

G. Bińczak, J. Kaleta

**FINITE DIRECTLY INDECOMPOSABLE
MONOGENIC ENTROPIC
QUASIGROUPS WITH QUASI-IDENTITY**

Abstract. In this paper we characterize finite directly indecomposable monogenic entropic quasigroups with quasi-identity.

1. Introduction

This paper consists of three parts.

In the first part we recall some definitions and propositions from [1] and [2] and describe the set of ordered triples beeing the ranks of finite monogenic algebras in EQ1.

In the second part we characterize finite monogenic algebras in EQ1 having $r_+(\mathcal{Q}) = p^n$ for p prime.

In the third part we characterize finite monogenic algebras in EQ1 which are directly indecomposable. First, we prove that if \mathcal{Q} is a nontrivial finite directly indecomposable monogenic entropic quasigroups with quasi-identity then $r_+(\mathcal{Q}) = p^n$, where p is prime. Then, we show that if a finite monogenic algebra in EQ1 has the additive rank of the form 2^n , where $n > 0$, then it is directly indecomposable. Next, we show that if a finite monogenic algebra in EQ1 has the additive rank of the form p^n , where $p \neq 2$ is prime and the rank r_* of the form p^m , where $m > 0$ then it is directly decomposable. Finally, we describe which finite monogenic algebras in EQ1 are directly indecomposable.

DEFINITION 1.1. An algebra $(G, +, -, 0, *)$ is *an abelian group with involution* if:

(1) the reduct $(G, +, -, 0)$ is an abelian group,

2000 *Mathematics Subject Classification*: 20N05.

Key words and phrases: quasigroups, entropic quasigroups, abelian groups, involution.

Research supported by the Warsaw University of Technology under grant number 504G/1120/0054/000.

(2) it satisfies the following identities:

$$0^* = 0, \quad a^{**} = a, \quad (a + b)^* = a^* + b^*.$$

We denote the variety of all abelian groups with involution by AGI .

DEFINITION 1.2. An algebra $(Q, \cdot, /, \setminus, 1)$ is an *entropic quasigroup with quasi-identity* if it satisfies the following identities:

- (1) $a \cdot (a \setminus b) = b, (b/a) \cdot a = b,$
- (2) $a \setminus (a \cdot b) = b, (b \cdot a)/a = b,$
- (3) $(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d),$
- (4) $a \cdot 1 = a, 1 \cdot (1 \cdot a) = a.$

Note that the identities (1), (2) and (3) define entropic quasigroups, whereas the identities (4) define the quasi-identity. We denote the variety of all entropic quasigroups with quasi-identity by $EQ1$.

More information concerning entropic quasigroups may be found in [3] and [5]. In the paper [1], it is proved that abelian groups with involution are equivalent to entropic quasigroups with quasi-identity.

THEOREM 1.3. [1, Theorem 3] *If $\mathcal{G} = (G, +, -, 0, ^*)$ is an abelian group with involution, then $\Psi(\mathcal{G}) = (G, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity, where $a \cdot b := a + (b^*), a \setminus b := b^* + (-a^*), a/b := a + (-b^*), 1 := 0$.*

THEOREM 1.4. [1, Theorem 4] *If $\mathcal{Q} = (Q, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity, then $\Phi(\mathcal{Q}) = (Q, +, -, 0, ^*)$ is an abelian group with involution, where $a + b := a \cdot (1 \cdot b), (-a) := 1/(1 \cdot a), 0 := 1, a^* := 1 \cdot a$.*

THEOREM 1.5. [1, Theorem 5] *If $\mathcal{Q} = (Q, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity then $\Psi(\Phi(\mathcal{Q})) = \mathcal{Q}$.*

THEOREM 1.6. [1, Theorem 6] *If $\mathcal{G} = (G, +, -, 0, ^*)$ is an abelian group with involution then $\Phi(\Psi(\mathcal{G})) = \mathcal{G}$.*

DEFINITION 1.7. One-generated entropic quasigroups with quasi-identity are called *monogenic*.

Let $\mathcal{Q} = (Q, \cdot, /, \setminus, 1)$ be a monogenic entropic quasigroup with quasi-identity. Let $Q = \langle x \rangle$ and let $\Phi(\mathcal{Q}) = (Q, +, -, 0, ^*)$ be the abelian group with involution equivalent to $(Q, \cdot, /, \setminus, 1)$.

We define three types of *rank* of the generator x :

$$r_+(x) = \min \{n \in \mathbb{N} \mid nx = 0, n \geq 1\}, \quad (\text{additive rank})$$

$$r_*(x) = \min \{n \in \mathbb{N} \mid n \geq 1, \exists_{k \in \mathbb{Z}} nx^* = kx\},$$

$$r_{*+}(x) = \min \{n \in \mathbb{N} \mid r_*(x)x^* = (r_*(x) + n)x\}.$$

Note that $r_+(x)$ is the usual rank of x in an abelian group.

Then we define

$$r_+(\mathcal{Q}) = r_+(x), \quad r_*(\mathcal{Q}) = r_*(x), \quad r_{*+}(\mathcal{Q}) = r_{*+}(x).$$

This definition does not depend on the choice of the generator x (see [1]).

THEOREM 1.8. [1, Theorem 8] *If $\mathcal{Q} = (Q, \cdot, /, \backslash, 1)$ is a finite monogenic entropic quasigroup with quasi-identity, then the following hold:*

- (1) $r_*(\mathcal{Q})|r_+(\mathcal{Q})$,
- (2) $r_*(\mathcal{Q})|r_{*+}(\mathcal{Q})$,
- (3) $0 \leq r_{*+}(\mathcal{Q}) < r_+(\mathcal{Q})$,
- (4) $r_+(\mathcal{Q})|2r_{*+}(\mathcal{Q}) + \frac{r_{*+}(\mathcal{Q})^2}{r_*(\mathcal{Q})}$.

Note that in [1] monogenic quasigroups were called cyclic.

We denote the integer part of a by $E(a)$, whereas $(a)_b$ denotes the remainder obtained after dividing a by b .

DEFINITION 1.9. Let $a, b, k \in \mathbb{N}$ and $a, b \geq 1$. Let $\gamma_{a,b}^k : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a mapping such that

$$\gamma_{a,b}^k(x, y) = ((x + E\left(\frac{y}{b}\right)(b + k))_a, (y)_b)$$

and let

$$(x, y) \oplus_{a,b}^k (z, t) = \gamma_{a,b}^k(x + z, y + t).$$

Let $T : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a function such that $T(x, y) = (y, x)$.

DEFINITION 1.10. Let $a, b, k \in \mathbb{Z}$ and $a \geq 1, b \geq 1, k \geq 0$. Define

$$Q_{a,b}^k = \left(\mathbb{Z}_a \times \mathbb{Z}_b, \oplus_{a,b}^k, \ominus_{a,b}^k, (0, 0), * \right),$$

where $\ominus_{a,b}^k(x, y) = \gamma_{a,b}^k(-x, -y)$ and $(x, y)^* = \gamma_{a,b}^k(y, x)$.

THEOREM 1.11. [1, Theorem 10] *Let $a, b, k \in \mathbb{Z}$ with $a \geq 1, b \geq 1, k \geq 0$ and $b|a, b|k, 0 \leq k < a, a|(2k + \frac{k^2}{b})$. Then $Q_{a,b}^k$ is an abelian group with involution.*

THEOREM 1.12. [1, Theorem 11] *Let $\mathcal{Q} = (Q, \cdot, /, \backslash, 1)$ be a finite cyclic entropic quasigroup with quasi-identity and $a = r_+(\mathcal{Q}), b = r_*(\mathcal{Q}), k = r_{*+}(\mathcal{Q})$. Then $\Phi(\mathcal{Q}) \cong Q_{a,b}^k$.*

PROPOSITION 1.13. [2, Proposition 1.12] *Let \mathcal{Q} be a finite monogenic algebra in EQ1 such that $\Phi(\mathcal{Q}) = Q_{a,b}^k$. Then $a = r_+(\mathcal{Q}), b = r_*(\mathcal{Q}), (k)_a = r_{*+}(\mathcal{Q})$.*

We define the set D . As we will see in a moment, it is the set of ordered triples beeing the ranks of finite monogenic algebras in EQ1.

DEFINITION 1.14. Let $D = \{(a, b, k) \in \mathbb{Z}^3 : a \geq 1, b \geq 1, 0 \leq k < a, b|a, b|k, a|(2k + \frac{k^2}{b})\}$.

THEOREM 1.15. $D = \{(a, b, k) \in \mathbb{Z}^3 : \text{there exists finite monogenic } \mathcal{Q} \text{ in EQ1 such that } a = r_+(\mathcal{Q}), b = r_*(\mathcal{Q}) \text{ and } k = r_{*+}(\mathcal{Q})\}.$

Proof. If there exists finite monogenic \mathcal{Q} in EQ1 such that $a = r_+(\mathcal{Q})$, $b = r_*(\mathcal{Q})$ and $k = r_{*+}(\mathcal{Q})$ then $(a, b, k) \in D$ by Theorem 1.8.

If $(a, b, k) \in D$ then $Q_{a,b}^k$ is an abelian group with involution by Theorem 1.11. Then the algebra $\mathcal{Q} = \Psi(Q_{a,b}^k)$ is a finite monogenic quasigroup in EQ1 by Theorem 1.3. By Theorem 1.6 we have $\Phi(\mathcal{Q}) = Q_{a,b}^k$ therefore according to Proposition 1.13 $r_+(\mathcal{Q}) = a$, $r_*(\mathcal{Q}) = b$, $r_{*+}(\mathcal{Q}) = (k)_a = k$ (since $0 \leq k < a$). ■

PROPOSITION 1.16. *If $(a, b, k) \in D$ then $(\frac{a}{b}, 1, \frac{k}{b}) \in D$.*

Proof. Let $(a, b, k) \in D$. It is obvious that $0 \leq \frac{k}{b} < \frac{a}{b}$. We show that

$$(1.1) \quad \frac{a}{b} \mid \left(2 \frac{k}{b} + \frac{(\frac{k}{b})^2}{1} \right).$$

We know that $a \mid (2k + \frac{k^2}{b})$, $b \mid a$ and $b \mid k$. Hence

$$\frac{a}{b} \mid \left(2 \frac{k}{b} + \frac{k^2}{b^2} \right)$$

and (1.1) is satisfied. ■

2. Algebras in EQ1 having $r_+(\mathcal{Q}) = p^n$

PROPOSITION 2.1. *Let $b = 1$ and $a = p^n$, where p is prime. Then $(a, b, k) \in D$ if and only if one of the following conditions is satisfied*

- (1) $k = 0$,
- (2) $k = p^n - 2$ and $n \geq 1$,
- (3) $p = 2$, $k = 2^{n-1}$ and $n \geq 2$,
- (4) $p = 2$, $k = 2^{n-1} - 2$ and $n \geq 2$.

Proof. It is easy to check that $(a, b, k) \in D$ if the conditions given above are fullfilled.

Let $b = 1$ and $a = p^n$, where p is prime. Let $(a, b, k) \in D$. Then

$$(2.1) \quad a = p^n \mid (2k + k^2) = k(k + 2), \quad 0 \leq k < p^n.$$

Suppose that $k \neq 0$ then

$$(2.2) \quad k = p^l \cdot x, \quad k + 2 = p^m \cdot y,$$

where $p \nmid x$ and $p \nmid y$. We know that $(a, b, k) \in D$, so $p^l \cdot x = k < a = p^n$ hence

$$(2.3) \quad l < n.$$

Moreover $2k + k^2 = k(k + 2) = p^{l+m}xy$ and $p \nmid xy$ (since p is prime). Thus

$$(2.4) \quad n \leq l + m$$

by (2.1).

We have $l < n \leq l + m$ by (2.3) and (2.4). It follows that $0 < m$ and

$$(2.5) \quad p|k + 2$$

by (2.2).

We first show that

$$(2.6) \quad p \nmid k \Rightarrow k = p^n - 2.$$

If $p \nmid k$ then $p^n|k + 2$ (by (2.1)) thus $p^n \leq k + 2$ hence $p^n = k + 2$ or $p^n = k + 1$ using (2.1). If $p^n = k + 1$ then $k + 1|k + 2$ and $k = 0$ - a contradiction. Therefore $p^n = k + 2$ so $k = p^n - 2$ and $n \geq 1$ by (2.3). So we obtain the case 2.

Suppose that $p|k$. By (2.5) we have $p|k + 2$ hence $p = 2$ and $l \geq 1$ by (2.2).

If $n = 1$ then $2|2k + k^2$ and $0 \leq k < 2$ thus $k = 0$ - a contradiction. Hence $n \geq 2$. Moreover

$$(2.7) \quad k + 2 = 2^l x + 2 = 2(2^{l-1}x + 1)$$

by (2.2).

Consider the following cases:

- (1) $l > 1$. Then $l - 1 > 0$ and $2 \nmid 2^{l-1}x + 1$. By (2.1) and (2.7) we have $2^n|k(k + 2) = 2^l x 2(2^{l-1}x + 1)$ hence $n \leq l + 1$. So $n = l + 1$ by (2.3). Therefore $l = n - 1$, $k = 2^{n-1}x < 2^n$ by (2.1). It means that $x = 1$ and $k = 2^{n-1}$. So we obtain the case 3.
- (2) $l = 1$. Then $k = 2x$, $k + 2 = 2x + 2 = 2(x + 1)$ and $2^n|k(k + 2) = 4x(x + 1)$ by (2.1). Hence $2^{n-2}|x(x + 1)$ and $2^{n-2}|x + 1$ since $2 \nmid x$. Let

$$(2.8) \quad x + 1 = 2^{n-2}z.$$

Moreover $2(x + 1) = k + 2 < 2^n + 2 = 2(2^{n-1} + 1)$ by (2.1). Thus $x + 1 < 2^{n-1} + 1$ and $x + 1 \leq 2^{n-1}$ so $x + 1 = 2^{n-2}$ or $x + 1 = 2^{n-2}2$ by (2.8). If $x + 1 = 2^{n-2}$ then $x = 2^{n-2} - 1$ and $k = 2x = 2^{n-1} - 2$. So we obtain the case 4. If $x + 1 = 2^{n-2}2$ then $x = 2^{n-1} - 1$ and $k = 2x = 2^n - 2$. So we obtain the case 2. ■

PROPOSITION 2.2. *Let $a = p^n$, where p is prime. Then $(a, b, k) \in D$ if and only if $b = p^m$ and one of the following conditions is satisfied*

- (1) $m \leq n$ and $k = 0$,
- (2) $m + 1 \leq n$ and $k = p^n - 2p^m$,
- (3) $m + 2 \leq n$, $p = 2$ and $k = 2^{n-1}$,
- (4) $m + 2 \leq n$, $p = 2$ and $k = 2^{n-1} - 2^{m+1}$.

Proof. It is easy to check that $(a, b, k) \in D$ if the conditions given above are satisfied.

Let $a = p^n$, where p is prime. Let $(a, b, k) \in D$. Then $b|a$ so $b = p^m$ and $m \leq n$. By Proposition 1.16 we have $(\frac{a}{b}, 1, \frac{k}{b}) \in D$. Hence by Proposition 2.1 one of the above conditions is fullfilled. ■

The following theorem characterizes finite monogenic algebras in EQ1 having $r_+(\mathcal{Q}) = p^n$ for p prime.

THEOREM 2.3. *Let \mathcal{Q} be a finite monogenic algebra in EQ1. Let $a = r_+(\mathcal{Q})$, $b = r_*(\mathcal{Q})$ and $k = r_{*+}(\mathcal{Q})$. If $a = p^n$, where p is prime then \mathcal{Q} is isomorphic to one of the following algebras in EQ1:*

- (1) $\Psi(Q_{p^n, p^m}^0)$, $m \leq n$
- (2) $\Psi(Q_{p^n, p^m}^{p^n - 2p^m})$, $m + 1 \leq n$
- (3) $\Psi(Q_{2^n, 2^m}^{2^n - 1})$, $m + 2 \leq n$
- (4) $\Psi(Q_{2^n, 2^m}^{2^n - 1 - 2^{m+1}})$, $m + 2 \leq n$.

Proof. It is easy to check that the following algebras:

- (1) $\Psi(Q_{p^n, p^m}^0)$, $m \leq n$
- (2) $\Psi(Q_{p^n, p^m}^{p^n - 2p^m})$, $m + 1 \leq n$
- (3) $\Psi(Q_{2^n, 2^m}^{2^n - 1})$, $m + 2 \leq n$
- (4) $\Psi(Q_{2^n, 2^m}^{2^n - 1 - 2^{m+1}})$, $m + 2 \leq n$.

are in EQ1 by Theorems 1.11 and 1.3.

Let \mathcal{Q} be a finite monogenic algebra in EQ1. Let $a = r_+(\mathcal{Q})$, $b = r_*(\mathcal{Q})$ and $k = r_{*+}(\mathcal{Q})$. Then \mathcal{Q} is equivalent to the algebra $Q_{a,b}^k$ using Theorem 1.12. By Theorem 1.8 we have $(a, b, k) \in D$. Hence \mathcal{Q} is isomorphic to one of the above algebras by Proposition 2.2. ■

3. Directly indecomposable algebras in EQ1

DEFINITION 3.1. An algebra \mathcal{Q} is directly indecomposable if $|\mathcal{Q}| \neq 1$ and if $\mathcal{Q} = \mathcal{Q}_1 \times \mathcal{Q}_2$ implies $|\mathcal{Q}_1| = 1$ or $|\mathcal{Q}_2| = 1$.

The following proposition gives some conditions under which one finite monogenic entropic quasigroup with quasi-identity is a homomorphic image of another one. This proposition also serves as the technical help in proving Theorem 3.3.

PROPOSITION 3.2. [2, Proposition 2.3] Let $(a, b, k), (a', b', k') \in D$. If

$$a|a', \quad b|b', \quad a| \left(k' - \frac{b'}{b} k \right),$$

then

$$\gamma_{a,b}^k|_{\mathbb{Z}_{a'} \times \mathbb{Z}_{b'}}: \mathbb{Z}_{a'} \times \mathbb{Z}_{b'} \rightarrow \mathbb{Z}_a \times \mathbb{Z}_b$$

is a homomorphism of $Q_{a',b'}^{k'}$ onto $Q_{a,b}^k$.

The following theorem gives the conditions under which some algebras in EQ1 are directly decomposable.

THEOREM 3.3. Let $a_1, a_2, b_1, b_2 \in \mathbb{Z}$, $a_1, a_2, b_1, b_2 \geq 1$, $\gcd(a_1, a_2) = 1$, $b_1|a_1$, $b_2|a_2$, $(a_1 a_2, b_1 b_2, k) \in D$. If $k_1 = (\frac{k}{b_2})_{a_1}$ and $k_2 = (\frac{k}{b_1})_{a_2}$ then $(a_1, b_1, k_1), (a_2, b_2, k_2) \in D$ and

$$\mathcal{Q} \cong \mathcal{Q}_1 \times \mathcal{Q}_2,$$

where \mathcal{Q} is equivalent to $Q_{a_1 a_2, b_1 b_2}^k$, \mathcal{Q}_1 is equivalent to $Q_{a_1, b_1}^{k_1}$ and \mathcal{Q}_2 is equivalent to $Q_{a_2, b_2}^{k_2}$.

Proof. First we show that $(a_1, b_1, k_1) \in D$. It remains to prove that $b_1|k_1$ and $a_1|2k_1 + \frac{k^2}{b_1}$. We know that $(a_1 a_2, b_1 b_2, k) \in D$ hence

$$(3.1) \quad a_1 a_2 | 2k + \frac{k^2}{b_1 b_2},$$

$b_1 b_2 | k$ and $b_1 | k$, $b_2 | k$ thus $b_1 | \frac{k}{b_2}$ and $b_1 | k_1$ since $b_1 | a_1$.

We have $a_1 b_2 | a_1 a_2$ since $b_2 | a_2$. Then $a_1 b_2 | 2k + \frac{k^2}{b_1 b_2}$ by (3.1). Hence

$$(3.2) \quad a_1 | 2 \frac{k}{b_2} + \frac{k^2}{b_1 b_2^2}.$$

Let $\frac{k}{b_2} = ta_1 + r$ where $0 \leq r < a_1$. Then $k_1 = r = \frac{k}{b_2} - ta_1$ and

$$\begin{aligned} 2k_1 + \frac{k^2}{b_1} &= 2 \left(\frac{k}{b_2} - ta_1 \right) + \frac{\left(\frac{k}{b_2} - ta_1 \right)^2}{b_1} \\ &= 2 \frac{k}{b_2} + \frac{k^2}{b_1 b_2^2} - 2ta_1 - 2t \frac{k}{b_1 b_2} a_1 + t \frac{a_1}{b_1} a_1 \end{aligned}$$

hence $a_1 | 2k_1 + \frac{k^2}{b_1}$ by (3.2). It ends the proof that $(a_1, b_1, k_1) \in D$.

Simillarly $(a_2, b_2, k_2) \in D$.

Let $h: \mathbb{Z}_{a_1 a_2} \times \mathbb{Z}_{b_1 b_2} \rightarrow (\mathbb{Z}_{a_1} \times \mathbb{Z}_{b_1}) \times \mathbb{Z}_{a_2} \times \mathbb{Z}_{b_2}$ be a function such that

$$h(x, y) = (\gamma_{a_1, b_1}^{k_1}(x, y), \gamma_{a_2, b_2}^{k_2}(x, y)).$$

By Proposition 3.2 $\gamma_{a_1, b_1}^{k_1}|_{\mathbb{Z}_{a_1 a_2} \times \mathbb{Z}_{b_1 b_2}}$ is a homomorphism of $Q_{a_1 a_2, b_1 b_2}^k$ onto $Q_{a_1, b_1}^{k_1}$ and $\gamma_{a_2, b_2}^{k_2}|_{\mathbb{Z}_{a_1 a_2} \times \mathbb{Z}_{b_1 b_2}}$ is a homomorphism of $Q_{a_1 a_2, b_1 b_2}^k$ onto $Q_{a_2, b_2}^{k_2}$. Hence h is a homomorphism of $Q_{a_1 a_2, b_1 b_2}^k$ into $Q_{a_1, b_1}^{k_1} \times Q_{a_2, b_2}^{k_2}$.

We show that $\ker h = \{(0, 0)\}$. Let $(x, y) \in \mathbb{Z}_{a_1 a_2} \times \mathbb{Z}_{b_1 b_2}$ and $h(x, y) = ((0, 0), (0, 0))$ then $\gamma_{a_1, b_1}^{k_1}(x, y) = (0, 0)$ and $\gamma_{a_2, b_2}^{k_2}(x, y) = (0, 0)$.

Hence

$$(3.3) \quad a_1|x + E\left(\frac{y}{b_1}\right)(b_1 + k_1), \quad b_1|y, \quad a_2|x + E\left(\frac{y}{b_2}\right)(b_2 + k_2), \quad b_2|y$$

thus $b_1 b_2|y$ (since $\gcd(b_1, b_2) = 1$) so $y = 0$. Therefore $a_1|x$, $a_2|x$ by (3.3). Hence $a_1 a_2|x$ (since $\gcd(a_1, a_2) = 1$) so $x = 0$. Thus $\ker h = \{(0, 0)\}$ so h is injective.

Moreover $|\mathcal{Q}| = |\mathcal{Q}_1 \times \mathcal{Q}_2| = a_1 a_2 b_1 b_2$ so h is an isomorphism. ■

The following theorem says what is the additive rank of every directly indecomposable algebra in EQ1.

THEOREM 3.4. *Let \mathcal{Q} be a finite monogenic quasigroup in EQ1 with at least two different elements. If \mathcal{Q} is directly indecomposable then $r_+(\mathcal{Q}) = p^n$, where p is prime.*

Proof. Let $b = r_*(\mathcal{Q})$, $k = r_{*+}(\mathcal{Q})$ and $a = r_+(\mathcal{Q}) \neq p^n$, where p is prime. Let $a = p_1^{m_1} \cdot p_2^{m_2} \cdots \cdot p_r^{m_r}$, $b = p_1^{l_1} \cdot p_2^{l_2} \cdots \cdot p_r^{l_r}$, where p_i are different prime numbers, $m_1 \geq 0, \dots, m_r \geq 0$ and $l_1 \geq 0, \dots, l_r \geq 0$. We can assume that $m_1 > 0$ and $m_2 > 0$ since $a \neq p^n$, where p is prime.

Let $a_1 = p_1^{m_1}$, $a_2 = p_2^{m_2} \cdots \cdot p_r^{m_r}$, $b_1 = p_1^{l_1}$, $b_2 = p_2^{l_2} \cdots \cdot p_r^{l_r}$, $k_1 = (\frac{k}{b_2})a_1$ and $k_2 = (\frac{k}{b_1})a_2$.

By Theorem 3.3

$$\mathcal{Q} \cong \mathcal{Q}_1 \times \mathcal{Q}_2,$$

where \mathcal{Q}_1 is equivalent to $Q_{a_1, b_1}^{k_1}$ and \mathcal{Q}_2 is equivalent to $Q_{a_2, b_2}^{k_2}$.

Moreover $a_1 > 1$ and $a_2 > 1$ since $m_1 > 0$ and $m_2 > 0$ so \mathcal{Q}_1 and \mathcal{Q}_2 are nontrivial. Therefore \mathcal{Q} is directly decomposable. ■

The following two lemmas concerning entropic quasigroups with quasi-identity can be proved similarly like for abelian groups.

LEMMA 3.5. *Let $\mathcal{Q} \in \text{EQ1}$ be a finite quasigroup and $|\mathcal{Q}| > 1$. Then \mathcal{Q} is directly decomposable if and only if there are B and C being subalgebras of \mathcal{Q} such that $B \cap C = \{0\}$, $B \cup C$ generates \mathcal{Q} , $|B| > 1$ and $|C| > 1$.*

LEMMA 3.6. *Let $\mathcal{Q} \in \text{EQ1}$ be a finite quasigroup and $|\mathcal{Q}| > 1$. Then \mathcal{Q} is directly decomposable if and only if there are B and C being subalgebras of \mathcal{Q} such that $B \cap C = \{0\}$, $|B| \cdot |C| = |\mathcal{Q}|$, $|B| > 1$ and $|C| > 1$.*

LEMMA 3.7. *Let $\mathcal{Q} \in \text{EQ1}$ be a finite quasigroup. If there exists the biggest nontrivial ($\neq \mathcal{Q}$) subalgebra of \mathcal{Q} , then \mathcal{Q} is directly indecomposable.*

Proof. Let A be the biggest nontrivial subalgebra of \mathcal{Q} . Assume that \mathcal{Q} is directly decomposable. By Lemma 3.5 there are B and C being subalgebras of \mathcal{Q} such that $B \cap C = \{0\}$, $B \cup C$ generates \mathcal{Q} , $|B| > 1$ and $|C| > 1$. Since

A is the biggest nontrivial subalgebra of \mathcal{Q} , we have $B \subseteq A$ and $C \subseteq A$ hence $B \cup C \subseteq A$ and $Q \subseteq A$ a contradiction since A is nontrivial. Therefore \mathcal{Q} is directly indecomposable. ■

LEMMA 3.8. *If $(2^n, 2^m, k) \in D$ then $2|k$.*

Proof. If $m > 0$ then $2^m|k$ so $2|k$. Suppose that $m = 0$. If $n = 0$, then $k = 0$ and $2|k$. If $n > 0$ then $2|2^n$ and $2^n|2k + k^2$ (since $(2^n, 2^m, k) \in D$) hence $2|k(k + 2)$ so $2|k$. ■

THEOREM 3.9. *Let $\mathcal{Q} \in \text{EQ1}$ be a finite and monogenic quasigroup, $r_+(\mathcal{Q}) = 2^n$, $r_*(\mathcal{Q}) = 2^m$ and $n > 0$ then \mathcal{Q} is directly indecomposable.*

Proof. By Theorem 1.12 $\Phi(\mathcal{Q}) \cong Q_{2^n, 2^m}^k$ where $k = r_{*+}(\mathcal{Q})$. Hence $\mathcal{Q} \cong \Psi(Q_{2^n, 2^m}^k)$.

Let $A = \{(x, y) \in \mathbb{Z}_{2^n} \times \mathbb{Z}_{2^m} : 2|x + y\}$. First we prove that A is a subalgebra of $Q_{2^n, 2^m}^k$.

- (1) If $(x, y) \in A$ then $(x, y)^* = \gamma_{2^n, 2^m}^k(y, x) = ((y + E(\frac{x}{2^m})(2^m + k))_{2^n}, (x)_{2^m})$.
If $m > 0$ then $(y + E(\frac{x}{2^m})(2^m + k))_{2^n} + (x)_{2^m} \equiv_2 y + x \equiv_2 0$ by Lemma 3.8.
If $m = 0$ then $(y + E(\frac{x}{2^m})(2^m + k))_{2^n} + (x)_{2^m} \equiv_2 y + x(1 + k) \equiv_2 0$ by Lemma 3.8, so $(x, y)^* \in A$.
- (2) Let $(x, y) \in A$ and $(z, t) \in A$. Then $(x, y) \oplus_{2^n, 2^m}^k (z, t) = \gamma_{2^n, 2^m}^k(x + z, y + t) = ((x + z + E(\frac{y+t}{2^m})(2^m + k))_{2^n}, (y + t)_{2^m})$.
If $m > 0$ then $(x + z + E(\frac{y+t}{2^m})(2^m + k))_{2^n} + (y + t)_{2^m} \equiv_2 x + z + y + t \equiv_2 0$ by Lemma 3.8.
If $m = 0$ then $y = t = 0$ and $(x + z + E(\frac{y+t}{2^m})(2^m + k))_{2^n} + (y + t)_{2^m} \equiv_2 x + z \equiv_2 0$ so $(x, y) \oplus_{2^n, 2^m}^k (z, t) \in A$.

We show that A is the biggest nontrivial subalgebra of $Q_{2^n, 2^m}^k$. We prove that if $(x, y) \in Q_{2^n, 2^m}^k \setminus A$ then (x, y) generates $Q_{2^n, 2^m}^k$.

Let $(x, y) \in Q_{2^n, 2^m}^k \setminus A$. It is enough to show that there exist $z_1, z_2 \in \mathbb{Z}$ such that $z_1(x, y) \oplus_{2^n, 2^m}^k z_2(x, y)^* = (1, 0)$. Since $(x, y) \notin A$ we obtain $2 \nmid x + y$ so $\gcd(x + y, 2^n) = 1$, hence there are $t, s \in \mathbb{Z}$ such that $t(x + y) + s2^n = 1$. Similarly $\gcd((x - y)_{2^n}, 2^n) = 1$ and there are $u, v \in \mathbb{Z}$ such that $u(x - y)_{2^n} + v2^n = 1$. It is easy to check that

$$(-uyt + u)(x, y) \oplus_{2^n, 2^m}^k (-uyt)(x, y)^* = (1, 0),$$

so (x, y) generates $Q_{2^n, 2^m}^k$.

Hence A is the biggest nontrivial subalgebra of $Q_{2^n, 2^m}^k$. Therefore $Q_{2^n, 2^m}^k$ is directly indecomposable by Lemma 3.7. Thus \mathcal{Q} is directly indecomposable. ■

Contrary to abelian groups there are monogenic entropic quasigroups having an additive rank p^n (where p is prime) which are directly decomposable as we can see in the following theorem:

THEOREM 3.10. *Let $\mathcal{Q} \in \text{EQ1}$ be a finite and monogenic quasigroup. If $r_+(\mathcal{Q}) = p^n$, $r_*(\mathcal{Q}) = p^m$ and $r_{*+}(\mathcal{Q}) = p^n - 2p^m$ where $p \neq 2$ is prime and $m > 0$, then \mathcal{Q} is directly decomposable.*

Proof. It is sufficient to show that $\Psi(Q_{p^n, p^m}^0) \cong \mathcal{Q}$ is directly decomposable.

Let B be the subalgebra of Q_{p^n, p^m}^k generated by $(p^n - 1, 1)$. Let C be the subalgebra of Q_{p^n, p^m}^k generated by $(1, 1)$.

We show that $r_+(1, 1) = p^m$, $r_*(1, 1) = 1$, $r_{*+}(1, 1) = 0$.

Let us observe that

$$\begin{aligned} p^m(1, 1) &= \gamma_{p^n, p^m}^{p^n - 2p^m}(p^m, p^m) \\ &= \left(\left(p^m + E\left(\frac{p^m}{p^m}\right)(p^n - p^m) \right)_{p^n}, (p^m)_{p^m} \right) = (0, 0) \end{aligned}$$

and

$$\begin{aligned} s(1, 1) &= \gamma_{p^n, p^m}^{p^n - 2p^m}(s, s) \\ &= \left(\left(s + E\left(\frac{k}{p^m}\right)(p^n - p^m) \right)_{p^n}, (s)_{p^m} \right) \\ &= ((s)_{p^n}, (s)_{p^m}) = (s, s) \neq (0, 0) \end{aligned}$$

for $0 < s < p^m$.

Moreover $(1, 1)^* = (1, 1)$. Hence $r_+(1, 1) = p^m$, $r_*(1, 1) = 1$, $r_{*+}(1, 1) = 0$ and $|C| = p^m > 1$ since $m > 0$. Thus

$$(3.4) \quad C = \{(s, s) \in \mathbb{Z} \times \mathbb{Z} : 0 \leq s < p^m\}.$$

We prove that $r_+(p^n - 1, 1) = p^n$ and $r_*(p^n - 1, 1) = 1$.

We know that $s = E(\frac{s}{p^m})p^m + (s)_{p^m}$ for $s \in \mathbb{Z}$. Hence

$$(3.5) \quad p^m E\left(\frac{s}{p^m}\right) = s - (s)_{p^m}.$$

Let us notice that

$$\begin{aligned} p^n(p^n - 1, 1) &= \gamma_{p^n, p^m}^{p^n - 2p^m}(p^n p^n - p^n, p^n) \\ &= \left(\left(p^{2n} - p^n + E\left(\frac{p^n}{p^m}\right)(p^n - p^m) \right)_{p^n}, (p^n)_{p^m} \right) = (0, 0) \end{aligned}$$

and

$$\begin{aligned}
 (3.6) \quad s(p^n - 1, 1) &= \gamma_{p^n, p^m}^{p^n - 2p^m}(sp^n - s, s) \\
 &= \left(\left(sp^n - s + E\left(\frac{s}{p^m}\right)(p^n - p^m) \right)_{p^n}, (s)_{p^m} \right) \\
 &= \left(-s - p^m E\left(\frac{s}{p^m}\right)_{p^n}, (s)_{p^m} \right) \\
 &\stackrel{(3.5)}{=} (((s)_{p^m} - 2k)_{p^n}, (s)_{p^m}) \neq (0, 0)
 \end{aligned}$$

for $0 < s < p^n$ because if $((s)_{p^m} - 2s)_{p^n} = (s)_{p^m} = 0$ then $p^n | 2s$ and then $p^n | s$ for $p \neq 2$ but $p^n \nmid s$ for $0 < s < p^n$ - a contradiction.

Let us observe that

$$\begin{aligned}
 (p^n - 1, 1)^* &= \gamma_{p^n, p^m}^{p^n - 2p^m}(1, p^n - 1) \\
 &= \left(\left(1 + E\left(\frac{p^n - 1}{p^m}\right)(p^n - p^m) \right)_{p^n}, (p^n - 1)_{p^m} \right) \\
 &= \left(\left(1 - p^m E\left(\frac{p^n - 1}{p^m}\right) \right)_{p^n}, (p^n - 1)_{p^m} \right) \\
 &\stackrel{(3.5)}{=} ((1 - (p^n - 1 - (p^n - 1)_{p^m}))_{p^n}, (p^n - 1)_{p^m}) \\
 &= ((2 + (p^n - 1)_{p^m})_{p^n}, (p^n - 1)_{p^m}) \\
 &= (((p^n - 1)_{p^m} - 2(p^n - 1))_{p^n}, (p^n - 1)_{p^m}) \\
 &\stackrel{(3.6)}{=} (p^n - 1)(p^n - 1, 1).
 \end{aligned}$$

The last equation follows from (3.6) for $s = p^n - 1$, hence $r_+(p^n - 1, 1) = p^n$, $r_*(p^n - 1, 1) = 1$ and $|B| = p^n > 1$ since $n \geq m > 0$.

Now we show that $B \cap C = \{(0, 0)\}$.

Let $x \in B \cap C$. Then there exists $0 \leq s < p^n$ such that $x = s(p^n - 1, 1) \stackrel{(3.6)}{=} (((s)_{p^m} - 2s)_{p^n}, (s)_{p^m}) \in C$ hence $((s)_{p^m} - 2s)_{p^n} = (s)_{p^m} = ((s)_{p^m})_{p^n}$ by (3.4) and $p^n | (s)_{p^m} - (((s)_{p^m} - 2s)_{p^n})$ thus $p^n | 2s$ therefore $p^n | s$ (since $p \neq 2$) there is why $s = 0$ and $x = (0, 0)$.

Hence $\mathcal{Q} \cong \Psi(Q_{p^n, p^m}^k)$ is directly decomposable by Lemma 3.6. ■

THEOREM 3.11. *Let $\mathcal{Q} \in \text{EQ1}$ be a finite and monogenic quasigroup. If $r_+(\mathcal{Q}) = p^n$, $r_*(\mathcal{Q}) = p^m$ and $r_{*+}(\mathcal{Q}) = 0$ where $p \neq 2$ is prime and $m > 0$ then \mathcal{Q} is directly decomposable.*

Proof. It is sufficient to show that $\Psi(Q_{p^n, p^m}^{p^n - 2p^m}) \cong \mathcal{Q}$ is directly decomposable.

Let B be the subalgebra of Q_{p^n, p^m}^k generated by $(p^n - 1, 1)$. Let C be the subalgebra of Q_{p^n, p^m}^k generated by $(1, 1)$.

We show that $r_+(1, 1) = p^n$, $r_*(1, 1) = 1$, $r_{*+}(1, 1) = 0$.

We know that $s = E(\frac{s}{p^m})p^m + (s)_{p^m}$ for $s \in \mathbb{Z}$. Hence

$$(3.7) \quad p^m E\left(\frac{s}{p^m}\right) = s - (s)_{p^m}.$$

Let us observe that

$$\begin{aligned} p^n(1, 1) &= \gamma_{p^n, p^m}^0(p^n, p^n) \\ &= \left(\left(p^n + E\left(\frac{p^n}{p^m}\right)p^m \right)_{p^n}, (p^n)_{p^m} \right) = (0, 0) \end{aligned}$$

and

$$\begin{aligned} s(1, 1) &= \gamma_{p^n, p^m}^0(s, s) \\ &= \left(\left(s + E\left(\frac{s}{p^m}\right)p^m \right)_{p^n}, (s)_{p^m} \right) \\ &\stackrel{(3.7)}{=} ((2s - (s)_{p^m})_{p^n}, (s)_{p^m}) \neq (0, 0) \end{aligned}$$

for $0 < s < p^n$.

Since if $(2s - (s)_{p^m})_{p^n} = (s)_{p^m} = 0$ then $p^n | 2s$ thus $p^n | s$ (since $p \neq 2$) but $p^n \nmid s$ for $0 < s < p^n$ - a contradiction.

Moreover $(1, 1)^* = (1, 1)$. Hence $r_+(1, 1) = p^n$, $r_*(1, 1) = 1$, $r_{*+}(1, 1) = 0$ and $|C| = p^n \geq p^m > 1$ since $m > 0$.

We prove that $r_+(p^n - 1, 1) = p^m$ and $r_*(p^n - 1, 1) = 1$.

Let us notice that

$$\begin{aligned} p^m(p^n - 1, 1) &= \gamma_{p^n, p^m}^0(p^m p^n - p^m, p^m) \\ &= \left(\left(p^m p^n - p^m + E\left(\frac{p^m}{p^m} p^m\right)_{p^n}, (p^m)_{p^m} \right) = (0, 0) \right) \end{aligned}$$

and

$$\begin{aligned} (3.8) \quad s(p^n - 1, 1) &= \gamma_{p^n, p^m}^0(s p^n - s, s) \\ &= \left(\left(s p^n - s + E\left(\frac{s}{p^m}\right)p^m \right)_{p^n}, (s)_{p^m} \right) \\ &= ((-s)_{p^n}, s) = (p^n - s, s) \neq (0, 0) \end{aligned}$$

for $0 < s < p^m$.

Let us observe that

$$\begin{aligned} (3.9) \quad (p^n - 1, 1)^* &= \gamma_{p^n, p^m}^0(1, p^n - 1) \\ &= \left(\left(1 + E\left(\frac{p^n - 1}{p^m}\right)p^m \right)_{p^n}, (p^n - 1)_{p^m} \right) \end{aligned}$$

$$\begin{aligned}
&\stackrel{(3.7)}{=} ((1 + p^n - 1 - (p^n - 1)_{p^m})_{p^n}, (p^n - 1)_{p^m}) \\
&= (p^n - (p^n - 1)_{p^m}, (p^n - 1)_{p^m}) \\
&\stackrel{(3.8)}{=} (p^n - 1)_{p^m} (p^n - 1, 1).
\end{aligned}$$

Hence $r_+(p^n - 1, 1) = p^m$, $r_*(p^n - 1, 1) = 1$ and $|B| = p^m > 1$ since $m > 0$.

Thus

$$(3.10) \quad B = \{(p^n - s, s) \in \mathbb{Z} \times \mathbb{Z} : 1 \leq s < p^m\} \cup \{(0, 0)\}.$$

Now we show that $B \cap C = \{(0, 0)\}$.

Let $x \in B \cap C$. Then there exists $0 \leq s < p^n$ such that

$$x = \gamma_{p^n, p^m}^0(s, s) = ((s + E(\frac{s}{p^m})p^m)_{p^n}, (s)_{p^m}) \in B$$

hence

$$p^n \left| \left(s + E\left(\frac{s}{p^m}\right)p^m \right)_{p^n} + (s)_{p^m} \right.$$

by 3.10 and

$$p^n | s + E\left(\frac{s}{p^m}\right)p^m + (s)_{p^m} = 2s$$

therefore $p^n | s$ (since $p \neq 2$) there is why $s = 0$ and $x = (0, 0)$.

Therefore $\Psi(Q_{p^n, p^m}^k)$ is directly decomposable by Lemma 3.6. Hence $\mathcal{Q} \cong \Psi(Q_{p^n, p^m}^k)$ is directly decomposable. ■

THEOREM 3.12. *Let $\mathcal{Q} \in \text{EQ1}$ be a finite and monogenic quasigroup. Then \mathcal{Q} is directly indecomposable if and only if one of the following conditions are satisfied:*

- (1) $r_+(\mathcal{Q}) = 2^n$ and $n > 0$,
- (2) $r_+(\mathcal{Q}) = p^n$, $r_*(\mathcal{Q}) = 1$ and $r_{*+}(\mathcal{Q}) = 0$, where p is prime and $n > 0$,
- (3) $r_+(\mathcal{Q}) = p^n$, $r_*(\mathcal{Q}) = 1$ and $r_{*+}(\mathcal{Q}) = p^n - 2$, where p is prime and $n > 0$.

Proof. Let $\mathcal{Q} \in \text{EQ1}$ be a finite and monogenic quasigroup and suppose that \mathcal{Q} is directly indecomposable. By Theorem 3.4 $r_+(\mathcal{Q}) = p^n$ where p is prime and $n > 0$. If $p = 2$ then we obtain the case1.

Suppose that $p \neq 2$.

Using Theorem 2.3 \mathcal{Q} is isomorphic to one of the following algebras in EQ1:

- (1) $\Psi(Q_{p^n, p^m}^0)$, $m \leq n$,
- (2) $\Psi(Q_{p^n, p^m}^{p^n - 2p^m})$, $m + 1 \leq n$.

If \mathcal{Q} is isomorphic to $\Psi(Q_{p^n, p^m}^0)$ and $m > 0$ then by Theorem 3.11 \mathcal{Q} is directly decomposable - a contradiction. Hence $m = 0$ and we obtain the case 2.

If \mathcal{Q} is isomorphic to $\Psi(Q_{p^n, p^m}^{p^n-2p^m})$ and $m > 0$ then by Theorem 3.10 \mathcal{Q} is directly decomposable - a contradiction. Thus $m = 0$ and we obtain the case 3.

Let $\mathcal{Q} \in \text{EQ1}$ be a finite and monogenic quasigroup and suppose that one of the following conditions are satisfied:

- (1) $r_+(\mathcal{Q}) = 2^n$ and $n > 0$,
- (2) $r_+(\mathcal{Q}) = p^n$, $r_*(\mathcal{Q}) = 1$ and $r_{*+}(\mathcal{Q}) = 0$, where p is prime and $n > 0$,
- (3) $r_+(\mathcal{Q}) = p^n$, $r_*(\mathcal{Q}) = 1$ and $r_{*+}(\mathcal{Q}) = p^n - 2$, where p is prime and $n > 0$.

In the case 1 by Theorem 3.9 \mathcal{Q} is directly indecomposable.

In the case 2 $\mathcal{Q} \cong \Psi(Q_{p^n, 1}^0)$ and $\Psi(Q_{p^n, 1}^0)$ has the biggest nontrivial subalgebra generated by $(p, 0)$, so by Lemma 3.7 \mathcal{Q} is directly indecomposable.

In the case 3 $\mathcal{Q} \cong \Psi(Q_{p^n, 1}^{p^n-2})$ and $\Psi(Q_{p^n, 1}^{p^n-2})$ has the biggest nontrivial subalgebra generated by $(p, 0)$, so by Lemma 3.7 \mathcal{Q} is directly indecomposable. ■

References

- [1] G. Bińczak, J. Kaleta, *Cyclic entropic quasigroups*, Demonstratio Math. 42 (2009), 269–281.
- [2] G. Bińczak, J. Kaleta, *Finite simple monogenic entropic quasigroups with quasi-identity*, to appear in Demonstratio Math.
- [3] O. Chein, H. O. Pflugfelder, J. D. H. Smith, *Quasigroups and Loops: Theory and Applications*, Heldermann Verlag, Berlin, 1990.
- [4] J. J. Rotman, *An Introduction to the Theory of Groups*, Springer-Verlag, New York, 1994.
- [5] J. D. H. Smith, *Representation Theory of Infinite Groups and Finite Quasigroups*, Université de Montréal, 1986.

G. Bińczak

FACULTY OF MATHEMATICS AND INFORMATION SCIENCES

WARSAW UNIVERSITY OF TECHNOLOGY

00-661 WARSAW, POLAND

E-mail: binczak@mini.pw.edu.pl

J. Kaleta

DEPARTMENT OF APPLIED MATHEMATICS

WARSAW UNIVERSITY OF AGRICULTURE

02-787 WARSAW, POLAND

E-mail: joanna_kaleta@sggw.pl

Received November 18, 2010; revised version December 6, 2010.