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CONVERGENCE OF A FINITE DIFFERENCE SCHEME
FOR VON FOERSTER EQUATION
WITH FUNCTIONAL DEPENDENCE

Abstract. We analyse a finite difference scheme for von Foerster-McKendrick type
equations with functional dependence forward in time and backward with respect to one
dimensional spatial variable. Some properties of solutions of a scheme are given. Con-
vergence of a finite difference scheme is proved. The presented theory is illustrated by a
numerical example.

Introduction

Von Foerster—-McKendrick type models are well known models of math-
ematical biology, describing a population with a structure of its members,
given for example by their age [3|, size [1] or level of maturation of in-
dividuals |7]. Existence, uniqueness and other properties of solutions for
above mentioned models are studied in the literature. We are interested in
some class of initial problems, originating in [7|, which presents erytroid pro-
duction model, based on a continuous maturation-proliferation mechanism.
Far-reaching generalization of this problem is presented in [9]. In this pa-
per we deal with the problem considered in [9] with one dimensional spatial
variable.

Let T > 0, 19,71 € Ry, where Ry = [0, +00). Let us introduce

IO = [_7_070]7 I= [OvTL B = [_7—070] X [_7—177_1]7
E[):[—T[),O] XR+, E:[O,T] XRJ,_.
For a given function g: IoU I — R, t € I define the Hale operator ¢;: Iy —
R by
at(s) = q(t +s), s¢€ I,
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see [4]. Denote oy = max{0,a}. Given a function w: Ey U E — R and
a point (t,z) € E define a function w ,y: B — R by

w(t,z)(S,y) :w(t+87 (l’—l—y)+)7 (Svy) € B.
Our definition of w(; ;) differs from the definition of the Hale operator given
in 6] since negative values of the spatial coordinate & do not have biological
interpretation.

By F(X) denote the class of all real functions defined on X, where X is
an arbitrary set. For any metric space Y we denote by C(Y) the class of
all continuous real functions on Y, whereas C;(Y') denotes the class of all
nonnegative continuous real functions on Y. For ¢ € C(ly), w € C(B) we
define

lallc(o) = max{|q(t)]: t € Io}, [Jwllcn) =max{|jw(t, z)|: (t,z) € B}.
Let Qo = E x C(Ip), @ = E x C(B) x C(Iy). Suppose that v: By — R
is a given bounded and continuous initial function and
c: Qo — Ry, A Q=R

Consider the differential functional equation

(1) Owu(t, ) + c(t, x, z) Opu(t, x) = u(t, z)A (t, T, UL g s zt)
with the initial condition
(2) u(t,z) =v(t,z), (t,z) € Ep,
where
+o0
(3) 2(t) = S u(t,y) dy, t € [—70,T].
0

We assume that ¢(¢,0,q) =0 for t € I, g € C(Ip). This condition implies
that the boundary condition is not necessary for the problem, cf. |2, 9].
Differential equations, equations with deviated argument, differential inte-
gral equations can be derived from (1) by specializing the operators ¢, A, see
examples in [9].

This paper extends our previous results concerning approximation of so-
lutions to the above problem without functional dependence by finite differ-
ence schemes, see [8].

Solutions to (1)—(2) exist on unbounded domain. However, due to com-
putational constraints solutions of the problem can be approximated only
on a finite mesh. The paper is devoted to a difference method for approx-
imation of infinite domain solutions to (1)—(2) by a difference scheme with
a finite number of knots. We give conditions on the size of a finite rectan-
gular mesh, which enable to obtain expected error of approximation of (3)
for a prescribed initial data and a discretization parameter.
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The partial derivative 0,u is approximated by the backward difference
quotient, since ¢ > 0. We consider only nonnegative approximation of so-
lutions of the problem. Therefore, the Courant—Friedrich’s—Levy stability
condition (cf. [5], p. 274) is replaced by a modified stability condition which
implies also nonnegativity of solutions of our scheme. However, the presented
theory, under slight modifications, remains valid if solutions of the problem
are negative. Values of z(t) are approximated by a sufficiently large finite
rectangular rule. We introduced some class of initial functions to be assured
that the rule approximating z(t) is well defined. Interpolating operators are
defined as functions ¢, A are dependent on continuous functional argument.

The paper is organized as follows:

(i) a finite difference scheme is introduced and some properties of its solu-
tions are given;
(ii) convergence of the scheme is proved;
(iii) results of numerical experiments illustrating the presented theory are
given.

1. Finite difference scheme

We approximate solutions of (1)-(2) on a sufficiently large bounded area

since practical computations cannot be performed on unbounded domain.
h
Let No, N1 € N, ho= -, hy = & and m = -2, h = (ho, h1). There is
Ny Ny h1
N € N such that Nho < a < (N + 1)hg. Define
Iop={tW:i=—Ny,...,0}, I,={tD:i=0,...,N},

where t®) = ihg. For a given discretization parameter ho define Nj, € N such
that hoN, — 00 as hg — 0. Define M) = N, + NiN for i = —Np,...,0
and M@ = N, + Ny (N —i); fori=0,...,N + 1. Let

Eon = {(t(l)’x(J)) 1=—Np,...,0, 7=0,... ,M(O)},
Eh:{(t(i)w(a‘)); i=0,...,N, jzo,._"M(i)},

where £(9) = jhy, be the finite meshes on some bounded parts of Ey and E,
respectively. Define

Ey = {9 20y e By: ¢ 20 e By}, I = {9 e I,: 1D e I}

For discrete functions u: Eyp U Ep = R, 2: Iop U I, — R we write uld) =
u(t®, 20)), 20) = 2(t®). Let E* = (Eg U E) N (Ey U E), where

0o={(t,z) € Ey: = < M(O)hl},
E={{tz)eE:te[tW )] 2 e[0,MF V], i=0,...,N}.
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Introduce the interpolating operator 7}, : F (Ey, U Ej) — C(E*). Define
S={(a,B): a, 8 € {0,1}}. Two cases will be considered.

I. Suppose that (t,2) € Ey. There are (t@), 2@)), (t0+D) 20+D) e Ey,
such that ¢ <t < ¢(*1 and 209) <z < z0+Y. Then

a . l-a
o t — (@ t — (@
_ ita,i+f
@ (Tutz) = > o >( - ) (1— e X

(a,B)€S 0

w2\’ _z=aV =0
X h1 - hl 3
provided that 0° = 1.

IT. Suppose that (t,x) € E and t < hoN. There are i,j € N such that
[t® t0HD]) % [20), 20HD] ¢ F and t® < ¢ < t0)) 20) < g < 20+D,
Then (Tju)(t,z) is given by (4). If (t,2) € E and Nhy < t < T, then
(Thu)(t,x) = (Thu)(Nhg, ).

Note that Thu is a continuous function on E*. The definition of T}, is
based on the definition of the interpolating operator given in [6], page 86.

Define the interpolating operator T, : F(Ip, U 1) — C(lop U I) by

. t — @ ; t — () ;
(T 2)(1) = (1= =5 )@ + ==,

toe [tW D] Ny < i < N —1 and (Tp,2)(t) = (Thy2)(Nho) for
te (Nh[), T]
Given discrete functions u: Egp U Ep — R, z: Iy U I, — R denote

O[z] = c(t(i), 2\, (Tho2)ss))
A7) [u, z] = )\(t(i), x(j), (Thu)(t(i)7m(j)), (ThOZ')t(i)).
Introduce the difference operators dg, 91 :
Soul™) = (u+19) — @)y /pg o §1u®9) = () — 3= 1)
Consider the finite difference scheme corresponding to (1)—(2)
(5) Soul™) 4 D [2)51u) = yEDNCD [y 2] on E,, j>0,

where

M® 1
(6) 2D =hy Y Wl i=—N,,... N,
§=0
with the initial condition
(7) u®) =) on  Egy,.
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It follows from ¢(¢,0,q) =0, t € [0,a], ¢ € C(Ip), that
(8) Soul0) = uGONCO [y 2] i=0,...,N —1.

There exists exactly one solution of (5)—(8).
Suppose that ¢: {(): j € N} = Ris a bounded and summable function.
Define

el = sup{|]: 5 €N}, lglls =ha Y V)]

By L' we denote a class of Lebesgue integrable functions defined on R, with
the standard norm denoted by ||+ || 1. Define the following class of functions.

DEFINITION 1.1. Let f: Ry — R, f € L'. The function f € L}, iff there
is a decreasing function g: Ry — Ry such that g € L! and |f(x)| < g(z) for
T € R+.

Given hy > 0 and f: Ry — R let us denote fp,, = f|{x(]‘) . jeN}-
LEMMA 1.2. If f: Ry —» R and f € LY, then | fu,||; < oo

Proof. One can assume that hy < 1. There is a decreasing function
F:R; — R, such that F € L' and |f(z)| < F(z), € R;.. We have

J;(J)

HFmHlfhlZF D) < hiF(0 Z z)dx < F(0) + ||F|| .
Jj=0 j=17G-1)

The assertion follows from the inequality |f(z)| < F(x), v € R;. =
We make the following assumptions:

ASSUMPTION [V]. wv: Ey — R4, there exists a decreasing function
V:R; — R, such that V € L' and v(t,x) < V() for (t,z) € Ey.
AssUMPTION [C]. c: 9 — Ry is continuous, there exist constants L., L7,
M. > 0 such that c(t,z,q) < M, and
|C(t7 xz, Q) - C(t, z, (j)| < Lc‘x - 'i" + Lz”q - q_”C'(Io)

for (tvx)v (taj) €k qqe C+(IO)
ASSUMPTION [A]. A: Q — R is continuous, there exist constants My, Ly,
L, > 0 such that A(¢,z,w,q) < M) and

At 2w, q) — At z,w,q)| < Lyflw — wHC’(B) + L.llg — QHC(IO)
for (t,z) € E, w,w € C1(B), q,q € C+(Ip).
ASSUMPTION [SN]. ¢: Qp — Ry, A\: © — R and a discretization parameter
h satisfy

h
1- h—oc(t,x, q) + hoA(t, z,w,q) > 0
1

for (t,z) € E, w € Cy(B), ¢ € C(Ip).
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We give some properties of solutions of (5)—(8).
LEMMA 1.3. If Assumptions [V], [SN| are satisfied, then any solution of
(5)—(8) is nonnegative.

Proof. The proof is by induction on ¢. For ¢ = 0 the assertion holds since
v > 0. Formulas (5) and (8) can be rewritten in the explicit form:

(0) ) — ) (1 - %Cu,y’) (2] + hoA6)[u, 2]) + %Cu,y’) [ ulii—D)
1 1

on Ej for j > 0 and
(10) w0 = GO0 (1 4 hoACO [y, 2]), i=0,...,N —1.

Suppose that for some 0 < 7 < N — 1 the functions u(k"), 1—Nog <k <1, are
nonnegative. As Assumption [SN] is satisfied it follows from (9), (10) that
the assertion holds for ¢ + 1. m

Define an auxiliary function U: Eyp, U Ep — R4 by
(1 + hoMy) VG=D4) - (#0) 20)) ¢ By,
LEMMA 1.4. If Assumptions [V], [A], [SN] are satisfied, then u(™1) < U7
on Egp U Ey,.

Proof. The proof is by induction on ¢. For ¢ = —Np,...,0 the assertion
follows form Assumption [V]. Suppose that u(*7) < U(9) for some 0 < i <
N—1land j=0,...,M%. For j > 0 from Assumptions [V], [SN] and (9)
we get

W) < g (1 %Cu,j)[z] + hoAD[u, 2]) + %c(m‘) []U D)
1 1

< yli=1 (1+hoMy) = (1 + ho M,y )1y (U=(+D)+) — +1),
For j = 0 we proceed similarly. The proof is completed. »
COROLLARY 1.5. Under assumptions of Lemma 1.4 we have the estimates
[u®) < e VO [l < e MM VO 4 afm) + V]| 11)
fori=0,...,N.

2. Convergence

Suppose that 4: EgUE — R is a solution of (1)—(2) and z: IpUI — Ry
is given by (3). Denote uy, = g, ,ug, and ﬁg’j) = 4y, (%, 20)). The local
discretization error £: Ej, — R is defined as follows:

(11) €9 = 5oul™ 4 ) [, 16,08 —al D NED w51 on Ej, § >0,
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(12) €00 = a0 _ O\ G, 20 G0, N -1,
where
M(l)_l . .
A= h S @, =Ny, N.
=0

Let V: Ry — R4 be the function given in Assumption [V].
AssumpTioN [U]. a: EgUE — Ry is a solution of (1)-(2) of class C? and
1) a(t,-) € LY, t € Iy U I, and there exists a constant Dy > 0 such that

a(t,x) < DoV (x) on EyUE;
2) dvu(t,-), Oyu(t,-) € LY, t € IoU I, and there exists D; > 0 such that
|Owu(t,z)| < D1V (x), |0zu(t,z)| < DiV(x) on EyUE;
3) there exists a constant C' > 0 such that
|Owt(t, z)|, |Owu(t,z)|, |Ozzu(t,z)] <C on EzU E;
4) Oyul(t,-), Opzult,-) € LM, t € IpU I, and there exists Dy > 0 such that
|0nu(t,z)] < DoV(x), |Owt(t,x)] < D2V (x) on EyUE;
5) there exists a constant D3 > 0 such that
|Z2(8) — 2(t)| < D3|t —t|, ttelyul.
LEMMA 2.1. If the function i: EgUE — R satisfies Assumption [U3], then
I(Than) (16) 20y — Bgeor w6 Iy < Cr,hi

for (9, 2y € B}, such that (t©,2U+N)) € By where Cp, = C(1 + 2m +
m2).

The proof of the Lemma is similar to the proof of Theorem 3.18 in [6].

LEMMA 2.2. Suppose that Assumption [U1,2,5] is satisfied. Then there is
a: (0,400) = Ry such that limp, o a(ho) = 0 and

1(ThoZo) e — Zio lory) < hoCg, +alho), 0<i<N,
where CT (1 + )Dlrv + D3, FV (0) + HVHLI

Proof. Let s € [t0~No) ¢@] There is i — Ny < k < i — 1 such that
s € [t (D] and

Frno)(5) — (6)] < |209) — 2] +1208) — ()] 4 2= e s



732 P. Zwierkowski

Let
x Ml k1) 4 s
P(t®, hg)=Dy | V(z)dz, R(t™ ho)=Dohy > vM"H),
2 k) j=0

The function M©) is nonincreasing, hence (M) < +M®) for —Nop <k<
N and 2™ 5 o0 as hg — 0. Therefore
Pt® he) < | V(x)dw = P(ho)
M)

and P(hg) — 0 as hg — 0. Since VIM*TV4i) < y(M™4i) < 17 (M) e
have

Ni—1 N N )

R(t®, ho) < Dol S° V™) < Dor VM) = R(ny).

j=0
The function V' is decreasing, therefore R(ho) — 0 as hg — 0. From As-
sumption [U2] and Lemma 1.2 we obtain the estimates

MK 1

D . D ~
50— W) < 71;@ S VO 4 P®), k) < %hlrv + P(hg),
=0
MK+ _q . 5
|21(1]Z+1) - 2i(z’;)| < D1hohy Z V@ 4 R(t™, ho) < Dihol'v + R(ho).
5=0

The remaining part of the proof follows from Assumption [U5] and the both
above estimates with a(hg) = P(ho) + R(ho). =

THEOREM 2.3. If Assumptions [V], [C], [A], [U] are satisfied, then
1€ <V OB(ho), €™ 1 < TvB(ho),
where Ty = VO 4+ |V||;1, D = DoL, + D1 L%,
B(ho) = ho[Cy, D+ Da(1+ Me/m)] + a(ho)D + DoL\Cr, hi.
Proof. Let us subtract (1) at the point (t®),2()) € E;, j > 0, from (11).

Then, by the mean value theorem and Assumptions [U1,2,4], [C], [A], we
have

€0 < hoDaVD + DoV (L\AP 4 LAY

+ DM VYD 4 DILVOAY >0,

where

AP = 1(Thtin) 1) 200y — B w00 leB) AY = ((Thy 2o e — 2o )
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Similarly, subtracting (1) at the point (t(),0), t®) € I} | from (12) we get
€00 < hoDoV© 4+ DV O (L AT + LA,
In force of Lemmas 2.1, 2.2 we get inequalities
AP <onnd, AY < hoC, +a(ho),
which applied to the above estimates for |£(+7)], |€(9)] lead to the assertion. m

LEMMA 2.4. Letuy,uz: EgpUEL, — Ry, 21,220 Iop Ul — Ry be arbitrary
bounded discrete functions. Then for t@ e I, and (t(z),x(])) € Ey, such that
(t®, zU+N)Y € By, we have

= = k k
[(Tho21)sr — (Tho22)s lo(10) < o max |29 — 2,
k,l k,l
[(Thwr) i) wiry — (Thuz) 4o won llom) < max ud™ — uf"V)|.

1—No<k<i,
(G—N1) <I<§+N

THEOREM 2.5. Suppose that Assumptions [V], [C], [A], [SN], [U] are sat-
isfied, there is vo: (0,400) — Ry such that limp,—0v0(ho) = 0 and
(13) [, = ul < 30(ha)VD on By
Then Ha}j) —ul), Hafj) —ul)||; = 0 as hg — 0, uniformly with respect
to 1.
Proof. Denote (1) = a;:’j) — u(%9), Subtraction of the both sides of (11),
(5), and (12), (8) lead to the recurrence error equations
o . he . ho o -
c(i+17) — 8(m)(l — 260D [Z] + ho A [u, ) + 0 @i =1) (b9 ]
hl hl
ho o i L e o
+ 220D (@) — V) e hgaf DA 4 hog @D, > 1,
1
el+L0) — (001 4 poAGO [y, 2]) + hoﬂg’O)A(i’O) + hot0),
respectively, where
AT = O gy, 21— A0 [y, 2], C0D) = BD[z] — )]z, ].
It follows from Assumption [U2] that |ﬂ§:’j) — ﬂg’j_l)\ < hDVU-1. By
Assumptions [SN], [C], [A], [U] we conclude that

(14) |0 19)] < \g(i’j)](l _ %c(i,j)[z] + ho Ay, 2]) + %c(i,j)[z]‘g(i,jfl)‘
1 1

+ ho D VIO 4 o VIACD] + ol @), > 1,
(15) [FHLO] < (1 + hoACO[u, 2])[eCO] + hoty ” |AEO)] + holeEO)].
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Since \22’? — 2B < ||e®)||1, in force of Lemma 2.4 and Assumptions [C],
[A], we obtain

yc(i,j)’ <L} max ,H&‘(k")Hlv
i—No<k<i

NG| <Ly max |le®)|+L, max [e®);.
i—No<k<i i—No<k<i

Note that

M® -1 M@ 2

> (D) = ) < Lo Y (6] < Lelle.
j=1 j=1

Summation of (15) and (14) over j > 1 yields

(16) 1€y < (1 + hoMy + hoLe)[le™) 1
HholiDily max [l
+hoDol'v (Ly | max [«

(kz) (7”)
Lo _max (e h) + holg® .

From (14), (15) we obtain

A7) (e < (1 + ho M) [|e%)|| + hoL; D1V max  [e®)]|y
i—No<k<i

(0) (k)
+ hoDoV (LAi—JI\If(l)E%)ligiug [

(kv') (27)
Lo _max_ [e)) + holle).

By Theorem 2.3 we have [|€37)]], ||€@) |y < Ty B(ho).
Define an auxiliary comparison function W: Iy, U I, — Ry,
U@ = ~g(ho)Ty, —No<i<0,
UOHD = (1 4 hol) 8D + hoLyB(ho), 0<i< N —1,
where I' = My + L. + T'v[D1L} + Do(Ly + L.)]. It is easy to verify that
vl < yo(hg)et(i)r + B(ho)I‘Vt(i)et(i)F for 0<i<N.

We show by induction on 4 that [|¢®)]|, [|e@)]|; < ¥ for —Ny < i < N.
The assertion for —Ny < i < 0 follows from (13). Suppose that the assertion
holds for some 0 < ¢ < N — 1. Then applying the inductive assumption to
(16), (17) we obtain the assertion for ¢ + 1. The proof is completed. =

REMARK 2.6. Suppose that H > 0 is a sufficiently small real number, hy €
(0, H). Given a decreasing Lebesgue integrable function V: Ry — R, and
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¢: (0, H) — Ry such that limp, 0 ¢(h1) = 0, we determine Nj, satisfying

o0

| Vi@)de = 6(h).
hi Ny,

1 1

LIfV(x)=e"* a>0,then Ny = | — In———
(@) " [ahl ag(h1)

] , where [z]| denotes the
integral part of x € R.

IL If V(z) = a/(1 + 22), a > 0, then N}, = [i tan <f - W“)H .

h1 2 a

3. Numerical experiment

Let E = [0,1] x Ry, I = [0,1], By = [—15,0] x Ry, I = [-£,0].

Consider the differential integral equation with delay

2

(18)  dwu(t,z) + tfii ; sin?(z(t — 0.1))d,u(t, x)
— ult 3 1 f(t) sin(2x) gz ; uls. 2)ds
-l ){1+t+(1+§§/2Z($)d3)(1+x) 1+xt§0.1 (52 }

with the initial condition
(19) u(t,z) = (t+1)sin®z/(1 +2?) for (t,z) € Ey,
where z is given by (3), A = 7(1 — e2)/4 and

_ 20tsin?(A(t +0.9))
N t+0.95

f(t) = sin?(A(t +0.9)) [1 + 0.5A4¢ (0.75¢ + 1)], g(t)

The function (¢, z) = (t 4+ 1) sin® z/(1 4 %) is the solution of (18)—(19) and
zZ(t) = At + 1).
Note that there is no deviation with respect to the spatial variable in

(18)-(19). Therefore, M) = N, =Ny < i < N. We applied the following
difference method for (18)—(19):

(20) Sou®) + @ sin?(()) sin? (207 N0)) g, u(09) = BN [y, 2],
on Ej for j > 0, with the initial condition

(21) uli) = (14+10) sin2(2D) /(1 + (2D0)2) o Eqn,
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where u(%0), 2() are given by (8), (6), respectively, and

L)

o ~ sin(22() . y
ANy 2] = oy Se) gy (i),
1+ (@) 1+ Z}(:) 1+ ()
0
R - i1 .
Uhl’-]) — 70(71/(1_]\[07.7) + U(ZJ)) _|_ hO Z u(kvj)’
k=i—No+1
' (1)
Z,(LIO) = S (Tho2)(s)ds
t(i)/Q
i—1 h - . 1
ho Z 2 4 ?O(z( 5 ) 4+ z(z)) + hoz( 2 ), if 4 is odd,
k=141
= i—1 h )
k 0 z 3 e
ho Z 2( )—|—?(2(2)—|—z()), if ¢ is even.
| k=i+1

Suppose that u: EypUER, — Ry is the solution of (20)—(21) and z: Iy, U
I, — Ry is given by (6). Let u: Ey U E — Ry be the solution of (18)—(19)
with z: Ip U — Ry given by (3) and denote uy, = g, ,uE,> Zh = 2|1, ,UI, -

Let e(t7) = HEL” ) _ 9. We define error of the approximation:

Au= max {|le)]]},

Ay = @)L
Jnax, 1U Orgniégv{lle ll1}

Additionally, we define

Az — OEEORY
z= max {|z — 21}
The results of computations with N}, defined in Remark 2.6 for ¢(h)
Vh/2 and V(z) = 1/(1 + x?) are presented in the tables. Estimates of the
functions ¢, A for the above data are given. During computations we checked
that Assumption [SN] was satisfied. The computations were performed
by PC.

hi=ho, 0<c<0.38,0.06<\<1

ho Nphq Au Au Az
1/50 14.1 | 4.64F —03 | 7.51E — 03 | 7.24FE — 02
1/500 | 44.7 | 1.79E — 03 | 2.54E — 03 | 2.26FE — 02
1/1000 | 63.2 | 1.30E — 03 | 1.81E — 03 | 1.60E — 02
1/2000 | 89.4 | 9.62E —04 | 1.33E — 03 | 1.17TE — 02
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hi1 =2hp,0<¢<0.36,0.06 <A< 1

737

1]
2]
3l
(4]
(5]

(6]
(7]
(8]
(9]

ho | Nxha Au Au Az
1/50 28.2 | 4.21F —03 | 5.32FE — 03 | 3.88FE — 02
1/500 | 89.4 | 7.56FE — 04 | 1.20E — 03 | 1.15FE — 02
1/1000 | 126.5 | 5.52E — 04 | 8.67F — 04 | 8.17E — 03
1/2000 | 178.9 | 4.65E — 04 | 6.90FE — 04 | 6.06E — 03
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