
DEMONSTRATIO MATHEMATICA

Vol. XLV No 3 2012

Piotr Zwierkowski

CONVERGENCE OF A FINITE DIFFERENCE SCHEME

FOR VON FOERSTER EQUATION

WITH FUNCTIONAL DEPENDENCE

Abstract. We analyse a finite difference scheme for von Foerster–McKendrick type
equations with functional dependence forward in time and backward with respect to one
dimensional spatial variable. Some properties of solutions of a scheme are given. Con-
vergence of a finite difference scheme is proved. The presented theory is illustrated by a
numerical example.

Introduction

Von Foerster–McKendrick type models are well known models of math-
ematical biology, describing a population with a structure of its members,
given for example by their age [3], size [1] or level of maturation of in-
dividuals [7]. Existence, uniqueness and other properties of solutions for
above mentioned models are studied in the literature. We are interested in
some class of initial problems, originating in [7], which presents erytroid pro-
duction model, based on a continuous maturation-proliferation mechanism.
Far-reaching generalization of this problem is presented in [9]. In this pa-
per we deal with the problem considered in [9] with one dimensional spatial
variable.

Let T > 0, τ0, τ1 ∈ R+, where R+ = [0,+∞). Let us introduce

I0 = [−τ0, 0], I = [0, T ], B = [−τ0, 0]× [−τ1, τ1],

E0 = [−τ0, 0]× R+, E = [0, T ]× R+.

For a given function q : I0 ∪ I → R, t ∈ I define the Hale operator qt : I0 →
R by

qt(s) = q(t+ s), s ∈ I0,
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see [4]. Denote α+ = max{0, α}. Given a function w : E0 ∪ E → R and
a point (t, x) ∈ E define a function w(t,x) : B → R by

w(t,x)(s, y) = w(t+ s, (x+ y)+), (s, y) ∈ B.

Our definition of w(t,x) differs from the definition of the Hale operator given
in [6] since negative values of the spatial coordinate x do not have biological
interpretation.

By F(X) denote the class of all real functions defined on X, where X is
an arbitrary set. For any metric space Y we denote by C(Y ) the class of
all continuous real functions on Y, whereas C+(Y ) denotes the class of all
nonnegative continuous real functions on Y. For q ∈ C(I0), w ∈ C(B) we
define

‖q‖C(I0) = max {|q(t)| : t ∈ I0}, ‖w‖C(B) = max {|w(t, x)| : (t, x) ∈ B}.
Let Ω0 = E × C(I0), Ω = E × C(B) × C(I0). Suppose that v : E0 → R

is a given bounded and continuous initial function and

c : Ω0 → R+, λ : Ω → R.

Consider the differential functional equation

(1) ∂tu(t, x) + c (t, x, zt) ∂xu(t, x) = u(t, x)λ
(

t, x, u(t,x), zt
)

with the initial condition

(2) u(t, x) = v(t, x), (t, x) ∈ E0,

where

(3) z(t) =
+∞�

0

u(t, y) dy, t ∈ [−τ0, T ].

We assume that c(t, 0, q) = 0 for t ∈ I, q ∈ C(I0). This condition implies
that the boundary condition is not necessary for the problem, cf. [2, 9].
Differential equations, equations with deviated argument, differential inte-
gral equations can be derived from (1) by specializing the operators c, λ, see
examples in [9].

This paper extends our previous results concerning approximation of so-
lutions to the above problem without functional dependence by finite differ-
ence schemes, see [8].

Solutions to (1)–(2) exist on unbounded domain. However, due to com-
putational constraints solutions of the problem can be approximated only
on a finite mesh. The paper is devoted to a difference method for approx-
imation of infinite domain solutions to (1)–(2) by a difference scheme with
a finite number of knots. We give conditions on the size of a finite rectan-
gular mesh, which enable to obtain expected error of approximation of (3)
for a prescribed initial data and a discretization parameter.
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The partial derivative ∂xu is approximated by the backward difference
quotient, since c ≥ 0. We consider only nonnegative approximation of so-
lutions of the problem. Therefore, the Courant–Friedrich’s–Levy stability
condition (cf. [5], p. 274) is replaced by a modified stability condition which
implies also nonnegativity of solutions of our scheme. However, the presented
theory, under slight modifications, remains valid if solutions of the problem
are negative. Values of z(t) are approximated by a sufficiently large finite
rectangular rule. We introduced some class of initial functions to be assured
that the rule approximating z(t) is well defined. Interpolating operators are
defined as functions c, λ are dependent on continuous functional argument.

The paper is organized as follows:

(i) a finite difference scheme is introduced and some properties of its solu-
tions are given;

(ii) convergence of the scheme is proved;
(iii) results of numerical experiments illustrating the presented theory are

given.

1. Finite difference scheme

We approximate solutions of (1)–(2) on a sufficiently large bounded area
since practical computations cannot be performed on unbounded domain.

Let N0, N1 ∈ N, h0 =
τ0
N0

, h1 =
τ1
N1

and m =
h0
h1

, h = (h0, h1) . There is

N ∈ N such that Nh0 < a ≤ (N + 1)h0. Define

I0.h = {t(i) : i = −N0, . . . , 0}, Ih = {t(i) : i = 0, . . . , N},
where t(i) = ih0. For a given discretization parameter h0 define Nh ∈ N such
that h0Nh → ∞ as h0 → 0. Define M (i) = Nh + N1N for i = −N0, . . . , 0
and M (i) = Nh +N1(N − i)+ for i = 0, . . . , N + 1. Let

E0.h = {(t(i), x(j)) : i = −N0, . . . , 0, j = 0, . . . ,M (0)},
Eh = {(t(i), x(j)) : i = 0, . . . , N, j = 0, . . . ,M (i)},

where x(j) = jh1, be the finite meshes on some bounded parts of E0 and E,
respectively. Define

E′
h = {(t(i), x(j)) ∈ Eh : (t

(i+1), x(j)) ∈ Eh}, I ′h = {t(i) ∈ Ih : t
(i+1) ∈ Ih}.

For discrete functions u : E0.h ∪ Eh → R, z : I0.h ∪ Ih → R we write u(i,j) =
u(t(i), x(j)), z(i) = z(t(i)). Let E∗ = (Ẽ0 ∪ Ẽ) ∩ (E0 ∪ E), where

Ẽ0 = {(t, x) ∈ E0 : x ≤ M (0)h1},
Ẽ = {(t, x) ∈ E : t ∈ [t(i), t(i+1)], x ∈ [0,M (i+1)h1], i = 0, . . . , N}.
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Introduce the interpolating operator Th : F (E0.h ∪ Eh) → C(E∗). Define
S = {(α, β) : α, β ∈ {0, 1}} . Two cases will be considered.

I. Suppose that (t, x) ∈ Ẽ0. There are (t(i), x(j)), (t(i+1), x(j+1)) ∈ E0.h

such that t(i) ≤ t ≤ t(i+1) and x(j) ≤ x ≤ x(j+1). Then

(4) (Thu)(t, x) =
∑

(α,β)∈S

u(i+α,i+β)

(

t− t(i)

h0

)α(

1− t− t(i)

h0

)1−α

×

×
(

x− x(j)

h1

)β (

1− x− x(j)

h1

)1−β

,

provided that 00 = 1.

II. Suppose that (t, x) ∈ Ẽ and t ≤ h0N. There are i, j ∈ N such that
[t(i), t(i+1)] × [x(j), x(j+1)] ⊂ Ẽ and t(i) ≤ t ≤ t(i+1), x(j) ≤ x ≤ x(j+1).
Then (Thu)(t, x) is given by (4). If (t, x) ∈ Ẽ and Nh0 < t ≤ T, then
(Thu)(t, x) = (Thu)(Nh0, x).

Note that Thu is a continuous function on E∗. The definition of Th is
based on the definition of the interpolating operator given in [6], page 86.

Define the interpolating operator T̃h0 : F(I0.h ∪ Ih) → C(I0 ∪ I) by

(T̃h0z)(t) =
(

1− t− t(i)

h0

)

z(i) +
t− t(i)

h0
z(i+1),

t ∈ [t(i), t(i+1)], −N0 ≤ i ≤ N − 1 and (T̃h0z)(t) = (T̃h0z)(Nh0) for
t ∈ (Nh0, T ].

Given discrete functions u : E0.h ∪Eh → R, z : I0.h ∪ Ih → R denote

c(i,j)[z] = c
(

t(i), x(j), (T̃h0z)t(i)
)

,

λ(i,j)[u, z] = λ
(

t(i), x(j), (Thu)(t(i),x(j)), (T̃h0z)t(i)
)

.

Introduce the difference operators δ0, δ1 :

δ0u
(i,j) = (u(i+1,j) − u(i,j))/h0, δ1u

(i,j) = (u(i,j) − u(i,j−1))/h1.

Consider the finite difference scheme corresponding to (1)–(2)

(5) δ0u
(i,j) + c(i,j)[z]δ1u

(i,j) = u(i,j)λ(i,j)[u, z] on E′
h, j > 0,

where

(6) z(i) = h1

M (i)−1
∑

j=0

u(i,j), i = −N0, . . . , N,

with the initial condition

(7) u(i,j) = v(i,j) on E0.h.



Convergence of a finite difference scheme 729

It follows from c(t, 0, q) = 0, t ∈ [0, a], q ∈ C(I0), that

(8) δ0u
(i,0) = u(i,0)λ(i,0)[u, z], i = 0, . . . , N − 1.

There exists exactly one solution of (5)–(8).
Suppose that ϕ : {x(j) : j ∈ N} → R is a bounded and summable function.

Define

‖ϕ‖ = sup{|ϕ(j)| : j ∈ N}, ‖ϕ‖1 = h1

∞
∑

j=0

|ϕ(j)|.

By L1 we denote a class of Lebesgue integrable functions defined on R+ with
the standard norm denoted by ‖ ·‖L1 . Define the following class of functions.

Definition 1.1. Let f : R+ → R, f ∈ L1. The function f ∈ L1
M iff there

is a decreasing function g : R+ → R+ such that g ∈ L1 and |f(x)| ≤ g(x) for
x ∈ R+.

Given h1 > 0 and f : R+ → R let us denote fh1 = f|{x(j) : j∈N}.

Lemma 1.2. If f : R+ → R and f ∈ L1
M, then ‖fh1‖1 < ∞.

Proof. One can assume that h1 ≤ 1. There is a decreasing function
F : R+ → R+ such that F ∈ L1 and |f(x)| ≤ F (x), x ∈ R+. We have

‖Fh1‖1 = h1

∞
∑

j=0

F (x(j)) ≤ h1F (0) +
∞
∑

j=1

x(j)�

x(j−1)

F (x)dx ≤ F (0) + ‖F‖L1 .

The assertion follows from the inequality |f(x)| ≤ F (x), x ∈ R+.

We make the following assumptions:

Assumption [V]. v : E0 → R+, there exists a decreasing function
V : R+ → R+ such that V ∈ L1 and v(t, x) ≤ V (x) for (t, x) ∈ E0.

Assumption [C]. c : Ω0 → R+ is continuous, there exist constants Lc, L
∗
c ,

Mc > 0 such that c(t, x, q) ≤ Mc and

|c(t, x, q)− c(t, x̄, q̄)| ≤ Lc|x− x̄|+ L∗
c‖q − q̄‖C(I0)

for (t, x), (t, x̄) ∈ E, q, q̄ ∈ C+(I0).

Assumption [Λ]. λ : Ω → R is continuous, there exist constants Mλ, Lλ,
Lz > 0 such that λ(t, x, w, q) ≤ Mλ and

|λ(t, x, w, q)− λ(t, x, w̄, q̄)| ≤ Lλ‖w − w̄‖C(B) + Lz‖q − q̄‖C(I0)

for (t, x) ∈ E, w, w̄ ∈ C+(B), q, q̄ ∈ C+(I0).

Assumption [SN]. c : Ω0 → R+, λ : Ω → R and a discretization parameter
h satisfy

1− h0
h1

c(t, x, q) + h0λ(t, x, w, q) ≥ 0

for (t, x) ∈ E, w ∈ C+(B), q ∈ C+(I0).
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We give some properties of solutions of (5)–(8).

Lemma 1.3. If Assumptions [V ], [SN ] are satisfied, then any solution of

(5)–(8) is nonnegative.

Proof. The proof is by induction on i. For i = 0 the assertion holds since
v ≥ 0. Formulas (5) and (8) can be rewritten in the explicit form:

(9) u(i+1,j) = u(i,j)
(

1− h0
h1

c(i,j)[z] + h0λ
(i,j)[u, z]

)

+
h0
h1

c(i,j)[z]u(i,j−1)

on E′
h for j > 0 and

(10) u(i+1,0) = u(i,0)(1 + h0λ
(i,0)[u, z]), i = 0, . . . , N − 1.

Suppose that for some 0 < i ≤ N −1 the functions u(k,·), i−N0 ≤ k ≤ i, are
nonnegative. As Assumption [SN] is satisfied it follows from (9), (10) that
the assertion holds for i+ 1.

Define an auxiliary function U : E0.h ∪ Eh → R+ by

U (i,j) =

{

V (j), (t(i), x(j)) ∈ E0.h,

(1 + h0Mλ)
i V ((j−i)+), (t(i), x(j)) ∈ Eh.

Lemma 1.4. If Assumptions [V ], [Λ], [SN ] are satisfied, then u(i,j) ≤ U (i,j)

on E0.h ∪Eh.

Proof. The proof is by induction on i. For i = −N0, . . . , 0 the assertion
follows form Assumption [V ]. Suppose that u(i,j) ≤ U (i,j) for some 0 < i ≤
N − 1 and j = 0, . . . ,M (i). For j > 0 from Assumptions [V ], [SN ] and (9)
we get

u(i+1,j) ≤ U (i,j)
(

1− h0
h1

c(i,j)[z] + h0λ
(i,j)[u, z]

)

+
h0
h1

c(i,j)[z]U (i,j−1)

≤ U (i,j−1)
(

1 + h0Mλ

)

= (1 + h0Mλ)
i+1V ((j−(i+1))+) = U (i+1,j).

For j = 0 we proceed similarly. The proof is completed.

Corollary 1.5. Under assumptions of Lemma 1.4 we have the estimates

‖u(i,·)‖ ≤ eaMλV (0), ‖u(i,·)‖1 ≤ eaMλ(V (0)(1 + a/m) + ‖V ‖L1)

for i = 0, . . . , N.

2. Convergence

Suppose that ū : E0∪E → R+ is a solution of (1)–(2) and z̄ : I0∪I → R+

is given by (3). Denote ūh = ū|E0.h∪Eh
and ū

(i,j)
h = ūh(t

(i), x(j)). The local
discretization error ξ : Eh → R is defined as follows:

(11) ξ(i,j) = δ0ū
(i,j)
h +c(i,j)[ẑh0 ]δ1ū

(i,j)
h −ū

(i,j)
h λ(i,j)[ūh, ẑh0 ] on E′

h, j > 0,
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(12) ξ(i,0) = δ0ū
(i,0)
h − u

(i,0)
h λ(i,0)[ūh, ẑh0 ], i = 0, . . . , N − 1,

where

ẑ
(i)
h0

= h1

M (i)−1
∑

j=0

ū
(i,j)
h , i = −N0, . . . , N.

Let V : R+ → R+ be the function given in Assumption [V ].

Assumption [Ū]. ū : E0∪E → R+ is a solution of (1)–(2) of class C2 and

1) ū(t, ·) ∈ L1
M, t ∈ I0 ∪ I, and there exists a constant D0 > 0 such that

ū(t, x) ≤ D0V (x) on E0 ∪ E;

2) ∂tū(t, ·), ∂xū(t, ·) ∈ L1
M, t ∈ I0 ∪ I, and there exists D1 > 0 such that

|∂tū(t, x)| ≤ D1V (x), |∂xū(t, x)| ≤ D1V (x) on E0 ∪E;

3) there exists a constant C > 0 such that

|∂ttū(t, x)|, |∂txū(t, x)|, |∂xxū(t, x)| ≤ C on E0 ∪ E;

4) ∂ttū(t, ·), ∂xxū(t, ·) ∈ L1
M, t ∈ I0 ∪ I, and there exists D2 > 0 such that

|∂ttū(t, x)| ≤ D2V (x), |∂xxū(t, x)| ≤ D2V (x) on E0 ∪E;

5) there exists a constant D3 > 0 such that

|z̄(t̄)− z̄(t)| ≤ D3|t̄− t|, t̄, t ∈ I0 ∪ I.

Lemma 2.1. If the function ū : E0∪E → R satisfies Assumption [Ū3], then

‖(Thūh)(t(i),x(j)) − ū(t(i),x(j))‖C(B) ≤ CTh
h20

for (t(i), x(j)) ∈ Eh such that (t(i), x(j+N1)) ∈ Eh, where CTh
= C(1 + 2m+

m2).

The proof of the Lemma is similar to the proof of Theorem 3.18 in [6].

Lemma 2.2. Suppose that Assumption [Ū1, 2, 5] is satisfied. Then there is

α : (0,+∞) → R+ such that limh0→0 α(h0) = 0 and

‖(T̃h0 ẑh0)t(i) − z̄t(i)‖C(I0) ≤ h0CT̃h0
+ α(h0), 0 ≤ i ≤ N,

where CT̃h0
= (1 + 1

2m)D1ΓV +D3, ΓV = V (0) + ‖V ‖L1 .

Proof. Let s ∈ [t(i−N0), t(i)]. There is i − N0 ≤ k ≤ i − 1 such that
s ∈ [t(k), t(k+1)] and

|(T̃h0 ẑh0)(s)− z̄(s)| ≤ |z̄(t(k))− z̄(s)|+ |ẑ(k)h0
− z̄(t(k))|+ s− t(k)

h0
|ẑ(k+1)

h0
− ẑ

(k)
h0

|.
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Let

P (t(k), h0) = D0

∞�

x(M(k))

V (x)dx, R(t(k), h0) = D0h1

N1−1
∑

j=0

V (M (k+1)+j).

The function M (·) is nonincreasing, hence x(M
(N)) ≤ x(M

(k)) for −N0 ≤ k ≤
N and x(M

(N)) → ∞ as h0 → 0. Therefore

P (t(k), h0) ≤
∞�

x(M(N))

V (x) dx =: P̃ (h0)

and P̃ (h0) → 0 as h0 → 0. Since V (M (k+1)+j) ≤ V (M (N)+j) ≤ V (M (N)) we
have

R(t(k), h0) ≤ D0h1

N1−1
∑

j=0

V (M (N)) ≤ D0τ1V
(M (N)) =: R̃(h0).

The function V is decreasing, therefore R̃(h0) → 0 as h0 → 0. From As-
sumption [Ū2] and Lemma 1.2 we obtain the estimates

|ẑ(k)h0
− z̄(t(k))| ≤ D1

2
h21

M (k)−1
∑

j=0

V (j) + P (t(k), h0) ≤
D1

2
h1ΓV + P̃ (h0),

|ẑ(k+1)
h0

− ẑ
(k)
h0

| ≤ D1h0h1

M (k+1)−1
∑

j=0

V (j) +R(t(k), h0) ≤ D1h0ΓV + R̃(h0).

The remaining part of the proof follows from Assumption [Ū5] and the both
above estimates with α(h0) = P̃ (h0) + R̃(h0).

Theorem 2.3. If Assumptions [V ], [C], [Λ], [Ū ] are satisfied, then

‖ξ(i,·)‖ ≤ V (0)β(h0), ‖ξ(i,·)‖1 ≤ ΓV β(h0),

where ΓV = V (0) + ‖V ‖L1 , D = D0Lz +D1L
∗
c ,

β(h0) = h0[CT̃h0
D +D2(1 +Mc/m)] + α(h0)D +D0LλCTh

h20.

Proof. Let us subtract (1) at the point (t(i), x(j)) ∈ E′
h, j > 0, from (11).

Then, by the mean value theorem and Assumptions [Ū1, 2, 4], [C], [Λ], we
have

|ξ(i,j)| ≤ h0D2V
(j) +D0V

(j)(Lλ∆
(i,j)
h + Lz∆̃

(i)
h0
)

+ h1D2McV
(j−1) +D1L

∗
cV

(j)∆̃
(i)
h0
, j > 0,

where

∆
(i,j)
h = ‖(Thūh)(t(i),x(j))− ū(t(i),x(j))‖C(B), ∆̃

(i)
h0

= ‖(T̃h0 ẑh0)t(i) − z̄t(i)‖C(I0).
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Similarly, subtracting (1) at the point (t(i), 0), t(i) ∈ I ′h, from (12) we get

|ξ(i,0)| ≤ h0D2V
(0) +D0V

(0)(Lλ∆
(i,0)
h + Lz∆̃

(i)
h0
).

In force of Lemmas 2.1, 2.2 we get inequalities

∆
(i,j)
h ≤ CTh

h20, ∆̃
(i)
h0

≤ h0CT̃h0
+ α(h0),

which applied to the above estimates for |ξ(i,j)|, |ξ(i,0)| lead to the assertion.

Lemma 2.4. Let u1, u2 : E0.h∪Eh → R+, z1, z2 : I0.h∪Ih → R+ be arbitrary

bounded discrete functions. Then for t(i) ∈ Ih and (t(i), x(j)) ∈ Eh such that

(t(i), x(j+N1)) ∈ Eh we have

‖(T̃h0z1)t(i) − (T̃h0z2)t(i)‖C(I0) ≤ max
i−N0≤k≤i

|z(k)1 − z
(k)
2 |,

‖(Thu1)(t(i),x(j)) − (Thu2)(t(i),x(j))‖C(B) ≤ max
i−N0≤k≤i,

(j−N1)+≤l≤j+N1

|u(k,l)1 − u
(k,l)
2 |.

Theorem 2.5. Suppose that Assumptions [V ], [C], [Λ], [SN ], [Ū ] are sat-

isfied, there is γ0 : (0,+∞) → R+ such that limh0→0 γ0(h0) = 0 and

(13) |ū(i,j)h − u(i,j)| ≤ γ0(h0)V
(j) on E0.h.

Then ‖ū(i,·)h − u(i,·)‖, ‖ū(i,·)h − u(i,·)‖1 → 0 as h0 → 0, uniformly with respect

to i.

Proof. Denote ε(i,j) = ū
(i,j)
h − u(i,j). Subtraction of the both sides of (11),

(5), and (12), (8) lead to the recurrence error equations

ε(i+1,j) = ε(i,j)
(

1− h0
h1

c(i,j)[z] + h0λ
(i,j)[u, z]

)

+
h0
h1

ε(i,j−1)c(i,j)[z]

+
h0
h1

C(i,j)
(

ū
(i,j)
h − ū

(i,j−1)
h

)

+ h0ū
(i,j)
h Λ(i,j) + h0ξ

(i,j), j ≥ 1,

ε(i+1,0) = ε(i,0)(1 + h0λ
(i,0)[u, z]) + h0ū

(i,0)
h Λ(i,0) + h0ξ

(i,0),

respectively, where

Λ(i,j) = λ(i,j)[ūh, ẑh0 ]− λ(i,j)[u, z], C(i,j) = c(i,j)[z]− c(i,j)[ẑh0 ].

It follows from Assumption [Ū2] that |ū(i,j)h − ū
(i,j−1)
h | ≤ h1D1V

(j−1). By
Assumptions [SN ], [C], [Λ], [Ū ] we conclude that

|ε(i+1,j)| ≤ |ε(i,j)|
(

1− h0
h1

c(i,j)[z] + h0λ
(i,j)[u, z]

)

+
h0
h1

c(i,j)[z]|ε(i,j−1)|(14)

+ h0D1V
(j−1)|C(i,j)|+ h0ū

(i,j)
h |Λ(i,j)|+ h0|ξ(i,j)|, j ≥ 1,

|ε(i+1,0)| ≤ (1 + h0λ
(i,0)[u, z])|ε(i,0)|+ h0ū

(i,0)
h |Λ(i,0)|+ h0|ξ(i,0)|.(15)
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Since |ẑ(k)h0
− z(k)| ≤ ‖ε(k,·)‖1, in force of Lemma 2.4 and Assumptions [C],

[Λ], we obtain

|C(i,j)| ≤ L∗
c max
i−N0≤k≤i

‖ε(k,·)‖1,

|Λ(i,j)| ≤ Lλ max
i−N0≤k≤i

‖ε(k,·)‖+ Lz max
i−N0≤k≤i

‖ε(k,·)‖1.

Note that

M (i)−1
∑

j=1

c(i,j)[z](|ε(i,j−1)| − |ε(i,j)|) ≤ h1Lc

M (i)−2
∑

j=1

|ε(i,j)| ≤ Lc‖ε(i,·)‖1.

Summation of (15) and (14) over j ≥ 1 yields

‖ε(i+1,·)‖1 ≤ (1 + h0Mλ + h0Lc)‖ε(i,·)‖1(16)

+ h0L
∗
cD1ΓV max

i−N0≤k≤i
‖ε(k,·)‖1

+ h0D0ΓV

(

Lλ max
i−N0≤k≤i

‖ε(k,·)‖

+ Lz max
i−N0≤k≤i

‖ε(k,·)‖1
)

+ h0‖ξ(i,·)‖1.

From (14), (15) we obtain

‖ε(i+1,·)‖ ≤ (1 + h0Mλ)‖ε(i,·)‖+ h0L
∗
cD1V

(0) max
i−N0≤k≤i

‖ε(k,·)‖1(17)

+ h0D0V
(0)
(

Lλ max
i−N0≤k≤i

‖ε(k,·)‖

+ Lz max
i−N0≤k≤i

‖ε(k,·)‖1
)

+ h0‖ξ(i,·)‖.

By Theorem 2.3 we have ‖ξ(i,·)‖, ‖ξ(i,·)‖1 ≤ ΓV β(h0).

Define an auxiliary comparison function Ψ: I0.h ∪ Ih → R+,

Ψ(i) = γ0(h0)ΓV , −N0 ≤ i ≤ 0,

Ψ(i+1) = (1 + h0Γ)Ψ
(i) + h0ΓV β(h0), 0 ≤ i ≤ N − 1,

where Γ = Mλ + Lc + ΓV [D1L
∗
c +D0(Lλ + Lz)]. It is easy to verify that

Ψ(i) ≤ γ0(h0)e
t(i)Γ + β(h0)ΓV t

(i)et
(i)Γ for 0 ≤ i ≤ N.

We show by induction on i that ‖ε(i,·)‖, ‖ε(i,·)‖1 ≤ Ψ(i) for −N0 ≤ i ≤ N.
The assertion for −N0 ≤ i ≤ 0 follows from (13). Suppose that the assertion
holds for some 0 ≤ i ≤ N − 1. Then applying the inductive assumption to
(16), (17) we obtain the assertion for i+ 1. The proof is completed.

Remark 2.6. Suppose that H > 0 is a sufficiently small real number, h1 ∈
(0, H). Given a decreasing Lebesgue integrable function V : R+ → R+ and
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φ : (0, H) → R+ such that limh1→0 φ(h1) = 0, we determine Nh satisfying

∞�

h1Nh

V (x)dx = φ(h1).

I. If V (x) = e−ax, a > 0, then Nh =

[

1

ah1
ln

1

aφ(h1)

]

, where [x] denotes the

integral part of x ∈ R.

II. If V (x) = a/(1 + x2), a > 0, then Nh =

[

1

h1
tan

(

π

2
− φ(h1)

a

)]

.

3. Numerical experiment

Let E = [0, 1] × R+, I = [0, 1], E0 =
[

− 1
10 , 0

]

× R+, I0 =
[

− 1
10 , 0

]

.
Consider the differential integral equation with delay

(18) ∂tu(t, x) +
t sin2 x

1 + x
sin2(z(t− 0.1))∂xu(t, x)

= u(t, x)

{

1

1 + t
+

f(t) sin(2x)
(

1 +
	t
t/2 z(s)ds

)

(1 + x)
− g(t)x

1 + x

t�

t−0.1

u(s, x)ds

}

with the initial condition

(19) u(t, x) = (t+ 1) sin2 x/(1 + x2) for (t, x) ∈ E0,

where z is given by (3), A = π(1− e−2)/4 and

f(t) = sin2(A(t+ 0.9)) [1 + 0.5At (0.75t+ 1)] , g(t) =
20t sin2(A(t+ 0.9))

t+ 0.95
.

The function ū(t, x) = (t+ 1) sin2 x/(1 + x2) is the solution of (18)–(19) and
z̄(t) = A(t+ 1).

Note that there is no deviation with respect to the spatial variable in
(18)–(19). Therefore, M (i) = Nh, −N0 ≤ i ≤ N. We applied the following
difference method for (18)–(19):

(20) δ0u
(i,j) + t(i) sin2(x(j)) sin2(z(i−N0))δ1u

(i,j) = u(i,j)λ(i,j)[u, z],

on E′
h for j > 0, with the initial condition

(21) u(i,j) = (1 + t(i)) sin2(x(j))/(1 + (x(j))2) on E0.h,
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where u(i,0), z(i) are given by (8), (6), respectively, and

λ(i,j)[u, z] =
1

1 + t(i)
+ f(t(i))

sin(2x(j))

1 + Z
(i)
h0

− g(t(i))
x(j)

1 + x(j)
U

(i,j)
h ,

U
(i,j)
h =

h0
2
(u(i−N0,j) + u(i,j)) + h0

i−1
∑

k=i−N0+1

u(k,j),

Z
(i)
h0

=
t(i)�

t(i)/2

(

T̃h0z
)

(s)ds

=































h0

i−1
∑

k= i+1
2

+1

z(k) +
h0
2

(

z(
i−1
2

) + z(i)
)

+ h0z
( i+1

2
), if i is odd,

h0

i−1
∑

k= i
2
+1

z(k) +
h0
2

(

z(
i
2
) + z(i)

)

, if i is even.

Suppose that u : E0.h∪Eh → R+ is the solution of (20)–(21) and z : I0.h∪
Ih → R+ is given by (6). Let ū : E0 ∪ E → R+ be the solution of (18)–(19)
with z̄ : I0 ∪ I → R+ given by (3) and denote ūh = ū|E0.h∪Eh

, z̄h = z̄|I0.h∪Ih .

Let ε(i,j) = ū
(i,j)
h − u(i,j). We define error of the approximation:

∆u = max
0≤i≤N

{‖ε(i,·)‖}, ∆1u = max
0≤i≤N

{‖ε(i,·)‖1}.

Additionally, we define

∆z = max
0≤i≤N

{|z(i) − z̄
(i)
h |}.

The results of computations with Nh defined in Remark 2.6 for φ(h) =√
h/2 and V (x) = 1/(1 + x2) are presented in the tables. Estimates of the

functions c, λ for the above data are given. During computations we checked
that Assumption [SN ] was satisfied. The computations were performed
by PC.

h1 = h0, 0 ≤ c ≤ 0.38, 0.06 ≤ λ ≤ 1

h0 Nhh1 ∆u ∆1u ∆z

1/50 14.1 4.64E − 03 7.51E − 03 7.24E − 02

1/500 44.7 1.79E − 03 2.54E − 03 2.26E − 02

1/1000 63.2 1.30E − 03 1.81E − 03 1.60E − 02

1/2000 89.4 9.62E − 04 1.33E − 03 1.17E − 02
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h1 = 2h0, 0 ≤ c ≤ 0.36, 0.06 ≤ λ ≤ 1

h0 Nhh1 ∆u ∆1u ∆z

1/50 28.2 4.21E − 03 5.32E − 03 3.88E − 02

1/500 89.4 7.56E − 04 1.20E − 03 1.15E − 02

1/1000 126.5 5.52E − 04 8.67E − 04 8.17E − 03

1/2000 178.9 4.65E − 04 6.90E − 04 6.06E − 03
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