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FINITE DIRECTLY INDECOMPOSABLE

MONOGENIC ENTROPIC

QUASIGROUPS WITH QUASI-IDENTITY

Abstract. In this paper we characterize finite directly indecomposable monogenic
entropic quasigroups with quasi-identity.

1. Introduction

This paper consists of three parts.
In the first part we recall some definitions and propositions from [1] and

[2] and describe the set of ordered triples beeing the ranks of finite monogenic
algebras in EQ1.

In the second part we characterize finite monogenic algebras in EQ1
having r+(Q) = pn for p prime.

In the third part we characterize finite monogenic algebras in EQ1 which
are directly indecomposable. First, we prove that if Q is a nontrivial finite
directly indecomposable monogenic entropic quasigroups with quasi-identity
then r+(Q) = pn, where p is prime. Then, we show that if a finite monogenic
algebra in EQ1 has the additive rank of the form 2n, where n > 0, then it is
directly indecomposable. Next, we show that if a finite monogenic algebra
in EQ1 has the additive rank of the form pn, where p 6= 2 is prime and
the rank r∗ of the form pm, where m > 0 then it is directly decomposable.
Finally, we describe which finite monogenic algebras in EQ1 are directly
indecomposable.

Definition 1.1. An algebra (G,+,−, 0,∗ ) is an abelian group with invo-
lution if:

(1) the reduct (G,+,−, 0) is an abelian group,
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(2) it satisfies the following identities:

0∗ = 0, a∗∗ = a, (a+ b)∗ = a∗ + b∗.

We denote the variety of all abelian groups with involution by AGI.

Definition 1.2. An algebra (Q, ·, /, \, 1) is an entropic quasigroup with
quasi-identity if it satisfies the following identities:

(1) a · (a\b) = b, (b/a) · a = b,
(2) a\(a · b) = b, (b · a)/a = b,
(3) (a · b) · (c · d) = (a · c) · (b · d),
(4) a · 1 = a, 1 · (1 · a) = a.

Note that the identities (1), (2) and (3) define entropic quasigroups,
whereas the identities (4) define the quasi-identity. We denote the variety of
all entropic quasigroups with quasi-identity by EQ1.

More information concerning entropic quasigroups may be found in [3]
and [5]. In the paper [1], it is proved that abelian groups with involution are
equivalent to entropic quasigroups with quasi-identity.

Theorem 1.3. [1, Theorem 3] If G = (G,+,−, 0,∗ ) is an abelian group
with involution, then Ψ(G) = (G, ·, /, \, 1) is an entropic quasigroup with
quasi-identity, where a · b := a + (b∗), a\b := b∗ + (−a∗), a/b := a + (−b∗),
1 := 0.

Theorem 1.4. [1, Theorem 4] If Q =(Q, ·, /, \, 1) is an entropic quasigroup
with quasi-identity, then Φ(Q) = (Q,+,−, 0,∗ ) is an abelian group with
involution, where a+ b := a · (1 · b), (−a) := 1/(1 · a), 0 := 1, a∗ := 1 · a.

Theorem 1.5. [1, Theorem 5] If Q =(Q, ·, /, \, 1) is an entropic quasigroup
with quasi-identity then Ψ(Φ(Q)) = Q.

Theorem 1.6. [1, Theorem 6] If G = (G,+,−, 0,∗ ) is an abelian group
with involution then Φ(Ψ(G)) = G.

Definition 1.7. One-generated entropic quasigroups with quasi-identity
are called monogenic.

Let Q = (Q, ·, /, \, 1) be a monogenic entropic quasigroup with quasi-
identity. Let Q = 〈x〉 and let Φ(Q) = (Q,+,−, 0, ∗) be the abelian group
with involution equivalent to (Q, ·, /, \, 1).

We define three types of rank of the generator x:

r+(x) = min {n ∈ N | nx = 0, n ≥ 1} , (additive rank)

r∗(x) = min {n ∈ N | n ≥ 1, ∃k∈Z nx∗ = kx} ,

r∗+(x) = min {n ∈ N | r∗(x)x
∗ = (r∗(x) + n)x} .

Note that r+(x) is the usual rank of x in an abelian group.
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Then we define

r+(Q) = r+(x), r∗(Q) = r∗(x), r∗+(Q) = r∗+(x).

This definition does not depend on the choice of the generator x (see [1]).

Theorem 1.8. [1, Theorem 8] If Q = (Q, ·, /, \, 1) is a finite monogenic
entropic quasigroup with quasi-identity, then the following hold:

(1) r∗(Q)|r+(Q),
(2) r∗(Q)|r∗+(Q),
(3) 0 ≤ r∗+(Q) < r+(Q),

(4) r+(Q)|2r∗+(Q) + r∗+(Q)2

r∗(Q) .

Note that in [1] monogenic quasigroups were called cyclic.
We denote the integer part of a by E(a), whereas (a)b denotes the re-

mainder obtained after dividing a by b.

Definition 1.9. Let a, b, k ∈ N and a, b ≥ 1. Let γka,b : Z× Z → Z× Z be
a mapping such that

γka,b(x, y) = ((x+ E
(y

b

)

(b+ k))a, (y)b)

and let
(x, y)⊕k

a,b (z, t) = γka,b(x+ z, y + t).

Let T : Z× Z → Z× Z be a function such that T (x, y) = (y, x).

Definition 1.10. Let a, b, k ∈ Z and a ≥ 1, b ≥ 1, k ≥ 0. Define

Qk
a,b =

(

Za × Zb,⊕
k
a,b,⊖

k
a,b, (0, 0),

∗
)

,

where ⊖k
a,b(x, y) = γka,b(−x,−y) and (x, y)∗ = γka,b(y, x).

Theorem 1.11. [1, Theorem 10] Let a, b, k ∈ Z with a ≥ 1, b ≥ 1, k ≥ 0

and b|a, b|k, 0 ≤ k < a, a|(2k + k2

b
). Then Qk

a,b is an abelian group with
involution.

Theorem 1.12. [1, Theorem 11] Let Q =(Q, ·, /.\, 1) be a finite cyclic
entropic quasigroup with quasi-identity and a = r+(Q), b = r∗(Q), k =

r∗+(Q). Then Φ(Q) ∼= Qk
a,b.

Proposition 1.13. [2, Proposition 1.12] Let Q be a finite monogenic
algebra in EQ1 such that Φ(Q) = Qk

a,b. Then a = r+(Q), b = r∗(Q),
(k)a = r∗+(Q).

We define the set D. As we will see in a moment, it is the set of ordered
triples beeing the ranks of finite monogenic algebras in EQ1.

Definition 1.14. Let D = {(a, b, k) ∈ Z3 : a ≥ 1, b ≥ 1, 0 ≤ k <

a, b|a, b|k, a|(2k + k2

b
)}.
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Theorem 1.15. D = {(a, b, k) ∈ Z3 : there exists finite monogenic Q in
EQ1 such that a = r+(Q), b = r∗(Q) and k = r∗+(Q)}.

Proof. If there exists finite monogenic Q in EQ1 such that a = r+(Q),
b = r∗(Q) and k = r∗+(Q) then (a, b, k) ∈ D by Theorem 1.8.

If (a, b, k) ∈ D then Qk
a,b is an abelian group with involution by Theorem

1.11. Then the algebra Q = Ψ(Qk
a,b) is a finite monogenic quasigroup in

EQ1 by Theorem 1.3. By Theorem 1.6 we have Φ(Q) = Qk
a,b therefore

according to Proposition 1.13 r+(Q) = a, r∗(Q) = b, r∗+(Q) = (k)a = k
(since 0 ≤ k < a).

Proposition 1.16. If (a, b, k) ∈ D then (a
b
, 1, k

b
) ∈ D.

Proof. Let (a, b, k) ∈ D. It is obvious that 0 ≤ k
b
< a

b
. We show that

(1.1)
a

b

∣

∣

∣

(

2
k

b
+

(k
b
)2

1

)

.

We know that a|(2k + k2

b
), b|a and b|k. Hence

a

b

∣

∣

∣

(

2
k

b
+

k2

b2

)

and (1.1) is satisfied.

2. Algebras in EQ1 having r+(Q) = pn

Proposition 2.1. Let b = 1 and a = pn, where p is prime. Then (a, b, k) ∈
D if and only if one of the following conditions is satisfied

(1) k = 0,
(2) k = pn − 2 and n ≥ 1,
(3) p = 2, k = 2n−1 and n ≥ 2,
(4) p = 2, k = 2n−1 − 2 and n ≥ 2.

Proof. It is easy to check that (a, b, k) ∈ D if the conditions given above are
fullfiled.

Let b = 1 and a = pn, where p is prime. Let (a, b, k) ∈ D. Then

(2.1) a = pn|(2k + k2) = k(k + 2), 0 ≤ k < pn.

Suppose that k 6= 0 then

(2.2) k = pl · x, k + 2 = pm · y,

where p ∤ x and p ∤ y. We know that (a, b, k) ∈ D, so pl · x = k < a = pn

hence

(2.3) l < n.
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Moreover 2k + k2 = k(k + 2) = pl+mxy and p ∤ xy (since p is prime).
Thus

(2.4) n ≤ l +m

by (2.1).
We have l < n ≤ l +m by (2.3) and (2.4). It follows that 0 < m and

(2.5) p|k + 2

by (2.2).
We first show that

(2.6) p ∤ k ⇒ k = pn − 2.

If p ∤ k then pn|k + 2 (by (2.1)) thus pn ≤ k + 2 hence pn = k + 2 or
pn = k + 1 using (2.1). If pn = k + 1 then k + 1|k + 2 and k = 0 - a
contradiction. Therefore pn = k + 2 so k = pn − 2 and n ≥ 1 by (2.3). So
we obtain the case 2.

Suppose that p|k. By (2.5) we have p|k + 2 hence p = 2 and l ≥ 1 by
(2.2).

If n = 1 then 2|2k + k2 and 0 ≤ k < 2 thus k = 0 - a contradiction.
Hence n ≥ 2. Moreover

(2.7) k + 2 = 2lx+ 2 = 2(2l−1x+ 1)

by(2.2).
Consider the following cases:

(1) l > 1. Then l − 1 > 0 and 2 ∤ 2l−1x + 1. By (2.1) and (2.7) we have
2n|k(k + 2) = 2lx2(2l−1x + 1) hence n ≤ l + 1. So n = l + 1 by (2.3).
Therefore l = n− 1, k = 2n−1x < 2n by (2.1). It means that x = 1 and
k = 2n−1. So we obtain the case 3.

(2) l = 1. Then k = 2x, k+2 = 2x+2 = 2(x+1) and 2n|k(k+2) = 4x(x+1)
by (2.1). Hence 2n−2|x(x+ 1) and 2n−2|x+ 1 since 2 ∤ x. Let

(2.8) x+ 1 = 2n−2z.

Moreover 2(x + 1) = k + 2 < 2n + 2 = 2(2n−1 + 1) by (2.1). Thus
x + 1 < 2n−1 + 1 and x + 1 ≤ 2n−1 so x + 1 = 2n−2 or x + 1 = 2n−22
by (2.8). If x + 1 = 2n−2 then x = 2n−2 − 1 and k = 2x = 2n−1 − 2.
So we obtain the case 4. If x + 1 = 2n−22 then x = 2n−1 − 1 and
k = 2x = 2n − 2. So we obtain the case 2.

Proposition 2.2. Let a = pn, where p is prime. Then (a, b, k) ∈ D if and
only if b = pm and one of the following conditions is satisfied

(1) m ≤ n and k = 0,
(2) m+ 1 ≤ n and k = pn − 2pm,
(3) m+ 2 ≤ n, p = 2 and k = 2n−1,
(4) m+ 2 ≤ n, p = 2 and k = 2n−1 − 2m+1.
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Proof. It is easy to check that (a, b, k) ∈ D if the conditions given above are
satisfied.

Let a = pn, where p is prime. Let (a, b, k) ∈ D. Then b|a so b = pm and
m ≤ n. By Proposition 1.16 we have (a

b
, 1, k

b
) ∈ D. Hence by Proposition

2.1 one of the above conditions is fullfiled.

The following theorem characterizes finite monogenic algebras in EQ1
having r+(Q) = pn for p prime.

Theorem 2.3. Let Q be a finite monogenic algebra in EQ1. Let a = r+(Q),
b = r∗(Q) and k = r∗+(Q). If a = pn, where p is prime then Q is isomorphic
to one of the following algebras in EQ1:

(1) Ψ(Q0
pn,pm), m ≤ n

(2) Ψ(Qpn−2pm

pn,pm ), m+ 1 ≤ n

(3) Ψ(Q2n−1

2n,2m), m+ 2 ≤ n

(4) Ψ(Q2n−1−2m+1

2n,2m ), m+ 2 ≤ n.

Proof. It is easy to check that the following algebras:

(1) Ψ(Q0
pn,pm), m ≤ n

(2) Ψ(Qpn−2pm

pn,pm ), m+ 1 ≤ n

(3) Ψ(Q2n−1

2n,2m), m+ 2 ≤ n

(4) Ψ(Q2n−1−2m+1

2n,2m ), m+ 2 ≤ n.

are in EQ1 by Theorems 1.11 and 1.3.

Let Q be a finite monogenic algebra in EQ1. Let a = r+(Q), b = r∗(Q)
and k = r∗+(Q). Then Q is equivalent to the algebra Qk

a,b using Theorem
1.12. By Theorem 1.8 we have (a, b, k) ∈ D. Hence Q is isomorphic to one
of the above algebras by Proposition 2.2.

3. Directly indecomposable algebras in EQ1

Definition 3.1. An algebra Q is directly indecomposable if |Q| 6= 1 and
if Q = Q1 ×Q2 implies |Q1| = 1 or |Q2| = 1.

The following proposition gives some conditions under which one finite
monogenic entropic quasigroup with quasi-identity is a homomorphic image
of another one. This proposition also serves as the technical help in proving
Theorem 3.3.
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Proposition 3.2. [2, Proposition 2.3] Let (a, b, k), (a′, b′, k′) ∈ D. If

a|a′, b|b′, a|

(

k′ −
b′

b
k

)

,

then
γka,b|Za′

×Z
b′
: Za′ × Zb′ → Za × Zb

is a homomorphism of Qk′

a′,b′ onto Qk
a,b.

The following theorem gives the conditions under which some algebras
in EQ1 are directly decomposable.

Theorem 3.3. Let a1, a2, b1, b2 ∈ Z, a1, a2, b1, b2 ≥ 1, gcd(a1, a2) = 1,
b1|a1, b2|a2, (a1a2, b1b2, k) ∈ D. If k1 = ( k

b2
)a1 and k2 = ( k

b1
)a2 then

(a1, b1, k1), (a2, b2, k2) ∈ D and

Q ∼= Q1 ×Q2,

where Q is equivalent to Qk
a1a2,b1b2

, Q1 is equivalent to Qk1
a1,b1

and Q2 is

equivalent to Qk2
a2,b2

.

Proof. First we show that (a1, b1, k1) ∈ D. It remains to prove that b1|k1

and a1|2k1 +
k2
1

b1
. We know that (a1a2, b1b2, k) ∈ D hence

(3.1) a1a2|2k +
k2

b1b2
,

b1b2|k and b1|k, b2|k thus b1|
k
b2

and b1|k1 since b1|a1.

We have a1b2|a1a2 since b2|a2. Then a1b2|2k + k2

b1b2
by (3.1). Hence

(3.2) a1|2
k

b2
+

k2

b1b22
.

Let k
b2

= ta1 + r where 0 ≤ r < a1. Then k1 = r = k
b2

− ta1 and

2k1 +
k2
1

b1
= 2

(

k
b2

− ta1

)

+

(

k

b2
−ta1

)2

b1

= 2 k
b2

+ k2

b1b
2
2

− 2ta1 − 2t k
b1b2

a1 + ta1
b1
a1

hence a1|2k1 +
k2
1

b1
by (3.2). It ends the proof that (a1, b1, k1) ∈ D.

Simillarly (a2, b2, k2) ∈ D.
Let h : Za1a2 × Zb1b2 → (Za1 × Zb1)× Za2 × Zb2 be a function such that

h(x, y) = (γk1a1,b1(x, y), γ
k2
a2,b2

(x, y)).

By Proposition 3.2 γk1a1,b1 |Za1a2 × Zb1b2 is a homomorphism of Qk
a1a2,b1b2

onto Qk1
a1,b1

and γk2a2,b2 |Za1a2 × Zb1b2 is a homomorphism of Qk
a1a2,b1b2

onto

Qk2
a2,b2

. Hence h is a homomorphism of Qk
a1a2,b1b2

into Qk1
a1,b1

×Qk2
a2,b2

.
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We show that kerh = {(0, 0)}. Let (x, y) ∈ Za1a2 × Zb1b2 and h(x, y) =

((0, 0), (0, 0)) then γk1a1,b1(x, y) = (0, 0) and γk2a2,b2(x, y) = (0, 0).
Hence

(3.3) a1|x+ E

(

y

b1

)

(b1 + k1), b1|y, a2|x+E

(

y

b2

)

(b2 + k2), b2|y

thus b1b2|y (since gcd(b1, b2) = 1) so y = 0. Therefore a1|x, a2|x by (3.3).
Hence a1a2|x (since gcd(a1, a2) = 1) so x = 0. Thus ker k = {(0, 0)} so h is
injective.

Moreover |Q| = |Q1 ×Q2| = a1a2b1b2 so h is an isomorphism.

The following theorem says what is the additive rank of every directly
indecomposable algebra in EQ1.

Theorem 3.4. Let Q be a finite monogenic quasigroup in EQ1 with at least
two different elements. If Q is directly indecomposable then r+(Q) = pn,
where p is prime.

Proof. Let b = r∗(Q), k = r∗+(Q) and a = r+(Q) 6= pn, where p is prime.
Let a = pm1

1 · pm2

2 · . . . · pmr

r , b = pl11 · pl22 · . . . · plrr , where pi are different prime
numbers, m1 ≥ 0, . . .mr ≥ 0 and l1 ≥ 0, . . . , lr ≥ 0. We can assume that
m1 > 0 and m2 > 0 since a 6= pn, where p is prime.

Let a1 = pm1

1 , a2 = pm2

2 · . . . · pmr

r , b1 = pl11 , b2 = pl22 · . . . · plrr , k1 = ( k
b2
)a1

and k2 = ( k
b1
)a2 .

By Theorem 3.3
Q ∼= Q1 ×Q2,

where Q1 is equivalent to Qk1
a1,b1

and Q2 is equivalent to Qk2
a2,b2

.
Moreover a1 > 1 and a2 > 1 since m1 > 0 and m2 > 0 so Q1 and Q2 are

nontrivial. Therefore Q is directly decomposable.

The following two lemmas concerning entropic quasigroups with quasi-
identity can be proved similarly like for abelian groups.

Lemma 3.5. Let Q ∈ EQ1 be a finite quasigroup and |Q| > 1. Then Q is
directly decomposable if and only if there are B and C being subalgebras of
Q such that B ∩ C = {0}, B ∪ C generates Q, |B| > 1 and |C| > 1.

Lemma 3.6. Let Q ∈ EQ1 be a finite quasigroup and |Q| > 1. Then Q is
directly decomposable if and only if there are B and C being subalgebras of
Q such that B ∩ C = {0}, |B| · |C| = |Q|, |B| > 1 and |C| > 1.

Lemma 3.7. Let Q ∈ EQ1 be a finite quasigroup. If there exists the bigest
nontrivial ( 6= Q) subalgebra of Q, then Q is directly indecomposable.

Proof. Let A be the bigest nontrivial subalgebra of Q. Assume that Q is
directly decomposable. By Lemma 3.5 there are B and C being subalgebras
of Q such that B ∩C = {0}, B ∪C generates Q, |B| > 1 and |C| > 1. Since
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A is the bigest nontrivial subalgebra of Q, we have B ⊆ A and C ⊆ A hence
B ∪C ⊆ A and Q ⊆ A a contradiction since A is nontrivial. Therefore Q is
directly indecomposable.

Lemma 3.8. If (2n, 2m, k) ∈ D then 2|k.

Proof. If m > 0 then 2m|k so 2|k. Suppose that m = 0. If n = 0, then
k = 0 and 2|k. If n > 0 then 2|2n and 2n|2k + k2 (since (2n, 2m, k) ∈ D)
hence 2|k(k + 2) so 2|k.

Theorem 3.9. Let Q ∈ EQ1 be a finite and monogenic quasiqroup,
r+(Q) = 2n, r∗(Q) = 2m and n > 0 then Q is directly indecomposable.

Proof. By Theorem 1.12 Φ(Q) ∼= Qk
2n,2m where k = r∗+(Q). Hence Q ∼=

Ψ(Qk
2n,2m).

Let A = {(x, y) ∈ Z2n × Z2m : 2|x + y}. First we prove that A is a
subalgebra of Qk

2n,2m .

(1) If (x, y) ∈ A then (x, y)∗ = γk2n,2m(y, x) = ((y+E( x
2m )(2m+k))2n , (x)2m).

If m > 0 then (y +E( x
2m )(2m + k))2n + (x)2m ≡2 y + x ≡2 0 by Lemma

3.8.
If m = 0 then (y + E( x

2m )(2m + k))2n + (x)2m ≡2 y + x(1 + k) ≡2 0 by
Lemma 3.8, so (x, y)∗ ∈ A.

(2) Let (x, y) ∈ A and (z, t) ∈ A. Then (x, y) ⊕k
2n,2m (z, t) = γk2n,2m(x +

z, y + t) = ((x+ z + E(y+t
2m )(2m + k))2n , (y + t)2m).

If m > 0 then (x+z+E(y+t
2m )(2m+k))2n+(y+t)2m ≡2 x+z+y+t ≡2 0

by Lemma 3.8.
If m = 0 then y = t = 0 and (x+ z +E(y+t

2m )(2m + k))2n + (y+ t)2m ≡2

x+ z ≡2 0 so (x, y)⊕k
2n,2m (z, t) ∈ A.

We show that A is the bigest nontrivial subalgebra of Qk
2n,2m . We prove

that if (x, y) ∈ Qk
2n,2m \A then (x, y) generates Qk

2n,2m .

Let (x, y) ∈ Qk
2n,2m \ A. It is enough to show that there exist z1, z2 ∈ Z

such that z1(x, y) ⊕
k
2n,2m z2(x, y)

∗ = (1, 0). Since (x, y) /∈ A we obtain
2 ∤ x+ y so gcd(x+ y, 2n) = 1, hence there are t, s ∈ Z such that t(x+ y) +
s2n = 1. Similarly gcd((x − y)2n , 2

n) = 1 and there are u, v ∈ Z such that
u(x− y)2n + v2n = 1. It is easy to check that

(−uyt+ u)(x, y)⊕k
2n,2m (−uyt)(x, y)∗ = (1, 0),

so (x, y) generates Qk
2n,2m .

Hence A is the bigest nontrivial subalgebra of Qk
2n,2m . Therefore Qk

2n,2m

is directly indecomposable by Lemma 3.7. Thus Q is directly indecompos-
able.
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Contrary to abelian groups there are monogenic entropic quasigroups
having an additve rank pn (where p is prime) which are directly decompos-
able as we can see in the following theorem:

Theorem 3.10. Let Q ∈ EQ1 be a finite and monogenic quasiqroup. If
r+(Q) = pn, r∗(Q) = pm and r∗+(Q) = pn − 2pm where p 6= 2 is prime and
m > 0, then Q is directly decomposable.

Proof. It is sufficient to show that Ψ(Q0
pn,pm)

∼= Q is directly decomposable.

Let B be the subalgebra of Qk
pn,pm generated by (pn − 1, 1). Let C be

the subalgebra of Qk
pn,pm generated by (1, 1).

We show that r+(1, 1) = pm, r∗(1, 1) = 1, r∗+(1, 1) = 0.

Let us observe that

pm(1, 1) = γp
n−2pm

pn,pm (pm, pm)

=

((

pm + E(
pm

pm
)(pn − pm)

)

pn
, (pm)pm

)

= (0, 0)

and

s(1, 1) = γp
n−2pm

pn,pm (s, s)

=

((

s+E(
k

pm
)(pn − pm)

)

pn
, (s)pm

)

= ((s)pn , (s)pm) = (s, s) 6= (0, 0)

for 0 < s < pm.

Moreover (1, 1)∗ = (1, 1). Hence r+(1, 1) = pm, r∗(1, 1) = 1, r∗+(1, 1) =
0 and |C| = pm > 1 since m > 0. Thus

(3.4) C = {(s, s) ∈ Z× Z : 0 ≤ s < pm}.

We prove that r+(p
n − 1, 1) = pn and r∗(p

n − 1, 1) = 1.

We know that s = E( s
pm

)pm + (s)pm for s ∈ Z. Hence

(3.5) pmE

(

s

pm

)

= s− (s)pm .

Let us notice that

pn(pn − 1, 1) = γp
n−2pm

pn,pm (pnpn − pn, pn)

=

((

p2n − pn + E

(

pn

pm

)

(pn − pm)

)

pn
, (pn)pm

)

= (0, 0)
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and

(3.6) s(pn − 1, 1) = γp
n−2pm

pn,pm (spn − s, s)

=

((

spn − s+ E

(

s

pm

)

(pn − pm)

)

pn
, (s)pm

)

=

(

−s− pmE

(

s

pm

)

pn
, (s)pm

)

(3.5)
= (((s)pm − 2k)pn , (s)pm) 6= (0, 0)

for 0 < s < pn because if ((s)pm − 2s)pn = (s)pm = 0 then pn|2s and then
pn|s for p 6= 2 but pn ∤ s for 0 < s < pn - a contradiction.

Let us observe that

(pn − 1, 1)∗ = γp
n−2pm

pn,pm (1, pn − 1)

=

((

1 +E

(

pn − 1

pm

)

(pn − pm)

)

pn
, (pn − 1

)

pm
)

=

((

1− pmE

(

pn − 1

pm

))

pn
, (pn − 1)pm

)

(3.5)
= ((1− (pn − 1− (pn − 1)pm))pn , (p

n − 1)pm)

= ((2 + (pn − 1)pm)pn , (p
n − 1)pm)

= (((pn − 1)pm − 2(pn − 1))pn , (p
n − 1)pm)

(3.6)
= (pn − 1)(pn − 1, 1).

The last equation follows from (3.6) for s = pn−1, hence r+(p
n−1, 1) = pn,

r∗(p
n − 1, 1) = 1 and |B| = pn > 1 since n ≥ m > 0.
Now we show that B ∩ C = {(0, 0)}.

Let x ∈ B∩C. Then there exists 0 ≤ s < pn such that x = s(pn−1, 1)
(3.6)
=

(((s)pm−2s)pn , (s)pm) ∈ C hence ((s)pm−2s)pn = (s)pm = ((s)pm)pn by(3.4)
and pn|(s)pm − (((s)pm − 2s) thus pn|2s therefore pn|s (since p 6= 2) there is
why s = 0 and x = (0, 0).

Hence Q ∼= Ψ(Qk
pn,pm) is directly decomposable by Lemma 3.6.

Theorem 3.11. Let Q ∈ EQ1 be a finite and monogenic quasiqroup. If
r+(Q) = pn, r∗(Q) = pm and r∗+(Q) = 0 where p 6= 2 is prime and m > 0
then Q is directly decomposable.

Proof. It is sufficient to show that Ψ(Qpn−2pm

pn,pm ) ∼= Q is directly decompos-
able.

Let B be the subalgebra of Qk
pn,pm generated by (pn − 1, 1). Let C be

the subalgebra of Qk
pn,pm generated by (1, 1).
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We show that r+(1, 1) = pn, r∗(1, 1) = 1, r∗+(1, 1) = 0.

We know that s = E( s
pm

)pm + (s)pm for s ∈ Z. Hence

(3.7) pmE

(

s

pm

)

= s− (s)pm .

Let us observe that

pn(1, 1) = γ0pn,pm(p
n, pn)

=

((

pn + E

(

pn

pm

)

pm
)

pn
, (pn)pm

)

= (0, 0)

and
s(1, 1) = γ0pn,pm(s, s)

=

((

s+E

(

s

pm

)

pm
)

pn
, (s)pm

)

(3.7)
= ((2s− (s)pm)pn , (s)pm) 6= (0, 0)

for 0 < s < pn.

Since if (2s − (s)pm)pn = (s)pm = 0 then pn|2s thus pn|s (since p 6= 2)
but pn ∤ s for 0 < s < pn - a contradiction.

Moreover (1, 1)∗ = (1, 1). Hence r+(1, 1) = pn, r∗(1, 1) = 1, r∗+(1, 1) = 0
and |C| = pn ≥ pm > 1 since m > 0.

We prove that r+(p
n − 1, 1) = pm and r∗(p

n − 1, 1) = 1.

Let us notice that

pm(pn − 1, 1) = γ0pn,pm(p
mpn − pm, pm)

=

((

pmpn − pm +E

(

pm

pm
pm
)

pn
, (pm)pm

)

= (0, 0)

and

(3.8) s(pn − 1, 1) = γ0pn,pm(sp
n − s, s)

=

((

spn − s+ E

(

s

pm

)

pm
)

pn
, (s)pm

)

= ((−s)pn , s) = (pn − s, s) 6= (0, 0)

for 0 < s < pm.

Let us observe that

(pn − 1, 1)∗ = γ0pn,pm(1, p
n − 1)

=

((

1 + E

(

pn − 1

pm

)

pm)pn , (p
n − 1

)

pm

)

(3.9)
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(3.7)
= ((1 + pn − 1− (pn − 1)pm)pn , (p

n − 1)pm)

= (pn − (pn − 1)pm , (p
n − 1)pm)

(3.8)
= (pn − 1)pm(p

n − 1, 1).

Hence r+(p
n − 1, 1) = pm, r∗(p

n − 1, 1) = 1 and |B| = pm > 1 since m > 0.
Thus

(3.10) B = {(pn − s, s) ∈ Z× Z : 1 ≤ s < pm} ∪ {(0, 0)}.

Now we show that B ∩ C = {(0, 0)}.
Let x ∈ B ∩ C. Then there exists 0 ≤ s < pn such that

x = γ0pn,pm(s, s) = ((s+ E(
s

pm
)pm)pn , (s)pm) ∈ B

hence

pn|

(

s+ E

(

s

pm

)

pm
)

pn
+ (s)pm

by 3.10 and

pn|s+ E

(

s

pm

)

pm + (s)pm = 2s

therefore pn|s (since p 6= 2) there is why s = 0 and x = (0, 0).
Therefore Ψ(Qk

pn,pm) is directly decomposable by Lemma 3.6. Hence

Q ∼= Ψ(Qk
pn,pm) is directly decomposable.

Theorem 3.12. Let Q ∈ EQ1 be a finite and monogenic quasiqroup. Then
Q is directly indecomposable if and only if one of the following contidions are
satisfied:

(1) r+(Q) = 2n and n > 0,
(2) r+(Q) = pn, r∗(Q) = 1 and r∗+(Q) = 0, where p is prime and n > 0,
(3) r+(Q) = pn, r∗(Q) = 1 and r∗+(Q) = pn − 2, where p is prime and

n > 0.

Proof. Let Q ∈ EQ1 be a finite and monogenic quasiqroup and suppose
that Q is directly indecomposable. By Theorem 3.4 r+(Q) = pn where p is
prime and n > 0. If p = 2 then we obtain the case1.

Suppose that p 6= 2.
Using Theorem 2.3 Q is isomorphic to one of the following algebras in

EQ1:

(1) Ψ(Q0
pn,pm), m ≤ n,

(2) Ψ(Qpn−2pm

pn,pm ), m+ 1 ≤ n.

If Q is isomorphic to Ψ(Q0
pn,pm) and m > 0 then by Theorem 3.11 Q is

directly decomposable - a contradiction. Hence m = 0 and we obtain the
case 2.
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If Q is isomorphic to Ψ(Qpn−2pm

pn,pm ) and m > 0 then by Theorem 3.10 Q
is directly decomposable - a contradiction. Thus m = 0 and we obtain the
case 3.

Let Q ∈ EQ1 be a finite and monogenic quasiqroup and suppose that
one of the following contidions are satisfied:

(1) r+(Q) = 2n and n > 0,
(2) r+(Q) = pn, r∗(Q) = 1 and r∗+(Q) = 0, where p is prime and n > 0,
(3) r+(Q) = pn, r∗(Q) = 1 and r∗+(Q) = pn − 2, where p is prime and

n > 0.

In the case 1 by Theorem 3.9 Q is directly indecomposable.
In the case 2 Q ∼= Ψ(Q0

pn,1) and Ψ(Q0
pn,1) has the bigest nontrivial sub-

algebra generated by (p, 0), so by Lemma 3.7 Q is directly indecomposable.

In the case 3 Q ∼= Ψ(Qpn−2
pn,1 ) and Ψ(Qpn−2

pn,1 ) has the bigest nontrivial sub-

algebra generated by (p, 0), so by Lemma 3.7 Q is directly indecomposable.
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