARK. In these Theorems, P; and P are supplementary projections as
Py and P, for the system 2/ = A(t)z.

3. The main result
The main result of this paper is the following:

THEOREM 3. Let A and B be a continuous n X n real matrices such that
11, @ (T()AG)T )+ BT (t) ® I,| < L, forallt >0,
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where L is a positive constant. Let ¥ be such that

[T ()T~ (s)| < M, for allt > 5> 0,
where M is a positive constant. Let X (t) and Y (t) be a fundamental matrices
for the systems (4) and (5) respectively. Then, the equation (1) has at least
one V-bounded solution on Ry for every continuous and W-bounded matriz
function F' : Ry — M« if and only if there exist two positive constants
K and « such that the functions
®i(t,s) = (YT (1) @ (B(0)X (1)) P((Y" ()" @ (X ()T} (s))), i = 1,2
satisfy the conditions
® @1 (t,s)] < Ke (™) 0<s<t

|®y(t,s)| < Ke @B, 0<t<s.

Proof. First, we prove the ‘only if’ part.

Suppose that the equation (1) has at least one ¥-bounded solution on
R for every Contlnuous and W-bounded matrix function F': Ry — M, «p,.
Let f: Ry — R™ be a continuous and I, ® U-bounded function on R,.
From Lemma 5, it follows that the matrix function F(t) = Vec 1(f(t)) is
continuous and W-bounded on R,. From the hypothesis, the equation

X'=A(t)X + XB(t) + Vec ' (f(t))

has at least one W-bounded solution X (¢) on R;. From Lemma 4 and Lemma
5, it follows that the vector valued function x(t) = Vec(X(t)) is a I, ® -
bounded solution on Ry of the differential system

' = (I, ® A(t) + BY(t) @ I,)x + f(t).

Thus, this system has at least one I, ® U-bounded solution on R4 for
every continuous and I,, @ U-bounded function f on R, . From the hypotheses
and Lemma 1, we have that

(In @ W(t))(In © A(t) + BT(t) )( W)~

= (In@¥(1))(In () BY(t) @ In)(In ® ¥~(t))
=1In ®( (t)A () W)+ BT () @ I,
and
(In ® U () (Lo @ WTH(s)) = [, ® (P() ¥ (s)).
Thus, we are in the terms of the Theorem 1 [4] for the above system.

From this Theorem, there exist two positive constants K and « such that
the fundamental matrix Z(t) of the system (6) satisfies the conditions

(I, @ W) Z(H)PLZ ™ (s) (I, @ U(s)) "} < Ke @), 0<s<t,
|(In @ W) Z(#) P Z7 () (I, @ U(s)) 7 < Ke @78 0<t<s.
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By Lemma 6, we have Z(t) = YT (t)® X (t). Now the computation shows
that (8) holds.

Now, we prove the ‘if” part.

Suppose that (8) holds for some K > 0 and a > 0. Let F': Ry — M,y
be a continuous and ¥-bounded matrix function on Ry. From Lemma 5,
it follows that the vector valued function f(t) = Vec(F(t)) is continuous
and I, ® W-bounded function on R,. Thus, for the fundamental matrix
Z(t) = YT(t) ® X(t) of the system

o' = (I, @ A(t) + BT (t) ® I))x

we are in the terms of the Theorem 1 [4] (the ‘if’ part). From this theorem,
it follows that the differential system

o' = (I, ® A(t) + BT (t) ® I)z + f(t)

has at least one I,, ® ¥-bounded solution on Ry. Let x(¢) be this solution.

From Lemma 4 and Lemma 5, it follows that the matrix function X (¢) =
Vec ! (z(t)) is a PU-bounded solution on Ry of the equation (1) (because
F(t) = Vec'(f(t))). Thus, the differential equation (1) has at least one W-
bounded solution on R for every continuous and ¥-bounded matrix function
F onRy,.

It completes the proof. m

REMARK. Theorem 3 generalizes Theorem 2.1 [4].

Indeed, in particular case B(t) = Oy, the unique solution Z of the non-
homogeneous matrix differential equation Z’ = A(t)Z + F(t) which takes
the value Z; for t = tg is given by

t
Z(t) = X)X Hto)Zo + | X(1)X ' (s)F(s)ds, t€R,.
to

(The proof is similar to the proof of well-known Variation of constants
formula for the linear differential system 2’ = A(t)z + f(t)).

If, in addition

@) filt) - fi(D) A 2 - 2
S U A B
fu@®) fo(t) - fu(t) 2yt 2

it is easy to see that the solution of the equation Z’ = A(t)Z + F(t) is
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acl(t) xl(t) s .Tl(t)
=[P =0 - |
() xp(t) -+ zp(t)

where x = (z1(t), z2(t), - -, 2,(t))T is the solution of the problem
2'(t) = At)z(t) + f(t), z(to) = (21,25, )T,
with f(t) = (f1(t), fa(t), -, fn(t))T

In this case, the condition (8) becomes the condition (7), because the
solution z(t) is W-bounded on Ry if and only if the solution Z(t) is -
bounded on R;. Thus, Theorem 3 generalizes Theorem 2.1 [4].

In the end, we prove a theorem which shows that the asymptotic behavior
of the solutions of (1) is determined completely by the asymptotic behavior
of F(t) as t — oo.

THEOREM 4. Suppose that:

1). the matrices A, B and ¥ satisfy the conditions of the Theorem 3,;

2). the fundamental matrices X (t) and Y (t) of (4) and (5) respectively (X (0)
=Y (0) = I,,) satisfy the condition (8) for some K >0 and o > 0;

3). the continuous and ¥-bounded matrix function F : Ry — My, satis-
fies one of the following conditions:
a). o7 [W(t)F(t)|dt is convergent,

T _
b). tlgrnoo ;7 |W(s)F(s)|ds = 0.

Then, every W-bounded solution X of the equation (1) is such that
i (W(1)X ()] = 0.

Proof. Let X (t) be a ¥-bounded solution of the equation (1). From Lemma
4 and Lemma 5, it follows that the function z(t) = Vec(X(t)) is a I, ®
U-bounded solution on Ry of the differential system (2), where f(t) =
Vec(F(t)).

From Lemma 5, it follows that the function f is continuous and I,, ® ¥-
bounded on Ry.

From the hypothesis and from the inequality (3), we have

1(In @ W(t) - f(t)llgnz < [T()F(E)], t>0.
It follows that the function f satisfies one of the following conditions
a). §57 1(In ® ¥(t)) - f(t)||ga2dt is convergent,
. t+1
V). im0 © W(s) - £(5)giads =0

respectively.
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From the Theorem 2.2 [4], it follows that
Tim (L © WD) - 2(8) s = 0.
Now, from the inequality (3) again, we have
1
SEOXO] < (I @ U(@)) - 2(t)l|gnz, t 2 0.
It follows that
lim [P (¢) X (t)| = 0.

t—o00

The proof is now complete. m
REMARK. Theorem 4 generalizes Theorem 2.2 [4].

REMARK. If the function F' does not fulfill the condition 3 of Theorem 4,
then, the W-bounded solution X (¢) may be such that |¥(¢)X(¢)] - 0 as t
— OQ.

This can be seen from the next Example.

ExaMPLE. Consider the equation (1) with

wo= (T o) mo=(75 ) ma ro= (2 0)

The matrices A, BT have the eigenvalues
AM=-3, =1 and pu;=-1, uo=0
and the Jordan canonical forms
L = diag[—3,1] and M = diag[—1,0]

respectively.
We have A =ULU', BT = VMV~ where

1 2 3 1
U= and V = .
1 3 5 2
The fundamental matrices for the systems (4) and (5) are

Ze 3t — et —2e73t 4 2€t>

X(t) =Uetu=! =
®) 373t — 3¢t —2e3t + 3¢t

and

Y1) = VeMiy1 = 6et—5 —3et+3
10e ™t —10 —be ' +6

respectively.



Note on the existence of a V-bounded solution 559

The fundamental matrix for the system (6) is
Z) =Yty @ X(t)=veMv-loueltu=t =
=ValU)(MegetV iUt =
=T diagle ™, 1,e73 e - T71,

3 6 1 2
3 9 1 3
where T =V @ U =
10 2 4
5 15 2 6

Consider

The solutions of the system (6) are
20(t) = Z(t) - (c1,c2,c3,¢a)", tER,.

We note that these solutions are I ® ¥ bounded on R;.
On the other hand,

YT(t)(YT(S))fl _ VeM(tfs)Vfl
3675(1575) _ 267(1575) 267(1}73) _ 2675(1575)
36_5(t_8) _ 36—(t—8) 36—(75—5) — 9e—5(t—s)
It follows that the condition of Theorem 4 is satisfied with
]31214, ﬁ2:O4, K =341 and o = 1.

In addition, the matrices A, B, ¥ satisfy the conditions of Theorem 4.
On the other hand, we have |U(¢)F(t)| = 1, for all ¢t > 0. Now, it is easy
to see that

Xp(t) =
24 — 4e2t — 273t 4 10et — 6 13—06_4t — %e% — 4e3t +20et — 10
2e™4 — 6e? — 273 + 15e' — 9 e — e 473 4 30e" — 15
is a particular WU-bounded solution of the system (1) and

T |9 (6)X,(1)] 0.

REMARK. This Example shows that the hypothesis 3 of Theorem 4 is a
essential condition for the conclusion of Theorem.
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