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QUASI cI-SUPERCONTINUOUS FUNCTIONS
AND THEIR FUNCTION SPACES

Abstract. A new class of functions called ‘quasi cl-supercontinuous functions’ is
introduced. Basic properties of quasi cl-supercontinuous functions are studied and their
place in the hierarchy of variants of continuity that already exist in the mathematical
literature is elaborated. The notion of quasi cl-supercontinuity, in general, is independent
of continuity but coincides with cl-supercontinuity (= clopen continuity) (Applied General
Topology 8(2) (2007), 293-300; Indian J. Pure Appl. Math. 14(6) (1983), 767-772),
a significantly strong form of continuity, if range is a regular space. The class of quasi
cl-supercontinuous functions properly contains each of the classes of (i) quasi perfectly
continuous functions and (ii) almost cl-supercontinuous functions; and is strictly contained
in the class of quasi z-supercontinuous functions. Moreover, it is shown that if X is sum
connected (e.g. connected or locally connected) and Y is Hausdorff, then the function
space Lq(X,Y) of all quasi cl-supercontinuous functions as well as the function space
Ls(X,Y) of all almost cl-supercontinuous functions from X to Y is closed in Y* in the
topology of pointwise convergence.

1. Introduction

Several variants of continuity occur in the lore of mathematical literature.
Certain of these variants of continuity are stronger than continuity while
others are weaker than continuity and yet others, although analogous to
but, are independent of continuity.

The main purpose of this paper is to introduce a new class of functions
called ‘quasi cl-supercontinuous functions’ and to elaborate on their basic
properties and discuss their interplay and interrelations with other variants
of continuity that already exist in the lore of mathematical literature. It
turns out that in general the notion of quasi cl-supercontinuity is inde-
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pendent of continuity but coincides with cl-supercontinuity [45] (= clopen
continuity [41]) a significantly strong form of continuity, if the range space
is a regular space. The class of quasi cl-supercontinuous functions properly
contains the class of almost cl-supercontinuous (= almost clopen continu-
ous) functions introduced by Ekici [5] and further studied in [21], and so
includes all almost perfectly continuous (= regular set connected) functions
introduced by Dontchev, Ganster and Reilly [3] and further studied in [46]
which in their turn include all d-perfectly continuous functions studied by
Kohli and Singh [20]. Thus the class of quasi cl-supercontinuous functions
contains all perfectly continuous functions due to Noiri [38] and so all
strongly continuous functions of Levine [29].

Paper is organized as follows: Section 2 is devoted to preliminaries and
basic definitions. In Section 3, we introduce the notion of ‘quasi cl-super-
continuous function’ and elaborate on its place in the hierarchy of variants
of continuity that already exist in the mathematical literature. Examples
are included to reflect upon the distinctiveness of the notions so introduced
with the ones which already exist in the mathematical literature. Charac-
terizations of quasi cl-supercontinuous functions are given in Section 4. In
Section 5, we study the basic properties of quasi cl-supercontinuous func-
tions wherein it is shown that quasi cl-supercontinuity is preserved under
compositions and expansion of range. Moreover, sufficient conditions are for-
mulated for the preservation of quasi cl-supercontinuity under restrictions
and shrinking of range. The interplay between quasi cl-supercontinuous
functions and topological properties is considered in Section 6, while
properties of graph of quasi cl-supercontinuous functions are studied in
Section 7. In Section 8, we consider the retopologization of the domain
and/or range of quasi cl-supercontinuous function, wherein it is shown
that quasi cl-supercontinuity is transformed into certain other variants
of continuity if its domain/range is retopologized in an appropriate way.
The function spaces L4(X,Y) and Ls(X,Y) of quasi cl-supercontinuous
functions and almost cl-supercontinuous functions, respectively, with the
topology of pointwise convergence are considered in Section 9. Correla-
tion between connectedness and existence/non-existence of certain func-
tions is considered in Section 10. In Section 11, we discuss minimal
structures and M-continuous functions due to Popa and Noiri [40] and
conclude with alternative proofs of certain results of the preceding sec-
tions.

In the course of our presentation we shall omit proofs of certain results
which are similar to the corresponding results for almost cl-supercontinuous
functions [21] and include others which are necessary for the clarity and
continuity of presentation.



Quasi cl-supercontinuous functions 679

2. Preliminaries and basic definitions

A collection § of subsets of a space X is called an open complementary
system [6] if 5 consists of open sets such that for every B € f3, there exist
Bi,Bs,... € fwith B=J{X\B; :i € N}. Asubset U of aspace X is called
strongly open Fy,-set [6] if there exists a countable open complimentary
system B(U) with U € S(U). The complement of a strongly open Fj-set
is referred to as a strongly closed Gg-set. A subset H of a space X is
called a regular Gs-set [33| if H is an intersection of a sequence of closed

sets whose interiors contains H, ie. H = (02 Fy, = (o F, 0 where each

n
F,, is a closed subset of X. The complement of a regular Gs-set is called
a regular F,-set. A subset A of a space X is said to be regular open if
it is the interior of its closure, i.e., A = A", The complement of a regular
open set is called regular closed. A point = € X is called a 8-adherent
point [51] of a set A C X if every closed neighbourhood of x intersects A.
Let clyA denote the set of all #-adherent points of A. The set A is called
O-closed if A = clyA. The complement of a f-closed set is referred to as
0-open. A point x € X is called a uf-adherent point (|12], [13]) of A C X
if every G-open set U containing x intersects A. The set of all uf-adherent
points of A is denoted by cl,9A. The set A is called uf-closed if A = A,y.
A subset G of a space X is said to be cl-open [45] (1) if for each 2 € G there
exists a clopen set H such that x € H C G, or equivalently, G is expressible
as a union of clopen sets. The complement of a cl-open set will be referred
to as cl-closed. A set G is said to be d-open [51] if for each € G there
exists a regular open set H such that x € H C G, or equivalently, G can
be expressed as an arbitrary union of regular open sets. The complement of
a d-open set will be referred to as a d-closed set.

LEMMA 2.1. [11, 14] A set U in a space X is 0-open if and only if for each
x € U there exists an open set V' containing x such that V C U.

DEFINITIONS 2.2. A function f: X — Y from a topological space X into
a topological space Y is said to be

(a) strongly continuous [29] if f(A) C f(A) for each subset A of X.

(b) perfectly continuous [24, 38] if f~(V) is clopen in X for every open
set V CY.

(c) cl-supercontinuous [45] (= clopen continuous [41]) if for each x € X
and each open set V' containing f(z) there is a clopen set U containing
x such that f(U) C V.

(d) z-supercontinuous [15] if for each # € X and each open set V' contain-
ing f(x), there exists a cozero set U containing x such that f(U) C V.

(*) Staum calls ‘cl-open’ sets as ‘quasi-open’ in [49].
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(e) Dg-supercontinuous [17] if for each z € X and each open set V' con-
taining f(z), there exists a regular F,-set U containing x such that
fu)cv.

(f) strongly #-continuous |37] if for each x € X and each open set V' con-
taining f(z), there exists an open set U containing z such that f(U) C V.

(g) é-perfectly continuous [20] if f~1(V) is clopen set in X for every
d-open set V C Y.

(h) quasi perfectly continuous [28] if f~(V) is clopen in X for every
f-open set V C Y.

(i) almost perfectly continuous [46] (= regular set connected [3]) if
f~1(V) is clopen in X for every regular open set V in Y.

(j) quasi z-supercontinuous [25] if for each x € X and each #-open set
V' containing f(x), there exists a cozero set U containing x such that
fU)cv.

(k) quasi Dg-supercontinuous [27] if for each € X and each -open set
V containing f(z), there exists a regular F,-set U containing x such that
f(u)cVv.

(1) almost z-supercontinuous [27] if for each € X and each regular
open set V' containing f(z) there exists a cozero set U containing = such
that f(U) C V.

(m) almost cl-supercontinuous [21| (= almost clopen [5]) if for each
z € X and each regular open set V' containing f(z) there is a clopen set
U containing x such that f(U) C V.

(n) almost Dgs-supercontinuous [27] if for each z € X and each regular

open set V' containing f(x) there exists a regular F,-set U containing x

such that f(U) C V.

DEFINITIONS 2.3. A function f: X — Y from a topological space X into
topological space Y is said to be

(a) almost continuous [42] if for each x € X and each open set V' contain-
ing f(x) there is an open set U containing z such that f(U) c (V)°.

(b) D-continuous [9] if for each € X and each open F,-set V' containing
f(z) there is an open set U containing z such that f(U) C V.

(c) D*-continuous [44] if for each point z € X and each strongly open
Fy-set V' containing f(x) there is an open set U containing x such that
fu)cv.

(d) Dg-continuous [18] if for each point z € X and each regular Fi,-set V'
containing f(x) there is an open set U containing x such that f(U) C V.

(e) z-continuous [43] if for each x € X and each cozero set V' containing
f(z) there is an open set U containing z such that f(U) C V.
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(f) B-continuous [4] if for each z € X and each open set V' containing f(x)
there is an open set U containing z such that f(U) C V.

(g) weakly continuous [30] if for each z € X and each open set V' contain-
ing f(z) there exists an open set U containing = such that f(U) C V.

(h) faintly continuous [32] if for each x € X and each #-open set V' con-
taining f(x) there exists an open set U containing x such that f(U) C V.

(i) quasi @-continuous [39] if for each x € X and each #-open set V
containing f(x) there exists an @-open set U containing x such that
f(U)cVv.

(j) cl-continuous [18] if f~1(V) is open in X for every clopen set V C Y.

DEFINITIONS 2.4. A topological space X is said to be

(a) weakly cl-normal [23] if every pair of disjoint cl-closed subsets of X
can be separated by disjoint open sets in X.

(b) weakly 0-normal [11] if every pair of disjoint #-closed subsets of X can
be separated by disjoint open sets in X.

(c) ultra Hausdorff [49] if for each pair of distinct points in X there is a
clopen set containing one but not the other.

(d) @-compact (|7], [13]) if every #-open cover of X has a finite subcover.

(e) mildly compact (?) [49] if every clopen cover of X has a finite subcover.

DEFINITION 2.5. [45] Let p : X — Y be a surjection from a topological
space X onto a set Y. The collection of all subsets A of Y, such that p~1(A)
is cl-open in X, is a topology on Y and is called the cl-quotient topology.
The map p is called cl-quotient map.

In general cl-quotient topology is coarser than quotient topology. How-
ever, if X is a zero dimensional space, then the two are identical. Several
other variants of quotient topology occur in the literature which in general
are coarser than quotient topology. Interrelations and interplay among these
variants of quotient topology are well elaborated in ([22], [26]).

3. Quasi cl-supercontinuous functions

We call a function f : X — Y quasi cl-supercontinuous if for each
x € X and each #-open set V' containing f(z) there exists a clopen set U
containing x such that f(U) C V. The class of quasi cl-supercontinuous
functions properly contains the class of quasi perfectly functions which in
turn include all é-perfectly continuous functions and so contain all perfectly
continuous functions due to Noiri [38] which are further studied in [24].

The following diagram enlarges the diagram already existing in the litera-
ture and well illustrates the place of quasi cl-supercontinuity in the hierarchy

(?) Sostak calls mildly compact spaces as clustered spaces in [48].
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of variants of continuity that already exist in mathematical literature and

are related to the theme of the present paper.
strongly continuous d-perfectly continuous
perfectly continuous almost perfectly continuous quasi perfectly continuous

(= clopen continuous )

cl-supercontinuous . . .
— almost cl-supercontinuous —— quasi cl-supercontinuous

v v v

z-supercontinuous ——p  almost z-supercontinuous ——p  quasi z-supercontinuous

v v v

D;-supercontinuous ——p almost D;-supercontinuous ——p quasi D;-supercontinuous

Fig. 1.

However, none of the above implications is reversible as is either well

known or is exhibited by the following examples/observations and examples
in ([20], [21], [25], [27], [46])-

Observations and examples

3.1

3.2

3.3

3.4

Let X be the real line endowed with lower limit topology and Y be the
real line equipped with Smirnov’s deleted sequence topology [50]. Then
the identity function from X onto Y is quasi cl-supercontinuous but not
continuous. On the other hand, let X = Y denote the real line with
usual topology and let f be the identity function defined on X. Then f
is continuous but not quasi cl-supercontinuous.

Let X =Y =R be the set of all real numbers. Let X be endowed with
usual topology and Y be equipped with Smirnov’s deleted sequence
topology [50]. Then the identity function from X onto Y is quasi z-
supercontinuous function but not quasi cl-supercontinuous.

Let X be the real line endowed with lower limit topology and Y be the
real line with usual topology. Then the identity function from X onto
Y is quasi cl-supercontinuous (indeed cl-supercontinuous) but not quasi
perfectly continuous.

Let X = {a,b,c} be endowed with indiscrete topology. Let Y be the
same set equipped with topology 7 = {0, Y, {a}, {b}, {a,b}}. Then the
identity function from X to Y is quasi perfectly continuous and so quasi
cl-supercontinuous but not almost cl-supercontinuous.

PROPOSITION 3.5. Let f: X = Y be a quasi cl-supercontinuous function.
If Y is a regular space, then f is cl-supercontinuous.
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Proof. In view of Lemma 2.1, it follows that every open set in Y is #-open. =

PROPOSITION 3.6. If f : X — Y is a faintly continuous function defined
on a zero dimensional space X, then f is a quasi cl-supercontinuous.

Proof. Let V be a #-open set in Y. Since f is faintly continuous, f~1(V) is
open in X and so cl-open in X. Thus f is quasi cl-supercontinuous. =

4. Characterizations

DEFINITIONS 4.1. A filter base F in a space X is said to

(i) cl-converge [45] to a point = € X, written as F < x, if every clopen
set containing x contains a member of F; and

(ii) u@-converge [13] to a point x € X, written as F “ x, if every f-open
set containing x contains a member of F.

DEFINITIONS 4.2. A net (z)) in a space X is said to

i) cl-converge 0 a point x € written as x) — x, if it is eventua

i) cl ge [45] to a point € X, writt A o if it i tually
in every clopen set containing x; and

(ii) uB-converge [13] to a point z € X, written as x w4 x, if it is eventually
in every #-open set containing x.

THEOREM 4.3. For a function f: X —Y the following statements are
equivalent.

(a) f is quasi cl-supercontinuous.
(b) f~Y(V ) is cl-open for each 0-open set V C Y.

(c f(]:) f(x), for every filter base F in X, which cl-converges to x.
(d) f(zr) u_@) f(x), for every net (x)) in X, which cl-converges to x.
F([Ala) C [f(A)]ug for every set A C X.
[f

(e
) [fY(B)]a C f~Y([Blug) for every set BCY.
(g) f~YB) is cl-closed for each 0-closed set B CY .

We omit the proof of Theorem 4.3.

)
)
)
)
)
) f

5. Basic properties

THEOREM 5.1. If f : X — Y is z-continuous and g : Y — Z is quasi
cl-supercontinuous, then g o f is quasi cl-supercontinuous.

Proof. Let W be a f-open set in Z. Since g is quasi cl-supercontinuous,
g L (W) is cl-open set in Y. Let g~ (W) = |J Vi, where each V,, is a clopen
set in Y. Since f is z-continuous and since a clopen set is both a zero set
and a cozero set, in view of [43, Theorem 2.2] each f~1(V,,) is a clopen set.

Thus (go f)"' (W) = f~' g~ (W) =U f~(Va) is cl-open. =
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COROLLARY 5.2. If f : X — Y is continuous and g : Y — Z is quasi
cl-supercontinuous, then g o [ is quasi cl-supercontinuous.

REMARK 5.3. In Theorem 5.1, z-continuity of f can be replaced by any one
of the following weak variants of continuity listed in the following diagram,
since each one of them implies z-continuity.

continuous

l

almost continuous

l

0-continuous

D-continuous / \

J quasi O-continuous weakly continuous
" .
- conmslmﬂy continuous

D;-continuous

z-continuous

Fig. 2.

It is well known that none of the above implications is reversible. In
particular for an example of a faintly continuous function which is not quasi
f-continuous we refer the reader to |18, Example 2.7].

THEOREM 5.4. If f : X = Y s quasi cl-supercontinuous and g : Y — Z
is quasi 0-continuous, then g o f is quasi cl-supercontinuous. In particular,
composition of two quast cl-supercontinuous functions is quasi cl-supercon-
tinuous.

Proof. Let W be a f-open set in Z. Since g is quasi #-continuous, g~ (W)
is a f-open subset of Y and so f~1(¢g~!'(W)) is cl-open in X. Since (g o
H)7TW) = f~1(g=(W)),go f is quasi cl-supercontinuous. m

We call a function f : X — Y cl-open if f maps cl-open sets in X to
open sets in Y.
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THEOREM 5.5. Let f : X — Y be a cl-supercontinuous, cl-open surjection
and let g 1Y — Z be any function. Then go f is quasi cl-supercontinuous if
and only if g is faintly continuous.

Proof. Suppose go f is quasi cl-supercontinuous and let G be a #-open subset
of Z. Then (go f)~1(G) = f~*(g~*(@G)) is cl-open in X. Since f is a cl-open
surjection, f(f~1(¢71(G))) = ¢g71(G) is open in Y. Hence g is faintly con-
tinuous. Conversely, suppose that ¢ is faintly continuous and let V C Z
be a f-open set. Then g~!(V) is an open set in Y and so (go f)~}(V) =
f~1(g7%(V)) is cl-open in X and thus g o f is quasi cl-supercontinuous. =

THEOREM 5.6. Let f: X — Y be a cl-continuous function and let g : Y —
Z be a quasi cl-supercontinuous function. Then go f : X — Z is faintly
continuous.

Proof. Let V be a 6-open set in Z. Then g~(V) is a cl-open set in Y.
Since (go f)~1(V) = f~1(g71(V)) and since f is cl-continuous f~1(g~1(V))
is open in X. Thus g o f is faintly continuous. =

THEOREM 5.7. Let f: X — Y be a quasi cl-supercontinuous function and
let g1 Y — Z be a strongly 0-continuous function. Then go f : X — Z is
cl-supercontinuous.

Proof. Let W be an open subset of Z. In view of strong #-continuity of g,
g Y(W) is a #-open subset of Y. Again, since f is quasi cl-supercontinuous,
(go £)~*(W) = f~Yg~Y(W)) is a cl-open set in X. Hence go f is cl-super-
continuous. =

THEOREM 5.8. Let f: X — Y be a cl-quotient map. Then g :Y — Z is
faintly continuous if and only if g o f is quasi cl-supercontinuous.

Proof. Suppose ¢ is faintly continuous and let V be a f-open set in Z.
Then g—!(V) is open in Y. Since f is a cl-quotient map, (go f)~1(V) =
f~1(g71(V)) is cl-open. Thus go f is quasi cl-supercontinuous. Conversely,
let V be a f-open set in Z. Then (go f)~1(V) = f~1(g7%(V)) is a cl-open
set in X. Since f is a cl-quotient map, g~*(V) is open in Y and so g is
faintly continuous. m

THEOREM 5.9. Let f : X — Y be surjection which maps clopen sets to
clopen sets and let g : Y — Z be any function such that go f : X — Z is
quast cl-supercontinuous. Then g is quasi cl-supercontinuous.

Proof. Let V C Z be a f-open set. Since g o f is quasi cl-supercontinuous,

(go /"' (V) = fHg7"(V)) is clopen. Let f~'(g7'(V)) = Ugen Fas
where each F, is a clopen set in X. In view of hypothesis on f,g~1(V) =

f(f g7t (V) = f(U Fa) = U f(F,), where each f(F,) is clopen and

hence g~!(V) is cl-open in Y. Thus g is quasi cl-supercontinuous. =
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DEFINITION 5.10. [12, 13| A subspace S of a space X is said to be 6-
embedded in X if every #-open set in S is the intersection of a #-open set
in X with S, or equivalently every #-closed set in S is the intersection of a
f-closed set in X with S.

The following theorem elaborates on the behaviour of quasi cl-supercon-
tinuity under restrictions, shrinking and expansion of range.

THEOREM 5.11. Let f: X — Y be a function from a topological space X
into a topological space Y. Then

(1) if f is quasi cl-supercontinuous and f(X) is 0-embedded in Y, then
f: X — f(X) is quasi cl-supercontinuous,
(ii) of f is quasi cl-supercontinuous and Y is a subspace of Z, then g : X —
Z defined by g(x) = f(x) for each x € X is quasi cl-supercontinuous,
(iil) if f is quasi cl-supercontinuous and A € X, then Jlat A=Y is
quast cl-supercontinuous. Further, if f(A) is -embedded in Y, then
fia : A — f(A) is also quasi cl-supercontinuous.

Proof. (i) Let Vi be a f-open set in f(X). Since f(X) is f-embedded in
Y, there exists a f-open set V' in Y such that Vi, =V N f(X). Again, since
f: X =Y is quasi cl-supercontinuous, f~(V) is cl-open in X. Now, f~1(17)
=1 Vnf(X))=f"YV)andso f: X — f(X) is quasi cl-supercontinuous.

(ii) Let W be a -open set in Z. Then W NY is a f-open set in Y.
Since f is quasi cl-supercontinuous, f~'(W NY) is cl-open in X. Now,
since g71(W) = g7 {(WNY) = f7LWNY), it follows that g is quasi
cl-supercontinuous.

(iii) Let V be a -open set in Y. Then (fi4)~(V) = f~(V)NA. Since f
is quasi cl-supercontinuous, f~!(V) is cl-open in X. Consequently, f~(V)N
A is cl-open in A and so f|4 is quasi cl-supercontinuous. The last assertion
in (iii) is immediate in view of (i). m
THEOREM 5.12. Let f : X — Y be any function. If {Uy : o € A} is
a cl-open cover of X and if for each a € A, fo = fly, : Ua — Y is quasi
cl-supercontinuous, then f is quasi cl-supercontinuous.

THEOREM 5.13. Let {fo : X = Y, : a € A} be a family of functions and
let f: X — 1Y, be defined by f(x) = (fa(z)) for each x € X. If f is quasi

cl-supercontinuous, then each fo, is quasi cl-supercontinuous.

Proof. Let f : X — IIY, be quasi cl-supercontinuous. For each a € A,
fa = pa o f, where p, denotes the projection map p, : IY,, — Y. For each
B € A, it suffices to prove that fsz is quasi cl-supercontinuous. To this end,
let Vg be a #-open set in Yz. Then pgl(Vg) = V3 x Hogéﬁ Y, is a f-open
set in the product space I1Y,. Since f is quasi cl-supercontinuous, in view
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of Theorem 4.3, ' (Vs X [Toz5Ya) = [ (05" (V3)) = (s 0 )7 (V5) =
fs 1(V5) is cl-open in X and so fg is quasi cl-supercontinuous. m

6. Interplay between topological properties

THEOREM 6.1. Let f : X — Y be a quasi cl-supercontinuous function from
a weakly cl-normal space X into a space Y. If (i) f is an open bijection; or
(ii) f is a closed surjection, then'Y is a weakly 0-normal space.

Proof. Let A and B be disjoint #-closed subsets of Y. Since f is quasi

cl-supercontinuous, f~'(A) and f~!(B) are disjoint cl-closed subsets of X.

Since X is a weakly cl-normal space, there exist disjoint open sets U and V'

containing f~!(A) and f~!(B), respectively.

(i) In case f is an open bijection, f(U) and f(V) are disjoint open sets

containing A and B respectively.

(ii) In case f is a closed surjection, the sets W; =Y \ f(X \U) and Wy =
Y\ f(X\V) are open in Y. It is easily verified that W; and W5 are
disjoint and contain A and B respectively. m

THEOREM 6.2. Let f: X — Y be a quasi cl-supercontinuous injection into
a Hausdorff space Y. Then X is an ultra Hausdorff space.

COROLLARY 6.3. |5, Theorem 22| If f: X — Y is an almost cl-supercon-
tinuous injection and Y is Hausdorff, then X is ultra Hausdorff.

Proof. Every almost cl-supercontinuous function is quasi cl-superconti-
nuous. m

THEOREM 6.4. Let f: X — Y be a quasi cl-supercontinuous function from
a mildly compact space X onto Y. Then 'Y is a 0-compact space.

THEOREM 6.5. Let f: X = Y be a quasi cl-supercontinuous function from
a connected space X ontoY. Then Y is a connected 0-compact space.

Proof. Since every connected space is mildly compact, in view of Theo-
rem 6.4, Y is a 6-compact. Again, since connectedness is preserved under
quasi cl-supercontinuous functions, Y is a connected f-compact space. m

We may recall that a space X is said to be 8-Hausdorff (2], [47]) if
each pair of distinct points in X are contained in disjoint #-open sets.

THEOREM 6.6. Let f,g : X — Y be quasi cl-supercontinuous functions
from a space X into a 0-Hausdroff space Y. Then the equalizer E =
{r e X:f(x)=g(x)} of the functions f and g is a cl-closed subset of X.

THEOREM 6.7. Let f : X — Y be quasi cl-supercontinuous function into
a 0-Hausdorff space Y. Then the set A = {(z1,22) € XXX : f(x1) = f(z2)}
is a cl-closed subset of X x X.
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DEFINITION 6.8. [10] A space X is said to be quasi zero dimensional if
for each x € X and each 6-open set U containing x there is a clopen set V
such that x € V C U.

THEOREM 6.9. Let f : X — Y be a function and let g : X — X XY be
the graph function defined by g(x) = (z, f(x)) for each x € X. If g is quasi
cl-supercontinuous, then f is quasi cl-supercontinuous and X is a quasi zero
dimensional space.

Proof. Suppose that g is quasi cl-supercontinuous. Then by Theorem 5.4,
the composition f = p, o g is quasi cl-supercontinuous, where p, denotes the
projection map p, : X x Y — Y. To show that the space X is quasi zero
dimensional, let U be any #-open set in X and let x € U. Then U x Y is
a f-open set in X x Y containing g(z). Since g is quasi cl-supercontinuous,
there exists a clopen set V' containing = such that g(V) € U x Y. Thus
x € V C U. This shows that the space X is quasi zero dimensional. =

7. Clopen 6#-closed graphs

DEFINITION 7.1. The graph G(f) of a function f : X — Y is said to
be clopen 6-closed if for each (z,y) € G(f) there exist a clopen set U
containing z and a f-open set V containing y such that (U x V)NG(f) = 0.

THEOREM 7.2. Let f : X — Y be a quasi cl-supercontinuous function
into a 0-Hausdorff space Y. Then the graph G(f) of f is clopen 0-closed in
X xY.

Proof. Suppose (z,y) &€ G(f). Then f(x) # y. Since Y is f-Hausdorff, there
exist disjoint #-open sets V' and W containing f(z) and y, respectively. Since
f is quasi cl-supercontinuous, there exists a clopen set U containing z such
that f(U) C V. Clearly (U x W) NG(f) = 0 and so the graph G(f) of f is
clopen f-closed in X X Y. =

THEOREM 7.3. Let f : X — Y be an injection such that the graph G(f) is
clopen 0-closed in X XY . Then X is ultra Hausdorff.

THEOREM 7.4. Let f : X — Y be an open surjection such that the graph
G(f) of f is clopen 0-closed in X x Y. Then'Y is Hausdorff. Further, if f
maps clopen sets to 0-open sets, then Y is 8-Hausdorff.

Proof. Let y,2z € Y,y # z. Since f is a surjection, there exists z € X
such that f(x) =y. Then (z,z) € G(f). In view of clopen #-closedness of
the graph G(f), there exists a clopen set U containing = and a #-open set V'
containing z such that (UxV)NG(f) = (. It follows that f(U)NV = (). Since
f is an open map, f(U) is an open set containing y. Thus Y is Hausdorff.
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Further, if f maps clopen sets to #-open sets, then f(U) is a #-open set and
so Y is 6-Hausdorft. m

DEFINITION 7.5. [13](3) A subset A of space X is called 6-set if every
cover of A by 6-open subsets of X has a finite subcover.

THEOREM 7.6. Let f : X — Y be a function such that the graph G(f) of f
is clopen 0-closed in X x Y. Then f~1(K) is cl-closed in X for every 0-set
KmY.

Proof. Let K be a f-set in Y and let & f~!(K). Then for each y € K,
(z,y) € G(f). So in view of clopen 6-closedness of the graph G(f), there
exist a clopen set U, containing x and a #-open set V,, containing y such
that (U, x V) N G(f) = 0. The collection {V,, : y € K} is a cover of K
by f-open sets in Y. Since K is a 6-set, there exist a finitely many points
Yi,--.,Yn € K such that K C (J{V}, : i =1,...,n}. Let U = N, Uy,,
V = Ui, V- Then U is a clopen set containing = and f(U)N K = (. So
UcC X\ fY(K)and so X\ f~}(K) is cl-open being the union of clopen
sets. Thus f~1(K) is cl-closed. =

THEOREM 7.7. If a function f : X — Y has a clopen 0-closed graph G(f),
then f(K) is uf-closed in'Y for each subset K which is mildly compact
relative to X.

Proof. Let y ¢ f(K). Then for each z € K, (z,y) ¢ G(f). Since f has
a clopen f#-closed graph, there exists a clopen set U, in X containing x and
a B-open set V, of Y containing y such that f(U,) NV, = 0. The collection
{U; : x € K} is a cover of K by clopen sets in X. Since K is mildly compact
relative to X, there exist finitely many points 1, zs,...,z, € K such that
K Cc WUy :i=1,2,...,n}. Let V.=, Vy. Then V is a f-open set
containing y and f(K)NV = 0. Thus f(K) is uf-closed. =

8. Change of topology
In this section we study the behaviour of a quasi cl-supercontinuous func-
tion if its domain and/or range are retopologized in an appropriate way.

8.1 Let (X, 7) be a topological space and let 5 denote the collection of all
clopen subsets of (X, 7). Since the intersection of two clopen sets is
a clopen set, the collection (5 is a base for a topology 7* on X. Clearly
7% C 7 and any topological property which is preserved under continuous
bijections is transferred from (X,7) to (X,7*). Moreover, the space
(X, 7) is zero dimensional if and only if 7 = 7*. The topology 7* has
been extensively referred to in the mathematical literature (see 5], [45]).

(%) 6-sets’ are referred to as 6-compact relative to X in [7]. A @-set in a topological
space need not be @-compact. For such an example (see [13, Remark 2.2]).
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Throughout the section, the symbol 7* will have the same meaning as
in the above paragraph.

8.2 Let (Y,0) be a topological space, and let oy denote the collection of
all f-open subsets of (Y, o). Since the finite intersection and arbitrary
union of #-open sets is G-open (see [51]), the collection oy is a topology
for Y considered in [32]. Clearly, oy C o and any topological property
which is preserved by continuous bijections is transferred from (Y, o)
to (Y,0p). Moreover, the space (Y, o) is a regular space if and only if
o = oy.

Throughout the section, the symbol oy will have the same meaning as
in the above paragraph.

THEOREM 8.3. For a function f : (X,7) = (Y, 0), the following statements
are equivalent.
(a) f:(X,7) = (Y,0) is quasi cl-supercontinuous.

f (X, 1) = (Y,04) is cl-supercontinuous.

[ (X, 7) = (Y,0) is faintly continuous.

[ (X, 7) = (Y,0p) is continuous.

9. Function spaces and quasi cl-supercontinuous functions

A topological space X is said to be sum connected (8] if each z € X is
contained in a connected open set, or equivalently each component of X is
open in X. The category of sum connected spaces contains all connected
spaces as well as all locally connected spaces and represents precisely the
coreflective hull of the category of connected spaces. The product of topol-
ogist’s sine curve with a nondegenerate discrete space is a sum connected
space which is neither connected nor locally connected.

Throughout the section we assume that the function space YX of all
functions from a space X into a space Y is endowed with the topology of
pointwise convergence. In general, the set C'(X,Y) of all continuous func-
tions from a space X into a space Y is not closed in YX. In contrast
Naimpally [36] showed that if X is locally connected and Y is Hausdorff,
then the set S(X,Y) of all strongly continuous functions from X to Y is
closed in YX. In [19] Naimpally’s result is extended to a larger framework
wherein it is shown that if X is sum connected and Y is Hausdorff, then the
set P(X,Y) of all perfectly continuous functions as well as the set L(X,Y)
of all cl-supercontinuous functions from X to Y is closed in YX. This result
is further extended in ([20], [28], [46]) to show that the set Pa(X,Y") of all
d-perfectly continuous functions as well as the set Ps(X,Y") of all almost per-
fectly continuous (= regular set connected) functions and the set P, (X,Y")
of all quasi perfectly continuous functions are closed in YX under the same
hypotheses on X and Y.
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In this section we further improve upon these results to show that if
X is sum connected and Y is Hausdorff, then the set of L,(X,Y") of all
quasi cl-supercontinuous functions as well as the set Ls(X,Y) of almost
cl-supercontinuous functions is closed in YX in the topology of pointwise
convergence. Thus in this case all the eight classes of functions coincide, i.e.

S(X,Y)=P(X,Y)=L(X,Y) = PA(X,Y) = P5(X,Y) = P,(X,Y)
= Li(X,Y) = Ly(X,Y).

We may recall that a space X is a 6Tp-space [21] if for each pair of
distinct points z and y in X there is a regular open set containing one of the
points x and y but not the other.

Since an almost perfectly continuous function is almost cl-superconti-
nuous, the following result generalizes Theorem 4.1 of Singh [46]. Although
the proof is similar we include it here for the sake of completeness.

THEOREM 9.1. Let f : X — Y be an almost cl-supercontinuous function
into a 6Tp-space Y. If C is a connected set in X, then f(C) is a singleton. In
particular, every almost cl-supercontinuous function from a connected space
into a §Tp-space is constant and so strongly continuous.

Proof. Assume contrapositive and let C' be a connected subset of X such
that f(C) is a not singleton. Let f(x), f(y) € f(C), f(z) # f(y). Since Y is
a 01p-space, there exists a regular open set V' containing one of the points
f(x) and f(y) but not the other. For definiteness assume that f(z) € V.
In view of almost cl-supercontinuity of f, f~!(V) N C is a nonempty proper
cl-open subset of C, contradicting the fact that C' is connected. =

COROLLARY 9.2. Let f : X = Y be an almost cl-supercontinuous function
into a 6Ty-space Y. If X is sum connected, then f is constant on each
component of X and hence strongly continuous.

Proof. Let X be sum connected space. Then every component of X is
clopen in X. Indeed X is partitioned into disjoint components which are
clopen subsets of X. Hence it follows that any union of components of X
and the complement of this union are complementary clopen sets in X. By
Theorem 9.1, f is constant on each component of X. So for every subset S
of Y, f71(S) and X \ f~1(S) are complementary clopen sets being union of
components of X. Hence f is strongly continuous. m

REMARK 9.3. In view of the fact that every almost perfectly continuous
function is almost cl-supercontinuous, Corollary 9.2 generalizes [46, Corol-
lary 4.3] due to Singh.

REMARK 9.4. Simple examples can be given to show that the hypothesis
of §Tp-space cannot be omitted either in Theorem 9.1 or Corollary 9.2.



692 J. K. Kohli, J. Aggarwal

THEOREM 9.5. Let f : X — Y be a quasi cl-supercontinuous function into
a Hausdorff space Y. If C is a connected set in X, then f(C) is a singleton.
In particular, if X is connected, then f is constant and hence f is strongly
continuous.

Proof. Assume contrapositive and let C' be a connected subset of X such
that f(C) is not a singleton. Let f(a) and f(b) be any two distinct points
in f(C). Since Y is Hausdorff and since every compact set in a Hausdorff
space is f-closed, the set V' =Y \ {f(b)} is a #-open set containing f(a).
In view of quasi cl-supercontinuity of f, f~!(V) N C is a nonempty proper
cl-open subset of C', contradicting the fact that C' is connected. =

COROLLARY 9.6. Let f : X — Y be a quasi cl-supercontinuous function
from a sum connected space X into a Hausdorff space Y. Then f is a con-
stant on each component of X and hence strongly continuous.

Proof. Proof is similar to that of Corollary 9.2 and hence omitted. =

THEOREM 9.7. [46, Theorem 4.5] Let f : X — Y be a function from
a sum connected space into a dTy-space Y. Then the following statements
are equivalent.

(a) f is strongly continuous.

(b) f is perfectly continuous.

(¢c) f is cl-supercontinuous.

(d) f is d-perfectly continuous.

(e) f is almost perfectly continuous.

THEOREM 9.8. Let f: X =Y be a function from a sum connected space
into a Hausdorff space Y. Then the following statements are equivalent.

(a) f is strongly continuous.

(b) f is perfectly continuous.

(c) f is cl-supercontinuous.

(d) f is d-perfectly continuous.

(e) f is almost perfectly continuous.
(f) f is almost cl-supercontinuous.
(g) f is quasi cl-supercontinuous.

Proof. The implications (a) = (b) = (d) = (e) = (f) = (g) are trivial and
the implication (g) = (a) is a consequence of Corollary 9.6. So the result is
immediate in view of Theorem 9.7. m

THEOREM 9.9. Let X be a sum connected space and let Y be a Hausdorff
space. Then all the seven classes of functions S(X,Y), P(X,Y), L(X,Y),
PA(X,Y), Ps(X,Y), Ls(X,Y), Ly(X,Y) coincide and are closed in Y in
the topology of pointwise convergence.
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Proof. This is immediate in view of Theorem 9.8 and (|20, Theorem 5.4] or
[46, Theorem 4.6]). w

In particular, in view of above theorem it follows that if X is a sum
connected (e.g. connected or locally connected) space and Y is Hausdorff,
then the pointwise limit of a sequence {f, : X — Y} of almost (quasi)
cl-supercontinuous functions is almost (quasi) cl-supercontinuous.

10. Connectedness and existence/non-existence

of certain functions

It is shown in [21, Theorem 5.2] that if f : X — Y is a cl-supercontinuous
surjection defined on a connected space X, then Y is an indiscrete space.
Thus there exists no cl-supercontinuous surjection from a connected space
onto a non-indiscrete space. In contrast for almost cl-supercontinuous func-
tions we have the following.

First we may recall that a space X is said to be hyperconnected (|1],
[50]) if every nonempty open set in X is dense in X, or equivalently any two
nonempty open sets in X intersect.

THEOREM 10.1. Let f : X = Y be an almost cl-supercontinuous surjection
from a connected space X ontoY. Then'Y is a hyperconnected space.

Proof. Suppose Y is not hyperconnected. Then there exists a nonempty
proper open subset V' of Y which is not dense in Y. So W = V0 s
a nonempty proper regular open subset of Y. Since f is almost cl-superconti-
nuous, f~1(W) is a nonempty proper cl-open subset of X contradicting the

fact that X is connected. m

It follows that there exists no almost cl-supercontinuous surjection from
a connected space onto a non-hyperconnected space. Moreover, from Theo-
rem 9.1 it follows that there exists no nonconstant almost cl-supercontinuous
function from a connected space into a dTp-space. Similarly, from Theo-
rem 9.5 it follows that there exists no nonconstant quasi cl-supercontinuous
function from a connected space into a Hausdorff space.

DEFINITION 10.2. A space X is said to be quasi hyperconnected if
there exists no proper #-closed set in X or equivalently there exists no proper
f-open set in X.

THEOREM 10.3. Let f: X — Y be a quasi cl-supercontinuous surjection
from a connected space X ontoY. Then Y is quasi hyperconnected.

Proof. Suppose Y is not quasi hyperconnected and let V' be a nonempty
proper 6-open subset of X. In view of quasi cl-supercontinuity of f, f=*(V)
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is a nonempty proper cl-open subset of X contradicting the fact that X is
connected.

Thus there exists no quasi cl-supercontinuous surjection from a connected
space onto a non quasi hyperconnected space. m

11. M-continuous functions

In this section we give a brief description of notions of minimal struc-
tures and M-continuous functions introduced and studied by Popa and Noiri
[40]. We show that the notion of ‘quasi cl-supercontinuous functions’ is re-
lated with the notion of ‘M-continuous functions’ and point out that certain
results of preceding sections follow directly from results on M-continuous
functions [40].

DEFINITION 11.1. [40] A subfamily mx of the power P(X) of a nonempty
set X is called a minimal structure on X if ) € mx and X € mx.

DEFINITION 11.2. [40] A function f: (X, mx) — (Y, my) where (X, mx)
and (Y, my) are nonempty sets X and Y with minimal structures myx and
my, respectively, is said to be M-continuous if for each x € X and V' € my
containing f(x), there exists U € mx containing x such that f(U) C V.

DEFINITION 11.3. |34, 40] A minimal structure mx on a nonempty set
X is said to have the property (B) if the union of any subfamily of mx
belongs to mx.

11.4. Let X and Y be topological spaces and let mx denote the set of all
cl-open sets in X and let my denote the set of all #-open sets in Y. Then it
follows that the collections mx and my are minimal structures with property
(B) on X and Y, respectively. Now, it follows that Theorem 4.3 (a), (b), (e),
(f) and (g) are particular cases of Theorem 3.1 and Corollary 3.1 of Popa
and Noiri [40].

DEFINITION 11.5. [40] A nonempty set X with minimal structure is said
to be m-compact if every cover of X with members of mx has a finite
subcover. A subset K of a nonempty set X with a minimal structure my is
said to be m-compact if every cover of K by members of mx has a finite
subcover.

DEFINITION 11.6. [40] A function f : (X,mx) — (Y, my) is said to have
a strongly m-closed graph (respectively, m-closed graph) if for each
(z,y) € (X xY)\ G(f) there exists U € mx containing = and V € my
containing y such that f(U) Nmy-cl(V) =0 (respectively f(U)NV =0).

11.7. Since 6-open sets in a topological space X constitute a minimal struc-
ture with property (8) on X, Theorem 6.4 is a particular case of Theorem 4.2
of [40]. Moreover, Theorem 7.2 is a particular case of Theorem 4.3 of [40].
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