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FINITE DIRECTLY INDECOMPOSABLE
MONOGENIC ENTROPIC
QUASIGROUPS WITH QUASI-IDENTITY

Abstract. In this paper we characterize finite directly indecomposable monogenic
entropic quasigroups with quasi-identity.

1. Introduction

This paper consists of three parts.

In the first part we recall some definitions and propositions from [1] and
[2] and describe the set of ordered triples beeing the ranks of finite monogenic
algebras in EQ1.

In the second part we characterize finite monogenic algebras in EQ1
having r4(Q) = p™ for p prime.

In the third part we characterize finite monogenic algebras in EQ1 which
are directly indecomposable. First, we prove that if © is a nontrivial finite
directly indecomposable monogenic entropic quasigroups with quasi-identity
then 74 (Q) = p™, where p is prime. Then, we show that if a finite monogenic
algebra in EQ1 has the additive rank of the form 2", where n > 0, then it is
directly indecomposable. Next, we show that if a finite monogenic algebra
in EQ1 has the additive rank of the form p", where p # 2 is prime and
the rank r, of the form p™, where m > 0 then it is directly decomposable.
Finally, we describe which finite monogenic algebras in EQ1 are directly
indecomposable.

DEFINITION 1.1. An algebra (G, +,—,0,*) is an abelian group with invo-
lution if:

(1) the reduct (G, 4+, —,0) is an abelian group,
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(2) it satisfies the following identities:
0"=0, a™ =a, (a+b)*=a" 40"
We denote the variety of all abelian groups with involution by AGI.

DEFINITION 1.2. An algebra (Q,-,/,\,1) is an entropic quasigroup with
quasi-identity if it satisfies the following identities:

(1) a-(a\b)=b, (b/a)-a =0,

(2) a\(a b) = b, (b-a)/a=b,
(3) (a-b)-(c-d)=(a-c)-(b-d),
4) a-1=a,1-(1-a)=a.

Note that the identities (1), (2) and (3) define entropic quasigroups,
whereas the identities (4) define the quasi-identity. We denote the variety of
all entropic quasigroups with quasi-identity by EQ1.

More information concerning entropic quasigroups may be found in [3]
and [5]. In the paper [1], it is proved that abelian groups with involution are
equivalent to entropic quasigroups with quasi-identity.

THEOREM 1.3. |1, Theorem 3| If G = (G,+,—,0,%) is an abelian group
with involution, then VU(G) = (G,-,/,\,1) is an entropic quasigroup with
quasi-identity, where a -b := a + (b*), a\b := b* + (—a*), a/b = a + (=b*),
1:=0.

THEOREM 1.4. |1, Theorem 4| If Q =(Q, -, /,\, 1) is an entropic quasigroup
with quasi-identity, then ®(Q) = (Q,+,—,0,") is an abelian group with
involution, where a+b:=a-(1-b), (—a):=1/(1-a),0:=1, a*:=1-a.
THEOREM 1.5. |1, Theorem 5| If @ =(Q, -, /,\, 1) is an entropic quasigroup
with quasi-identity then ¥(®(Q)) = Q.

THEOREM 1.6. |1, Theorem 6| If G = (G,+,—,0,*) is an abelian group
with involution then ®(V(G)) = G.

DEFINITION 1.7. One-generated entropic quasigroups with quasi-identity
are called monogenic.

Let Q@ = (@,-,/,\,1) be a monogenic entropic quasigroup with quasi-
identity. Let @ = (x) and let ®(Q) = (Q,+, —,0,*) be the abelian group
with involution equivalent to (Q,-, /,\,1).

We define three types of rank of the generator x:

ry(x) =min{n € N | nz =0, n > 1}, (additive rank)
r«(z) =min{n € N | n>1, Jyez na* =kzx},
Tst(x) =min{n € N | ry(z)z* = (r«(z) + n)z }.

Note that 4 (x) is the usual rank of z in an abelian group.
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Then we define
r(Q) = 74 (2), 7u(Q) = (), 74(Q) = ruy ().

This definition does not depend on the choice of the generator z (see [1]).

THEOREM 1.8. [1, Theorem 8| If Q = (Q,-,/,\,1) is a finite monogenic
entropic quasigroup with quasi-identity, then the following hold:

(1) m(Q)Ir+(Q),

(2) m(Q)r1(Q),

(3) 0 <7 (Q) <7 (Q),
(4) r

rst(Q)?
4) 11 (Q)[2r4(Q) + 7 (Q)
Note that in [1] monogenic quasigroups were called cyclic.

We denote the integer part of a by E(a), whereas (a), denotes the re-
mainder obtained after dividing a by b.

DEFINITION 1.9. Let a,b,k € Nand a,b > 1. Let 7%, : Z X Z — Z x Z be
a mapping such that

op(@,y) = (@ + B (2) b+ k) ()o)
and let
(2,y) @4 (2,1) = Yap(z + 2,y +1).
Let T : Z x Z — 7 x 7Z be a function such that T'(z,y) = (y,x).
DEFINITION 1.10. Let a,b,k € Z and a > 1,b > 1,k > 0. Define

ab* <Z XZlﬂ@ab?@abv(O O) >

where ©F  (2,y) = ¥ (=2, —y) and (z,y)* =¥ (v, 2).
THEOREM 1.11. [1, Theorem 10| Let a,b,k € Z witha > 1, 6> 1,k >0
and bla, blk, 0 < k < a, a|(2k + k—;) Then Q’;b is an abelian group with
involution.
THEOREM 1.12. [1, Theorem 11| Let Q =(Q,-,/.\,1) b
entropic quasigroup with quasi-identity and a = r4(Q), b
1t (Q). Then ®(Q) = QF .
ProPOSITION 1.13. |2, Proposition 1.12] Let Q be a finite monogenic
algebra in EQ1 such that ®(Q) = Q’;,b- Then a = ri(Q), b = r(Q),
(k)a = ret(Q).

We define the set D. As we will see in a moment, it is the set of ordered
triples beeing the ranks of finite monogenic algebras in EQ1.
DEFINITION 1.14. Let D = {(a,b,k) € Z3:a > 1,b > 1,0 < k <
a, bla, blk, a|(2k + E2)}.

e a finite cyclic

m(Q), k =
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THEOREM 1.15. D = {(a,b,k) € Z3: there emists finite monogenic Q in
EQ1 such that a =r(Q), b =1.(Q) and k = r.+(Q)}.

Proof. If there exists finite monogenic Q in EQ1 such that a = r;(Q),
b=r.(Q) and k = r,4(Q) then (a,b, k) € D by Theorem 1.8.

If (a,b,k) € D then Q’;’b is an abelian group with involution by Theorem
1.11. Then the algebra Q = ¥( ';”"b) is a finite monogenic quasigroup in

EQ1 by Theorem 1.3. By Theorem 1.6 we have ®(Q) = Q’;b therefore
according to Proposition 1.13 74 (Q) = a, m.(Q) = b, 1y (Q) = (k)a = k
(since 0<k<a) m

k
PROPOSITION 1.16. If (a,b,k) € D then (¢,1,%)
Proof. Let (a,b, k) € D. It is obvious that 0 < £ < %. We show that

a k (E)2
(1.1) 3‘ <2E+bT>'

We know that a|(2k + %), bla and b|k. Hence
E k2
o 4 M
(55+5)

2. Algebras in EQ1 having r,(Q) = p"

a

b

and (1.1) is satisfied. m

PROPOSITION 2.1. Letb =1 and a = p", where p is prime. Then (a,b, k) €
D if and only if one of the following conditions is satisfied

(1) k=0,

(2) k=p"—2andn>1,

3) p=2,k=2""1 andn > 2,
(4) p=2,k=2"1—-2andn>2.

Proof. It is easy to check that (a,b, k) € D if the conditions given above are
fullfiled.
Let b =1 and a = p", where p is prime. Let (a,b, k) € D. Then

(2.1) a=p"2k+ k) =k(k+2), 0<Ek<p"
Suppose that k # 0 then
(2.2) k=p -z, k+2=p"-y,

where p {  and p { y. We know that (a,b,k) € D, sop! -z =k < a = p"
hence

(2.3) Il <n.
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Moreover 2k + k% = k(k + 2) = p!™™ay and p t 2y (since p is prime).
Thus

(2.4) n<l+m
by (2.1).
We have | < n <1+ m by (2.3) and (2.4). It follows that 0 < m and
(2.5) plk+2
by (2.2).
We first show that
(2.6) ptk=k=p"—2.

If p 1k then p"|k + 2 (by (2.1)) thus p™ < k + 2 hence p" = k + 2 or
p" = k+1 using (2.1). If p* = k+1then k+1k+2and k£ =0 - a
contradiction. Therefore p = k42 so k = p" —2 and n > 1 by (2.3). So
we obtain the case 2.

Suppose that p|k. By (2.5) we have p|k + 2 hence p = 2 and | > 1 by
(2.2).

If n = 1 then 2|2k + k? and 0 < k < 2 thus k = 0 - a contradiction.
Hence n > 2. Moreover

(2.7) k+2=2+2=202"12+1)

by(2.2).
Consider the following cases:

(1) I > 1. Thenl—1 >0 and 2 { 2"z + 1. By (2.1) and (2.7) we have
27| k(k +2) = 222(2" "'z + 1) hence n <1+ 1. Son =1+ 1 by (2.3).
Therefore | =n — 1, k = 2" 1z < 2" by (2.1). It means that x = 1 and
k = 2""1. So we obtain the case 3.

(2) I =1. Then k =2z, k+2 = 22+2 = 2(z+1) and 2" |k(k+2) = 4z(z+1)
by (2.1). Hence 2" 2|z(z + 1) and 2" 2|z + 1 since 2{ z. Let
(2.8) T4+1=2""2z

Moreover 2(z + 1) = k+2 < 2" +2 = 2(2"! + 1) by (2.1). Thus
r+1<2 4t 1andae+1<2"lsor+1=2"20rz+1=2"22
by (2.8). fx+1=2"2thenz =2"2—-1and k = 2r = 2"} — 2.
So we obtain the case 4. If z +1 = 2722 then z = 2" 1 — 1 and
k= 2x = 2" — 2. So we obtain the case 2. m

PROPOSITION 2.2. Let a = p"™, where p is prime. Then (a,b, k) € D if and
only if b= p™ and one of the following conditions is satisfied

(1) m<nand k=0,

(2) m+1<mnand k =p" —2p™,

(3) m+2<n,p=2and k=2""1

(4) m+2<n,p=2and k=2""1—2mFL
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Proof. It is easy to check that (a,b, k) € D if the conditions given above are

satisfied.

Let a = p", where p is prime. Let (a,b,k) € D. Then bla so b = p™ and
m < n. By Proposition 1.16 we have (7,1, %) € D. Hence by Proposition
2.1 one of the above conditions is fullfiled. m

The following theorem characterizes finite monogenic algebras in EQ1
having r4(Q) = p™ for p prime.

THEOREM 2.3. Let Q be a finite monogenic algebra in EQL. Leta = r(Q),
b=7r.Q) and k = r.+(Q). Ifa = p"™, where p is prime then Q is isomorphic
to one of the following algebras in EQ1:

(1) U(Q0 ). m <

(2) ¥(Qp ), m+1<n

Qn—l

(3) W(Q%pn), m+2<n

2n71 72m+1

(4) ¥(Q3n om ), m+2 < n.
Proof. It is easy to check that the following algebras:
(1) Q% ), m < n

(2) U(Qh "), m+1<n

n—1

(3) \P(Q%n,Qm)a m + 2 S n

(4) W@ ") mt 2 <,

are in EQ1 by Theorems 1.11 and 1.3.

Let Q be a finite monogenic algebra in EQL. Let a = r1(Q), b = .(Q)
and k = r,1(Q). Then Q is equivalent to the algebra Qf;b using Theorem
1.12. By Theorem 1.8 we have (a,b,k) € D. Hence Q is isomorphic to one
of the above algebras by Proposition 2.2. =

3. Directly indecomposable algebras in EQ1

DEFINITION 3.1. An algebra Q is directly indecomposable if |Q| # 1 and
if Q= Q1 x Qg implies |Q;| =1 or |Qz| = 1.

The following proposition gives some conditions under which one finite
monogenic entropic quasigroup with quasi-identity is a homomorphic image
of another one. This proposition also serves as the technical help in proving
Theorem 3.3.
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PROPOSITION 3.2. [2, Proposition 2.3| Let (a,b, k), (a/,V/', k") € D. If

b/
ald’, bV, al <k:' — 5]{) ,

k
Yaplz, %2y Lar X Ly — Lo X Ly

then

is a homomorphism of QIZ: y onto Ql; b
The following theorem gives the conditions under which some algebras
in EQ1 are directly decomposable.
THEOREM 3.3. Let ai,a0,b1,b0 € Z, a1,a0,b1,b0 > 1, gcd(al,ag) =1,
bilar, bolag, (araz,biba,k) € D. If ki = (£)a, and ky = ({£)a, then
(a1,b1,k1), (az,b2, ko) € D and
Q = Ql X Q27

Q1 s equivalent to Q and Qs is

where Q is equivalent to QF

aijaz, bi1ba? al b1

equivalent to Q by
Proof. First we show that (a1,b1,k1) € D. It remains to prove that b |k;
and aq|2k; + %. We know that (ajaz, biba, k) € D hence
k2
biby’
b1ba|k and by |k, bo|k thus bﬂ% and by|k; since by|ay.

We have a1bs|ajas since ba|as. Then aqbs|2k + % by (3.1). Hence
k k2
by b1b2

Let%:ta1+rwher60§r<a1. Thenklzrzﬁ—tal and

(31) a1a2]2k:—|—

(3.2) a1]2

k2 (b——ta1)2
2k + 5L _2(——m)+2b7

1

— 9tay — Qtﬁal +tfa

hence a1|2k; —|— by (3.2). It ends the proof that (a1,b1, k1) € D
Simillarly (ag, ba, ka) € D.
Let h: Zayay X Ziypy — (Zay X Ly, ) X Zay X Zp, be a function such that
k k
Mz, y) = (Vay 5y (T2 Y)s Yooy (25 9))-
By Proposmon 3.2 ’ya b1 Zayaz X Zpyp, is a homomorphism of Q*

onto Qa1 by

Q’;;bQ Hence h is a homomorphism of Q¥

aiaz,b1b2

and ’ya2 by | Laras X Ziyb, is @ homomorphism of QF onto

aiaz,biba
ko
aiaz,bibs into Qa1 b1 Qa2,b2'
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We show that kerh ={(0,0)}. Let (z, y) € Zayay X Ly, and h(x,y) =
((07 0)7 (07 O)) then fyal b1 (I’ y) (0 0) and 7@2 bo (I’ y) (07 0)

Hence
(33) ailz+FE <%> (b1 + k1), bily, aslz+E (%) (b2 + k2),  baly

thus b1b2|y (since ged(by,b2) = 1) so y = 0. Therefore ai|x, az|x by (3.3).
Hence ajaz|x (since ged(ay,az) = 1) so x = 0. Thus kerk = {(0,0)} so h is
injective.

Moreover |Q| = |Q1 X Q2| = ajazbibs so h is an isomorphism. m

The following theorem says what is the additive rank of every directly
indecomposable algebra in EQL.

THEOREM 3.4. Let Q be a finite monogenic quasigroup in EQL with at least
two different elements. If Q is directly indecomposable then r(Q) = p",
where p is prime.

Proof. Let b = r*(Q) k= r*+(Q) and a = r(Q) # p", where p is prime.

Let a =p" -py?-...-p', b= pl1 . pl; -...-plr, where p; are different prime
numbers, m; > 0,...m, > 0 and [ > 0,...,[, > 0. We can assume that
mq >0 and mo >0 since a # p", where p is prime.

Let a3 —prlnl, ay =py? - pl b =p by =pF Pl k= (£)a,
and kg = ( )a2

By Theorem 3.3
Q = Ql X Q27

where Q7 is equivalent to Q ! by and Qs is equivalent to Qa by

Moreover a1 > 1 and as > 1 since m1 > 0 and mgy > 0 so Q7 and Qs are
nontrivial. Therefore Q is directly decomposable. m

The following two lemmas concerning entropic quasigroups with quasi-
identity can be proved similarly like for abelian groups.
LEMMA 3.5. Let Q € EQ1 be a finite quasigroup and |Q| > 1. Then Q is

directly decomposable if and only if there are B and C being subalgebras of
Q such that BN C = {0}, BUC generates Q, |B| > 1 and |C| > 1.

LEMMA 3.6. Let Q € EQ1 be a finite quasigroup and |Q| > 1. Then Q is
directly decomposable if and only if there are B and C being subalgebras of
Q such that BN C = {0}, |B|-|C|=|Q|, |B| > 1 and |C] > 1.

LEMMA 3.7. Let Q € EQ1 be a finite quasigroup. If there exists the bigest
nontrivial (# Q) subalgebra of Q, then Q is directly indecomposable.

Proof. Let A be the bigest nontrivial subalgebra of Q. Assume that Q is
directly decomposable. By Lemma 3.5 there are B and C being subalgebras
of @ such that BNC = {0}, BUC generates Q, |B| > 1 and |C| > 1. Since
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A is the bigest nontrivial subalgebra of Q, we have B C A and C C A hence
BUC C Aand Q C A a contradiction since A is nontrivial. Therefore Q is
directly indecomposable. u

LEMMA 3.8. If (2",2™ k) € D then 2lk.

Proof. If m > 0 then 2™|k so 2|k. Suppose that m = 0. If n = 0, then
k = 0 and 2|k. If n > 0 then 2|2" and 2"|2k + k? (since (2",2™ k) € D)
hence 2|k(k + 2) so 2|k. =

THEOREM 3.9. Let @ € EQ1 be a finite and monogenic quasiqroup,
r4(Q) =27, r(Q) = 2™ and n > 0 then Q is directly indecomposable.
Proof. By Theorem 1.12 ®(Q) = Q5. ym where k = 7., (Q). Hence Q =
T(Q5n om)-

Let A = {(z,y) € Zon X Zom: 2|x + y}. First we prove that A is a
subalgebra of an,Qm.

(1) If (z,y) € Athen (,9)* = Y5 om (y, ) = (y+E(55) (27 +k))2n, ()2m).
If m > 0 then (y + E(5%)(2™ + k))2n + (2)2m =2 y + 2 =2 0 by Lemma
3.8.

If m = 0 then (y + E(5%)(2™ + k))2n + (2)2m =2 y + (1 + k) =2 0 by
Lemma 3.8, so (z,y)* € A.

(2) Let (z,y) € A and (z,t) € A. Then (x,y) @lgnzm (z,t) = ’yé“n’Qm(:c +
5y +1) = ((z+2+ BE(5) (2" +K)an, (y + )am).

If m > 0 then (a:—l—z—l—E(%—ﬂ)@m—i—k))p+(y+t)2m = r+24+y+t =20
by Lemma 3.8.

If m=0theny=t=0and (z+ 2+ E(4) (2™ + k))on + (y + t)om =2
x+2=20s0 (x,y) @énygm (z,t) € A.

We show that A is the bigest nontrivial subalgebra of Qén,Qm. We prove
that if (2,y) € Q5 om \ A then (z,y) generates Q5n om.

Let (z,y) € Qé”ngm \ A. It is enough to show that there exist z1,29 € Z
such that z1(z,y) @gnzm zo(z,y)* = (1,0). Since (z,y) ¢ A we obtain
24z +yso ged(x +y,2") = 1, hence there are t, s € Z such that ¢(z 4+ y) +
s2" = 1. Similarly ged((z — y)2n,2™) = 1 and there are u,v € Z such that
u(z —y)an +v2" = 1. It is easy to check that

(—Uyt + u)(:c, y) @S”,2m (—uyt)(:c, y)* = (17 0)7
so (x,y) generates anzm.
Hence A is the bigest nontrivial subalgebra of Q§n72m. Therefore anzm

is directly indecomposable by Lemma 3.7. Thus @ is directly indecompos-
able. m
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Contrary to abelian groups there are monogenic entropic quasigroups
having an additve rank p™ (where p is prime) which are directly decompos-
able as we can see in the following theorem:

THEOREM 3.10. Let Q@ € EQ1 be a finite and monogenic quasigroup. If

ri(Q) =p", r(Q) = p™ and ry (Q) = p" — 2p™ where p # 2 is prime and

m > 0, then Q is directly decomposable.

Proof. It is sufficient to show that \P(an’p'm) = Q is directly decomposable.
Let B be the subalgebra of Q’;nvpm generated by (p™ — 1,1). Let C be

the subalgebra of Ql;n’p'ln generated by (1,1).

We show that 74 (1,1) = p™, r(1,1) =1, r.y(1,1) = 0.

Let us observe that

P, 1) = A (™, ™)
m
- ((m+ B0 =) 67 = 00
p pn
and
s(1,1) = yglffpipm(s,s)

- <<s - E(pim)(p” - pm))pn : (s)pm>
= ((8)pr, (s)pm) = (s,5) # (0,0)

for 0 < s < p™.
Moreover (1,1)* = (1,1). Hence r4(1,1) = p™, r(1,1) =1, rey (1,1) =
0 and |C| = p™ > 1 since m > 0. Thus

(3.4) C={(s,8) €ZxZ:0<s<p"}.
We prove that r4(p" —1,1) = p™ and r,(p" — 1,1) = 1.
We know that s = E(;%)p™ + (s)pm for s € Z. Hence

(3.5) B () == G

Let us notice that

T _9pm
prP" =1L 1) =g (p"P" =", 0")

_ <<p2" —p"+ E(ﬁ—;) (p" — pm))pn, (p")pm> =(0,0)
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and

(3.6) s(p" —1,1) = 45 (sp" — s, 5)

(ESP —8+E<p )(p”—pm)>pn,(8)pm>
() o)

(((8)pm = 2k)pn, (8)pm) 7 (0,0)

for 0 < s < p™ because if ((s)pm — 25)pn = (§)pm = 0 then p"|2s and then
p"|s for p # 2 but p™ { s for 0 < s < p" - a contradiction.
Let us observe that

2
(pn - 17 1) - 75",p7"p (Lpn - 1)

(e ), o),
(o), o )

(1= " = 1= " = D)), (" — D))
((2 + (p - 1)1)’")19"7 (pn - 1)19”)

= (0" = D)y — 2™ = 1))y, (0" = 1)pm)

.6)

= (P"-1p"-1,1).
The last equation follows from (3.6) for s = p™ — 1, hence r4 (p" —1,1) = p",
r«(p" —1,1) =1 and |B| = p" > 1 since n > m > 0.

Now we show that BN C = {(0,0)}.

Let z € BNC'. Then there exists 0 < s < p" such that z = s(p"—1,1) (29

(((s)pm —25)pn, (s)pm) € C hence ((s)pm —28)pn = (8)pm = ((8)pm )pn by(3.4)
and p"|(s)pm — (((8)pm — 2s) thus p™|2s therefore p”|s (since p # 2) there is
why s = 0 and = = (0,0).

Hence Q = \P(Q’;n’pm) is directly decomposable by Lemma 3.6. =

(3.5

—
w

THEOREM 3.11. Let Q@ € EQ1 be a finite and monogenic quasigroup. If
r+(Q) =p", r(Q) = p™ and r«y(Q) = 0 where p # 2 is prime and m > 0
then Q is directly decomposable.

Proof. It is sufficient to show that W(Qp. , W 2" = Q s directly decompos-
able.
Let B be the subalgebra of Qpn pm generated by (p" —1,1). Let C be

the subalgebra of Qpn’pm generated by (1,1).
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We show that ry(1,1) = p", r(1,1) =1, rey(1,1) = 0.

T
We know that s = E(;5)p™ + (s)pm for s € Z. Hence

(3.7) mE(p%) =5 — (8)pm.

3

Let us observe that

PM(L,1) = Ypn ym (p",0")
= (e (%)) ) =00

$(1,1) = Y0 ym (s, 5)

~((s+2()m) o)

(@5 = ()pm )y (9)pm) # (0,0)

and

for 0 < s < p™.

Since if (25 — (s)pm)pn = (s)pm = 0 then p"|2s thus p™|s (since p # 2)
but p" 1 s for 0 < s < p" - a contradiction.

Moreover (1,1)* = (1,1). Hence r4(1,1) = p", r(1,1) = 1, r,y (1,1) =0
and |C| = p™ > p™ > 1 since m > 0.

We prove that r(p™ —1,1) = p™ and r.(p" — 1,1) = 1.

Let us notice that

PP = 1,1) =y (PP — p™, ™)
m__ M m pm m m
= <<p pr—p +E(—mp ) . (p )pm> = (0,0)
p p"
and

(3.8) s(p" = 1,1) = ypn ym (sp" — 5,5)
(), o0

for 0 < s < p™.
Let us observe that

(39) (pn - 17 1)* = ’andjm(l,pn - ]')

(el )
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(15" = 1= (0" = D)y, (57 = D)

=" = @" = pm, (p" — L)pm)

(3.8)
= (P" = Dpn (P" = 1, 1).
Hence r4(p" — 1,1) = p™, r(p" — 1,1) = 1 and |B| = p™ > 1 since m > 0.
Thus
(3.10) B={(p"—s,s) €ZxZ:1<s<pmtU{0,0)}.
Now we show that BN C = {(0,0)}.
Let x € BN C. Then there exists 0 < s < p™ such that

2 =0 (5,8) = (s + E(fmw)pm (s)pm) € B

(s 2(2)m) o

p"ls + E<pim>pm + (8)pm = 2s

therefore p™|s (since p # 2) there is why s = 0 and x = (0, 0).
Therefore \I/(Q’;nmm) is directly decomposable by Lemma 3.6. Hence
Q= @(ngn,pm) is directly decomposable. m
THEOREM 3.12. Let Q € EQ1 be a finite and monogenic quasiqroup. Then
Q s directly indecomposable if and only if one of the following contidions are
satisfied:
(1) 74(Q) =2" and n > 0,
(2) 7+(Q) =p", r(Q) =1 and ry(Q) = 0, where p is prime and n > 0,
(3) r1(Q) = p", r«(Q) = 1 and r(Q) = p™ — 2, where p is prime and
n > 0.

hence

by 3.10 and

Proof. Let @ € EQ1 be a finite and monogenic quasiqroup and suppose
that Q is directly indecomposable. By Theorem 3.4 r,(Q) = p™ where p is
prime and n > 0. If p = 2 then we obtain the casel.

Suppose that p # 2.

Using Theorem 2.3 @ is isomorphic to one of the following algebras in
EQ1:

(1) I( 2n7pm), m < n,
(2) QL ), m+1<n
If Q is isomorphic to ¥(Qpn ,m) and m > 0 then by Theorem 3.11 Q is
directly decomposable - a contradiction. Hence m = 0 and we obtain the
case 2.
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If Q is isomorphic to W(ng;gnpm) and m > 0 then by Theorem 3.10 Q
is directly decomposable - a contradiction. Thus m = 0 and we obtain the
case 3.

Let Q € EQ1 be a finite and monogenic quasiqroup and suppose that
one of the following contidions are satisfied:

(1) 74(Q) =2" and n > 0,

(2) 74(Q) = p", r(Q) = 1 and 7.4 (Q) = 0, where p is prime and n > 0,

(3) r4(Q) =p", r(Q) =1 and 7,4 (Q) = p" — 2, where p is prime and
n > 0.

In the case 1 by Theorem 3.9 Q is directly indecomposable.

In the case 2 @ = U(QV. ;) and ¥(Q). ;) has the bigest nontrivial sub-
algebra generated by (p,0), so by Lemma 3.7 Q is directly indecomposable.

In the case 3 Q = \I/(Qg,if) and W( ZZEQ) has the bigest nontrivial sub-
algebra generated by (p,0), so by Lemma 3.7 Q is directly indecomposable. =
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