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A CHARACTERIZATION OF COMPLETENESS
OF GENERALIZED METRIC SPACES USING
GENERALIZED BANACH CONTRACTION PRINCIPLE

Abstract. In this paper, introducing a contraction principle on generalized metric
spaces, a generalization of Banach’s fixed point theorem is obtained under the complete-
ness condition of the space. Moreover, it is established that, using such contraction
principle, completeness of the generalized metric space can be characterized.

1. Introduction and prerequisites

Several generalizations of the celebrated Banach’s fixed point theorem |[1]
were studied by various eminent mathematicians of different times, e.g.,
[3], [4], 9], [10] and others. It was shown by Connell [5] that there ex-
ists some metric space which is not complete but every contraction on it
has a fixed point. This establishes the fact that “completeness" of a met-
ric space is only sufficient for achieving a unique fixed point of Banach’s
contraction. In |7], Kannan introduced another contraction principle, called
Kannan contraction, and established a fixed point theorem in presence of
completeness condition of a metric space. It was Subrahmanyam [10], who
proved that Kannan’s theorem actually characterizes metric completeness.
However, Kannan’s contraction principle is not a generalization of Banach’s
contraction principle. In [11], Suzuki has shown that metric completeness
can be characterized by a family of functions satisfying a generalized Ba-
nach’s contraction principle.

Recently, a generalization of metric space was introduced and studied
by Branciari [2|, after replacing the triangle inequality of a metric space
by a more general inequality involving four points instead of three points.
In the same paper |2|, Branciari gave an example of a generalized metric
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space which is not a metric space. Following his definition, some fixed point
theorems on such generalized metric space was also obtained by several re-
searchers, such as, Lahiri and Das [8], Das [6], et. al.

In this paper, we have introduced a contraction principle and obtained
a fixed point theorem for functions obeying such principle on a complete
generalized metric space. We have also established that Banach’s fixed point
theorem for generalized metric space [2] follows as a corollary to our theorem.
Moreover, in the last section of this paper, we have shown that completeness
of generalized metric space can be achieved precisely via the existence of a
unique fixed point of functions belonging to a family obeying such generalized
Banach contraction principle.

We begin with a couple of definitions which we require in the sequel.
Throughout this paper, we denote the set of natural numbers by N, the
set of all positive real numbers by R™ and use the abbreviation GMS for
generalized metric spaces.

DEFINITION 1.1. [2| Let X be a set and d: X x X — R™ a mapping such
that for all z,y € X and for all distinct point &, € X, each is different from
x and y, the following hold:

l.d(z,y) =0 z=y

2. d(z,y) = d(y,z)

3. d(z,y) < d(x, &) +d(&,mn) +d(n,y)

Then (X, d) is called a generalized metric space (in short, GMS).
DEFINITION 1.2. [2]| Let (X,d) be a GMS. A sequence {z,}, in X is
said to be a Cauchy sequence if for any € > 0 there exists a natural number
ne € N such that for all n,m € N,n > n, one has d(z,, Tn+m) < €.

Further, a GMS (X,d) is called complete if every Cauchy sequence in X
converges.

Throughout this paper, for a mapping 7' : X — X and =z € X, we shall
use the following notations:

e Tx will stand for T'(x) (the image of x under the map T')
e T2z will denote the element T(T(x)) and hence, for each n € N, T"x =
T(T" (x)).

2. Generalized Banach’s contraction on GM S

THEOREM 2.1. Let (X,d) be a complete GMS, and T a mapping on X.
Define a non-increasing function 6 from [0,1) onto (1/2,1] by

Wﬂ={L if0<r<1/3

%%%,ifU3ST<L
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Assume that, there exists r € [0,1) such that
O(r)d(x, Tx) < d(x,y) = d(Tz,Ty) <rd(x,y) for all z,y € X.

Then there exists a unique fixed point z of T, and lim,_,oo T"x = z for all
reX.

Proof. Since §(r) < 1, then §(r)d(z,Tx) < d(x,Tz) for all z € X. Then
by our hypothesis,
(1) d(Tz, T%z) < rd(z,Tz) for all x € X.

Now, fix u € X, and construct a sequence {uy} such that, u, = T"u. Then
by (1),
A, Upy1) = d(T™u, T ) < rd(u, Tu).

Hence, {u,} is a Cauchy sequence. Since the space X is complete, the
Cauchy sequence {u,} converges to some point z € X. Now, we show that

(2) d(Tz,z) <rd(z,z), forallze X —{z}.
For z € X — {z}, there exists v € N such that
d(up, z) <d(z,z)/5 foralln e Nandn>wv.

Let € = d(z,2)/5. Then, since {uy,} is a Cauchy sequence and d(u,,z) <
d(x,z)/5 for all n € N, we have
O(r)d(wn, Tup) < d(tn, Up41)

< d(un, z) + d(z, um) + d(tUm, Unt+1), m>n>v

< 3d(z,2)/5

=d(z,2z) —d(z,2)/5—d(x,2)/5
(.’L’,Z) (unvun-i-l) d(un-‘rlvz)
d(un, ).
Therefore 6(r)d(un, Tu,) < d(uy,x). Hence, by our hypothesis,

d(upt1, Tx) < rd(up,z) for n > v.

Then n — oo, we get
d(Tz,z) < rd(z,z).

This completes the proof of (2). Now, if possible, let 77z # z, for all j € N.
Hence from (2),

(3) d(T7 2, 2) < rid(Tz, 2) for j €N.
We consider the following two cases:
1.0<r<1/3

2. 1/3<r<1.
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In case 1, we note 313 + 72 + 7 < 1 and 72 + 2r3 < 1. If we assume,
d(T3z,z) < d(T*z,T32) then we have,

d(z,Tz) < d(z,T32) + d(T32,T*2) + d(T*2, Tz)
< 2d(T32,T2) + d(T 2, T32) + d(T32,T?2) + d(T?2,Tz)
< 3r3%d(z, Tz) +r’d(z,Tz) + rd(z,T%)
< 2r%d(z,Tz) + r?d(Tz, 2)
= (33 + 2 +1)d(2,T2) < d(z,T%) a contradiction.

So, d(T3z,z) > d(T*2,T3z) = 0(r)d(T*z,T3z), since in this case (1) = 1.
Again by our hypothesis and equation (3) we have,

d(z,Tz) < d(z,T32) + d(T32,T*2) + d(T*z,Tz)
< r2d(z,Tz) +r3d(z,Tz) + r3d(Tz, 2)
= 2r%d(2,Tz) + rd(z,T%)
= (2r* +13)d(2,Tz) < d(z,T%) a contradiction.
In case 2, we note that for z,y € X, either 0(r)d(x,Tz) < d(x,y) or
0(r)d(Tx,T?x) < d(Tx,y) holds. Indeed, if 6(r)d(z,Tz) > d(z,y) and
O(r)d(Tz,T?x) > d(Tx,y), then

d(z,Tz) < d(z, T?z) + d(T?z,y) + d(y,T:c)
<rd(x,Tz)+ 0(r)d(T 23: 32) 4+ 0(r)d(Tz, T?x)
<rd(x,Tz) + 9( )r2d(x, Tﬂ:) + 0(r)rd(z, Tx)
< (r+0(r)r? + 6(r)r)d(z, Tx)
=(r+0(r)r(r+1))d(z,Tx)
=r(1+6(r)(r+1))d(z,Tx) < d(z, Tx).

This is a contradiction. Since, either 6(r)d(uan, u2n+1) < d(uzn,2), or 6(r)
d(ugn+1,u2n+2) < d(ugn+1,2) holds for every n € N, d(ugnt1,Tz) <
rd(ugp, z) or, d(ugni2,Tz) < rd(ugni1,2) holds for every n € N. Again,
{un} converges to z implies that the above inequalities ensure that there
exists a subsequence of {u,} which converges to Tz. Consequently, 7'z = z,
a contradiction. Therefore, in both cases, there exists ;7 € N such that
TVz = z. As {T"z} is a Cauchy sequence, we obtain Tz = z; i.e., z is a fixed
point of T.

Now if possible, let z; be another fixed point of 7. Then by equation (2),
Ve e X

d(Tz,z) < rd(z,z).
d(z1,2) < d(z1,Tz1) + d(Tz,T?2) + d(T?%21, 2)
<rd(z1,21) + rd(z1,Tz1) + rd(Tz1, 2)
< rid(z,21) < d(z,21) a contradiction.

Thus, the fixed point z of T is unique, which completes the proof. m
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Banach’s fixed point theorem on GM S, proved by Branciari [2], is im-
mediate from the above result.

COROLLARY 2.1. (Banach’s fixed point theorem on GMS) Let (X,d) be
a complete GMS and T a mapping on X such that for each x,y € X, there
is some r € (0,1) and

d(Tz,Ty) < rd(z,y),
then there exists a unique fixed point z € X of T and limy, 0o T"x = 2z, for
allx € X.

The following theorem establishes that 6(r) is the best constant for every
ref0,1):

THEOREM 2.2. Define a function 0(r) from [0,1) onto (0,1] by

oy = [ if 0<7r<1/3,
r) = _r .
A, if13<r <1

Then for each r € [0, 1), there exists a complete GM S (X, d) and a mapping
T on X such that T does not have a fixed point and

O(r)d(z, Tx) < d(z,y) = d(Tz,Ty) < rd(z,y) for all x,y € X.

Proof. In the case where 0 < r < 1/3, define a subset X of the Euclidean
space R by X = {+1,—1}. An Euclidean space being a complete metric
space is also a complete GMS. Then of course, X (being closed in the
Euclidean space) becomes a complete GM S too. Also, define a mapping T’
on X by Tx = —x for z € X. Then T does not have a fixed point, and
O(r)d(x, Tx) =1-d(1,-1)
=2>d(xz,y) forall z,y € X.
Again in the case where 1/3 < r < 1, define a subset X of the Euclidean
space R as follows
X ={0,1} U{z, :n e NU{0}}
where 2, = (1 —r)(—r)" for n € NU{0}.

It is easy to observe that X in this case is also a complete GM S

Now, define a mapping 7" on X by T0 =1, T1 = xg and Tz, = Tpi1
for n € NU{0}. We prove that T satisfies the conclusion. Consider the
following cases:

d(T0,7T1) = d(1,z0) = |1 — xo|
=|1-1+7r=r=rd0,1).

It is easy to verify that d(70,Tx,) < rd(0,z,) as well as d(T1,Tx,) <
rd(1,zy). Moreover, d(Txy, Txy) = rd(Tn, Tm), for m,n € NU {0}. This
completes the proof. m
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3. Completeness of GMS — a characterization

In this section, we see that completeness of a generalized metric space
can be determined precisely by the existence of a unique fixed point of classes
of functions satisfying the contraction principle introduced in the previous
section.

THEOREM 3.1. Let, (X,d) be a generalized metric space and define a func-
tion 6 as

o) 1, if 0<r<1/3,
r) = _y i
%, if 1/3<r<1.

Forr € [0,1) and n € (0,0(r)], let A, be the family of functions T on X
satisfying the following:

(a) Forz,y € X,
nd(xz,Tz) < d(z,y) = d(Tz,Ty) < rd(x,y).
Let B, be the family of mappings T on X satisfying (a) and the follow-
mg:
(b) T'(X) is countably infinite.
(¢) Every subset of T(X) is closed.
Then the following are equivalent:

(i) X is complete.
(ii) Every mapping T € A, g(y) has a fived point for all v € [0,1).
(ili) There existr € [0,1) andn € (0,0(r)] such that every mapping T € B,
has a fized point.

Proof. By Theorem (2.1), (i)=-(ii).

Since By, C A, g for r € [0,1) and n € (0,0(r)], (ii)=-(iii).

To prove (iii)=(i). We assume (iii), i.e. there exists r € [0,1) and 7 €
(0,0(r)] such that every mapping T € B, has a fixed point. If possible let
X be not complete. So there exists a Cauchy sequence {u,} which does not
converge. Define a function from X into [0,00) by f(z) = limy, 00 d(z, up)
for x € X. We note that f is well defined because {d(z,uy)} is a Cauchy
sequence for every x € X. Hence, f(z) — f(y) < d(z,y) < f(z) + f(y) for
z,y € X, f(x) >0 for all x € X and f(u,) = 0. Define a function 7' on
X as follows: for each x € X, since f(x) > 0 and lim,_oo f(u,) = 0, there
exists n, € N satisfying

fun,) < (pr/(3+m0))f (),

We put Tx = uy,,. Clearly, f(Tz) < (nr/(3+ rn))f(x) and Tx € {u, :
n € N} for all x € X. Then Tx # z for all x € X because f(Tz) < f(x),
i.e., T does not have a fixed point. Since T'(x) C {u, : n € N}, (b) holds.
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Also it is easy to prove (c). Now, fix z,y € X with nd(z,Tz) < d(z,y). In
the case where f(y) > 2f(x),

d(Tz, Ty) < f(Tx) + f(Ty)
< (rn/@B+rn)(f(z

)+ ()
< (r/3)(f(z) + f(y))
< (r/3)(f(2) + F() + (2r/3)(f(y) — 2/ (2))
=r(f(y) = f(2)) < rd(z,y).

In the other case where f(y) < 2f(x), we have

d(z,y) > nd(z,Tz) > n(f(z) — f(Tz))
>n(1—(nr/3+nr))f(z)

= (3n/3 +nr)f(x)
and hence,
d(Tz,Ty) < f(Tz) + f(Ty) < (nr/3 +nr)(f(z) + f(v))
< (3nr/3+nr)f(x)
<rd(z,y).

So, (a) holds, that is, T" € B,,. By (3) T has a fixed point which yields
a contradiction. Hence X is complete. m
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