

L. Dileep and S. Latha

ON P -VALENT FUNCTIONS OF COMPLEX ORDER

Abstract. The purpose of the present paper is to derive characterization theorem and radius of starlikeness for certain class of p -valent analytic functions. In connection with these results some more properties are discussed.

1. Introduction

Let \mathcal{A}_p denote the class of analytic functions defined in the unit disc $\mathcal{U} = \{z : |z| < 1\}$ of the form

$$(1.1) \quad f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n, \quad (p \in \mathbb{N} := \{1, 2, 3, \dots\}).$$

For $-1 \leq B < A \leq 1$, let $\mathcal{P}(A, B)$ [8] denote the class of functions which are of the form

$$(1.2) \quad p_1(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)},$$

where ω is bounded analytic functions satisfying the conditions $\omega(0) = 0$ and $|\omega(z)| < 1$.

Let $\mathcal{P}(A, B, p, \alpha)$ denote the class of functions $p(z) = p + \sum_{n=1}^{\infty} a_n z^n$ which are analytic in \mathcal{U} and

$$(1.3) \quad p(z) = (p - \alpha)p_1(z) + \alpha \quad p_1(z) \in \mathcal{P}(A, B).$$

Using (1.2) and (1.3), one can show that $p(z) \in \mathcal{P}(A, B, p, \alpha)$ if and only if

$$(1.4) \quad p(z) = \frac{p + \gamma\omega(z)}{1 + B\omega(z)}, \quad \omega(z) \in \mathcal{U},$$

where $\gamma = (p - \alpha)A + \alpha B$.

2000 *Mathematics Subject Classification*: 30C45.

Key words and phrases: p -valent functions, Janowski class.

For some real λ , $|\lambda| < \frac{\pi}{2}$, b a non-zero complex number, we designate $\mathcal{S}_p^\lambda(A, B, b)$ as the class of functions $f(z) \in \mathcal{A}_p$ such that

$$(1.5) \quad p + d \left(\frac{zf'(z)}{f(z)} - p \right) = p(z), \quad \text{for } p(z) \in \mathcal{P}(A, B, p, \alpha),$$

where $d = \frac{e^{i\lambda}}{b \cos \lambda}$.

This class generalizes various classes studied earlier by Aouf [2], Janowski [8], Golzina [5], Ganesan [4], Silverman [10] and Polatoglu et al. [11] respectively. In particular, $\mathcal{S}(A, B, p, \alpha)$, $\mathcal{S}^*(A, B)$, $\mathcal{S}_\alpha(p)$, $\mathcal{S}_p(A, B)$, $\mathcal{S}(a, b)$ and $\mathcal{S}^\lambda(A, B, b)$ are all contained in the class $\mathcal{S}_p^\lambda(A, B, b)$.

2. Some preliminaries

LEMMA 2.1. [2] *Let $p(z) \in \mathcal{P}(A, B, p, \alpha)$. Then, for $|z| \leq r$, we have*

$$(2.1) \quad \left| p(z) - \frac{p - [pB + (A - B)(p - \alpha)]Br^2}{1 - B^2r^2} \right| \leq \frac{(A - B)(p - \alpha)r}{1 - B^2r^2}, \quad z \in \mathcal{U}.$$

LEMMA 2.2. [2] *$f(z) \in \mathcal{S}(A, B, p, \alpha)$ if and only if*

$$(2.2) \quad f(z) = z^p \left[\frac{f_1(z)}{z} \right]^{p-\alpha}, \quad f_1(z) \in \mathcal{S}^*(A, B), \quad z \in \mathcal{U}.$$

LEMMA 2.3. [9] *If $f(z) \in \mathcal{S}^*(A, B)$ ($-1 \leq B < A \leq 1$), then*

$$(2.3) \quad \left| \arg \frac{f(z)}{z} \right| \leq \frac{2(A - B)}{(1 - B)} \arcsin r, \quad |z| = r < 1.$$

3. Main results

In this section, a necessary and sufficient condition, radius of starlikeness for functions belonging to class $\mathcal{S}_p^\lambda(A, B, b)$ are determined.

THEOREM 3.1. *A function $f(z) = z^p + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + \dots$, belongs to the class $\mathcal{S}_p^\lambda(A, B, b)$ if and only if*

$$e^{i\lambda} \left(\frac{zf'(z)}{f(z)} - p \right) \prec \frac{(\gamma - pB)b \cos \lambda z}{1 + Bz}, \quad z \in \mathcal{U}.$$

Proof. Let

$$e^{i\lambda} \left(\frac{zf'(z)}{f(z)} - p \right) \prec \frac{(\gamma - pB)b \cos \lambda z}{1 + Bz}.$$

Using subordination principle, it follows that

$$p + \frac{e^{i\lambda}}{b \cos \lambda} \left(\frac{zf'(z)}{f(z)} - p \right) = p + \frac{(\gamma - pB)\omega(z)}{1 + B\omega(z)} = \frac{p + \gamma\omega(z)}{1 + B\omega(z)}.$$

This implies $f(z) \in \mathcal{S}_p^\lambda(A, B, b)$.

Conversely if $f(z) \in \mathcal{S}_p^\lambda(A, B, b)$, then for some $p(z) \in \mathcal{P}(A, B, p, \alpha)$ and $z \in \mathcal{U}$,

$$p + \frac{e^{i\lambda}}{b \cos \lambda} \left(\frac{zf'(z)}{f(z)} - p \right) = p(z).$$

Hence, we have

$$p + \frac{e^{i\lambda}}{b \cos \lambda} \left(\frac{zf'(z)}{f(z)} - p \right) = \frac{p + \gamma\omega(z)}{1 + B\omega(z)}.$$

This simplifies into

$$\frac{e^{i\lambda}}{b \cos \lambda} \left(\frac{zf'(z)}{f(z)} - p \right) = \frac{(\gamma - pB)\omega(z)}{1 + B\omega(z)}.$$

By subordination principle, it follows that

$$e^{i\lambda} \left(\frac{zf'(z)}{f(z)} - p \right) \prec \frac{(\gamma - pB)b \cos \lambda z}{1 + Bz}. \blacksquare$$

For parametric values $p = 1$ and $\alpha = 0$, we get the Theorem 1 in [11] which reads as follows:

COROLLARY 3.2. $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$, belongs to $\mathcal{S}^\lambda(A, B, b)$ if and only if

$$e^{i\lambda} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \begin{cases} \frac{(A - B)b \cos \lambda z}{1 + Bz}, & B \neq 0 \\ Ab \cos \lambda z, & B = 0. \end{cases}$$

THEOREM 3.3. If $f(z) \in \mathcal{S}_p^\lambda(A, B, b)$, then

$$(3.1) \quad \left| 1 - \left(\frac{f(z)}{z^p} \right)^{\frac{Bd}{(\gamma - pB)}} \right| < 1, \quad z \in \mathcal{U}.$$

Proof. We define the function $\omega(z)$ by

$$\frac{f(z)}{z^p} = (1 + B\omega(z))^{\frac{(\gamma - pB)}{Bd}}$$

where the exponent is so chosen that $(1 + B\omega(z))^{\frac{(\gamma - pB)}{Bd}}$ has the value 1 at the origin. Then, $\omega(z)$ is analytic in \mathcal{U} and $\omega(0) = 0$. Logarithmic differentiation, yields

$$e^{i\lambda} \frac{zf'(z)}{f(z)} - e^{i\lambda} p = \frac{(\gamma - pB)b \cos \lambda \omega'(z)}{1 + B\omega(z)}.$$

By Theorem 3.1, it follows that $|\omega(z)| < 1$ for all $z \in \mathcal{U}$ with $|\omega(z_1)| = 1$ such that $|\omega(z)|$ attains its maximum value on the circle $|z| = z_1 < 1$ at the point z_1 .

Using Jack's Lemma in this equality, since $|\omega(z_1)| = 1$ and $k \geq 1$, we obtain

$$e^{i\lambda} z_1 \frac{f'(z_1)}{f(z_1)} - e^{i\lambda} p = \frac{(\gamma - pB)b \cos \lambda \omega(z_1)}{1 + B\omega(z_1)} = F(\omega(z_1)) \notin F(\mathcal{U}).$$

But this contradicts Theorem 3.1. Now using (3.1), we obtain

$$\left| 1 - \left(\frac{f(z)}{z^p} \right)^{\frac{Bd}{(\gamma - pB)}} \right| = |B\omega(z)| < |B|,$$

which completes the proof. ■

For parametric values $p = 1$ and $\alpha = 0$, we get the Theorem 2 in [11] which reads as follows:

COROLLARY 3.4. *If $f(z) \in \mathcal{S}_p(A, B, b)$, then*

$$\left| 1 - \left(\frac{f(z)}{z} \right)^{\frac{Bd}{(A-B)}} \right| < 1, \quad z \in \mathcal{U}.$$

THEOREM 3.5. *If $f(z) = z^p + a_{p+2}z^{p+2} + a_{p+3}z^{p+3} + \dots$, belongs to $\mathcal{S}_p^\lambda(A, B, b)$, then*

$$G(r, -A, -B, |b|) \leq |f(z)| \leq G(r, A, B, |b|), \quad z \in \mathcal{U}$$

where,

$$G(r, A, B, |b|) = \begin{cases} r^p (1 + Br)^{\frac{(\gamma - pB) \cos \lambda (|b| + \Re\{b\} \cos \lambda)}{2B}}, & B \neq 0 \\ r^p e^{A(p-\alpha)|b| \cos \lambda r}, & B = 0. \end{cases}$$

This bound is sharp, being attained by the extremal function

$$(3.2) \quad f_*(z) = \begin{cases} z^p (1 + Bz)^{\frac{(\gamma - pB)}{Bd}}, & B \neq 0 \\ z^p e^{\frac{A(p-\alpha)}{d}}, & B = 0. \end{cases}$$

The radius of starlikeness of the class $\mathcal{S}_p^\lambda(A, B, b)$ is

$$r_s = \frac{(\gamma - pB)|b| \cos \lambda - \sqrt{(\gamma - pB)^2 |b|^2 \cos^2 \lambda + 4B^2 + 4B(\gamma - pB)\Re\{b\} \cos^2 \lambda}}{2[-B^2 - B(\gamma - pB)\Re\{b\} \cos^2 \lambda]}.$$

This radius is sharp, being attained by the extremal function

$$f_*(z) = z(1 + Bz)^{\frac{(\gamma - pB)e^{-i\lambda} b \cos \lambda}{B}}.$$

Proof. Let $f(z) \in \mathcal{S}_p^\lambda(A, B, b)$ and $B = 0$. Therefore, from (2.1) we have

$$\left| p + d \left(\frac{zf'(z)}{f(z)} - p \right) - \frac{p - [pB + (\gamma - pB)]Br^2}{1 - B^2r^2} \right| \leq \frac{(\gamma - pB)|b| \cos \lambda r}{1 - B^2r^2}.$$

Hence we get

$$(3.3) \quad \left| \frac{zf'(z)}{f(z)} - \frac{p(1 - B^2r^2) - B(\gamma - pB)b \cos^2 \lambda r^2}{1 - B^2r^2} \right| \leq \frac{(\gamma - pB)|b| \cos \lambda r}{1 - B^2r^2}.$$

The set of the values of $\frac{zf'(z)}{f(z)}$ in the closed disc with center

$$(3.4) \quad C(r) = \left(\frac{p(1 - B^2r^2) - B(\gamma - pB)b \cos^2 \lambda r^2}{1 - B^2r^2}, \frac{p(1 - B^2r^2) + B(\gamma - pB)b \cos^2 \lambda r^2}{1 - B^2r^2} \right)$$

and radius

$$\rho(r) = \frac{(\gamma - pB)|b| \cos \lambda r}{1 - B^2r^2}.$$

The inequality (3.3) can be written in the form,

$$(3.5) \quad M_1(r) \leq \Re \left\{ \frac{zf'(z)}{f(z)} \right\} \leq M_2(r),$$

where

$$M_1(r) = \frac{p - (\gamma - pB)|b| \cos \lambda r + p(B^2 + B(\gamma - pB)\Re\{b\} \cos^2 \lambda)r^2}{1 - B^2r^2},$$

$$M_2(r) = \frac{p + (\gamma - pB)|b| \cos \lambda r - p(B^2 + B(\gamma - pB)\Re\{b\} \cos^2 \lambda)r^2}{1 - B^2r^2}.$$

On the other hand

$$(3.6) \quad \Re \left\{ \frac{zf'(z)}{f(z)} \right\} = r \frac{\partial}{\partial r} \log |f(z)|.$$

By considering (3.5) and (3.6) we can write

$$M_1(r) \leq r \frac{\partial}{\partial r} \log |f(z)| \leq M_2(r),$$

which yields the desired result on integration. If we take $B = 0$ in the inequality (3.3) we obtain the complete result.

From (3.3), we have

$$\Re \left\{ \frac{zf'(z)}{f(z)} \right\} \geq \frac{p - (\gamma - pB)|b| \cos \lambda r - (B^2 + B(\gamma - pB)\Re\{b\} \cos^2 \lambda)r^2}{1 - B^2r^2}.$$

For $r < r_s$ the right hand side of the preceding inequality is positive, which implies

$$r_s = \frac{(\gamma - pB)|b| \cos \lambda - \sqrt{(\gamma - pB)^2|b|^2 \cos^2 \lambda + 4B^2 + 4B(\gamma - pB)\Re\{b\} \cos^2 \lambda}}{2[-B^2 - B(\gamma - pB)\Re\{b\} \cos^2 \lambda]}.$$

We also note that the inequality (3.3) becomes an equality for the function

$$f_*(z) = z(1 + Bz)^{\frac{(\gamma - pB)be^{-i\lambda} \cos \lambda}{B}}.$$

Hence the proof is complete. ■

THEOREM 3.6. *If $f(z) \in \mathcal{S}_p^\lambda(A, B, b)$, then for $|z| = r < 1$,*

$$\left| \arg \frac{f(z)}{z^p} \right| \leq \frac{2(\gamma - pB)}{(1 - B)d}, \quad z \in \mathcal{U}.$$

Proof. From (2.2) $\frac{f(z)}{z^p} = \left(\frac{f_1(z)}{z} \right)^{\frac{(p-\alpha)}{d}}$ where $f_1(z) \in \mathcal{S}^*(A, B)$. From (2.3), the desired inequality follows. ■

Acknowledgement. This work was supported by UGC Major Research Fund F. No. 38-268/2009(SR).

References

- [1] F. M. AL-Oboudi, M. M. Haidan, *Spirallike functions of complex order*, J. Nat. Geom. 19 (2000), 53–72.
- [2] M. K. Aouf, *On class of p -valent starlike functions of order α* , Internat. J. Math. Math. Sci. 10(4) (1987), 733–744.
- [3] M. K. Aouf, F. M. Al-Oboudi, M. M. Haidan, *On some results for λ -spirallike and λ -Robertson functions of complex order*, Publ. Instit. Math. Belgrade 77 (2005), 93–98.
- [4] M. S. Ganesan, *A study in the theory of univalent function and multivalent functions*, Ph. D Thesis.
- [5] E. G. Golzina, *On the coefficients of a class of functions regular in a disk and having an integral representation in it*, J. of Soviet Math. 6(2) (1974), 606–617.
- [6] A. W. Goodman, *Univalent Functions*, Vol. I & II, Mariner Publishing Comp. Inc., Tampa, Florida, 1983.
- [7] I. S. Jack, *Functions starlike and convex of order α* , J. London Math. Soc. 3(2) (1971), 469–474.
- [8] W. Janowski, *Some extremal problems for certain families of analytic functions*, I. Ann. Polon. Math. 28 (1973), 297–326.
- [9] B. Pinchuk, *On starlike and convex functions of order α* , Duke Math. J. 35 (1968), 721–734.

- [10] H. Silverman, *Subclasses of starlike functions*, Rev. Roumaine Math. Pures Appl. 23 (1978), 1093–1099.
- [11] Y. Polatoglu, A. Sen, *Some results on subclasses of Janowski λ -spirallike functions of complex order*, Gen. Math. 15(2–3) (2007), 88–97.

L. Dileep
DEPARTMENT OF MATHEMATICS
VIDYAVARDHAKA COLLEGE OF ENGINEERING
Gokulum 3rd stage
MYSORE, INDIA
E-mail: dileepl84@gmail.com

S. Latha
DEPARTMENT OF MATHEMATICS
YUVARAJA'S COLLEGE
UNIVERSITY OF MYSORE
MYSORE - 570 005, INDIA
E-mail: drlatha@gmail.com

Received May 16, 2010; revised version January 11, 2011.