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REMARKS ON THE TOPOLOGIES IN THE LEBESGUE

MEASURABLE SETS

Abstract. This paper deals with the abstract density topologies in the family of
Lebesgue measurable sets generated by an operator similar to the density lower operator
defined in the family of measurable sets.

In the theory of density topologies on the real line, in the family of
Lebesgue measurable sets the density topology is introduced usually by an
operator having desired properties and defined on the family of Lebesgue
measurable sets. In that way we get the classical density topology, ψ-density
topology, f -density topology, 〈s〉-density topology (see [8], [6], [5], [3], [7],
[1], [2]).

Let us assume that R is the set of reals, ℓ is the Lebesgue measure on R,
L is the family of Lebesgue measurable sets on R and L is the family of ℓ-null
sets. By Tnat and Td we will denote the natural topology and the classical
density topology on R, respectively. The fact that ℓ(A△B) = 0 for any sets
A,B ∈ L will be denoted by A ∼ B.

We shall say that an operator Φ : L → L is a lower density operator if
the following conditions are satisfied:

(I) Φ(∅) = ∅, Φ(R) = R,
(II) Φ(A ∩B) = Φ(A) ∩ Φ(B) for any A,B ∈ L,

(III) A ∼ B ⇒ Φ(A) = Φ(B) for any A,B ∈ L,
(IV) Φ(A) ∼ A for any A ∈ L.

Many examples of such operators are known. One of well-known examples
is the classical density operator denoted by Φd. It is worth adding that if
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we consider two lower density operators Φ1 and Φ2 then Φ1(A) ∼ Φ2(A) for
any A ∈ L.

In this paper we will consider operator defined as follows.

Definition 1. Let Φ : L → 2R be an operator such that, for any sets
A,B ∈ L we infer that

10 Φ(∅) = ∅, Φ(R) = R,
20 Φ(A ∩B) = Φ(A) ∩ Φ(B),
30 A ∼ B ⇒ Φ(A) = Φ(B),
40 ℓ(Φ(A) \A) = 0.

We will call this operator an almost density operator. It is clear that the
condition 20 implies the monotonicity of Φ i.e if A ⊂ B then Φ(A) ⊂ Φ(B)
for any A,B ∈ L.

Obviously if an operator Φ is a lower density operator, then it satisfies
conditions 10 − 40 above. There exists an operator Φ : L → L fullfiling
conditions 10 − 40 which is not a lower density operator. Indeed, let

(1) Φ0(A) =

{

R, A ∼ R,

∅, ¬(A ∼ R)

for any A ∈ L. It is easy to verify that conditions 10–40 are fullfiled and
condition (IV) is not fullfiled.

Moreover, if Φ is a lower density operator and Φ∗ is an operator satisfying
conditions 10 − 40, then

ℓ(Φ(A) \ Φ∗(A)) = ℓ((Φ(A) ∩A ∪ Φ(A) \A) \ Φ∗(A))

≤ ℓ(A \ Φ∗(A)) + ℓ(Φ(A) \ A) = 0

for any A ∈ L.

Remark 2. There exists an operator Φ satisfying conditions 10 − 40 such
that for any lower density operator Φ∗ and for every set A of positive measure
such that ¬(A ∼ R), we have that ℓ(Φ∗(A) \ Φ(A)) > 0.

Proof. Let Φ be as in (1). Obviously it satisfies conditions 10 − 40. Let
Φ∗ be a lower density operator. Then for any set A of positive measure and
such that ¬(A ∼ R) we have

ℓ(Φ∗(A) \ Φ(A)) = ℓ(Φ∗(A) ∩A) + ℓ(Φ∗(A) \A)

= ℓ(Φ∗(A) ∩A) + ℓ(A \ Φ∗(A)) = ℓ(A) > 0.

From the above remark we obtain immediately that there exist operators
Φ1 and Φ2 satisfying conditions 10 − 40 such that ¬(Φ1(A) ∼ Φ2(A)) for
some A ∈ L.
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Let us introduce the following notation

TΦ = {A ∈ L : A ⊂ Φ(A)},

for an arbitrary operator Φ : L → 2R. If the family TΦ forms a topology on
R we shall say that TΦ is a topology generated by the operator Φ.

Theorem 3. (cf. Th. 6 [4]) Let Φ : L → 2R be an operator satisfying
conditions 10 − 40. Then the family TΦ = {A ∈ L : A ⊂ Φ(A)} forms a
topology on R.

Proof. By conditions 10 and 20 it is clear that the family TΦ contains ∅, R
and is closed under finite intersections. Let {At}t∈T ⊂ TΦ. We show that
⋃

t∈TAt ∈ TΦ.
Let B be a measurable kernel of the set

⋃

t∈TAt. Then for every t ∈ T
we get that B ∩At ∼ At. Hence, by condition 30, we obtain that

B ⊂
⋃

t∈T

At ⊂
⋃

t∈T

Φ(At) =
⋃

t∈T

Φ(B ∩At) ⊂ Φ(B).

By condition 40 we have that ℓ(Φ(B) \ B) = 0. Thus
⋃

t∈TAt ∈ L and
obviously

⋃

t∈TAt ⊂ Φ(
⋃

t∈TAt).

Theorem 4. Let Φ : L → 2R be an operator satisfying conditions 10 − 30.
Then the family TΦ = {A ∈ L : A ⊂ Φ(A)} forms a topology on R if and
only if

(∗) ∀
A∈L

(A ⊂ Φ(A) =⇒ ℓ(Φ(A) \A) = 0).

Proof. The proof of the sufficient condition runs similarly like the proof of
Theorem 3.
Necessity. Let us suppose that

∃
A∈L

(A ⊂ Φ(A) ∧ (Φ(A) \A) /∈ L).

Then there exists a nonmeasurable set B ⊂ Φ(A)\A. It is clear that A ∈ TΦ
and the condition 30 implies that A∪{b} ∈ TΦ for every b ∈ B. As the family
TΦ forms topology, we get that

⋃

b∈B(A∪{b}) = A∪B ∈ TΦ. It implies that
A ∪B ∈ L and finally B ∈ L. This contradiction ends the proof.

It is worth noting that the condition 30 plays a part in the above proofs.
The following example demonstrates that this condition is essential.

Example 5. Let Φ(A) = A for any A ∈ L. Obviously this operator
satisfies conditions 10, 20 and 40 but it does not satisfy the condition 30 and
the family Tφ = {A ∈ L : A ⊂ Φ(A)} does not form a topology.

The next theorem shows that the condition 30 can be replaced by some
property.
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Property 6. Let Φ : L → 2R be an operator satisfying conditions 10

and 20. If there exists an operator Φ∗ : L → 2R such that Φ(A) ⊂ Φ∗(A) for
any A ∈ L and TΦ∗ = {A ∈ L : A ⊂ Φ∗(A)} forms a topology on R, then the
family TΦ = {A ∈ L : A ⊂ Φ(A)} forms a topology on R as well.

Proof. By condition 10 and 20 it is clear that the family TΦ contains ∅, R and
is closed under finite intersections. Let {At}t∈T ⊂ TΦ. Since {At}t∈T ⊂ TΦ∗

then it is clear that
⋃

t∈TAt ∈ L. Moreover the condition 20 implies that
⋃

t∈TAt ⊂ Φ(
⋃

t∈TAt). Hence we get that
⋃

t∈TAt ∈ TΦ.

Example 7. Let

(3) Φ(A) =











R, A = R,

R \ {1}, A ∼ R ∧A 6= R,

∅, ¬(A ∼ R)

for any A ∈ L. It is easy to verify that conditions 10, 20 are fulfiled and the
condition 30 is not satisfied. However Φ(A) ⊂ Φ0(A) for any A ∈ L, so the
family TΦ = {A ∈ L : A ⊂ Φ(A)} forms a topology on R.

The following observation proves that a nonempty measurable set for
which the result of operator Φ is null set can be omitted in generated topol-
ogy TΦ.

Observation 8. Let Φ : L → 2R be an operator satisfying conditions
10 − 30 and let N0 = {A ∈ L : ℓ(Φ(A)) = 0}. Then

{A ∈ L : A ⊂ Φ(A)} = {A ∈ L \ N0 : A ⊂ Φ(A)} ∪ {∅}.

Remark 9. Let Φ : L → 2R be an operator satisfying conditions 10 − 40

and let Z ⊂ R. Then the operator ΦZ : L → 2R defined as follows

ΦZ(A) =

{

R, A ∼ R,

Φ(A) ∩ Z, ¬(A ∼ R)

for any A ∈ L also satisfies conditions 10 − 40 and

TΦZ
= {A ⊂ R : A ∼ R} ∪ (TΦ ∩ 2Z)

forms a topology. Moreover if the inner Lebesgue measure of Z is equal to 0
then TΦZ

= {A ⊂ R : A = ∅ ∨A ∼ R}.

The following examples show that there is no connection in the sense of
inclusion between the topologies generated by operators satisfying conditions
10 − 40.

Example 10. Let

Φ(A) =

{

R, A ∼ R,

Φd(A) ∩ (R \Q), ¬(A ∼ R)
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for every A ∈ L, where Q is the set of all rational numbers. Then according
to Remark 9 operator Φ : L → L satisfies conditions 10 − 40 and TΦ = {A ∈
L : A ∼ R} ∪ (Td ∩ 2R\Q). Thus

{A ⊂ R : A = ∅ ∨A ∼ R} & TΦ & Td

and
TΦ ∩ Tnat = {A ∈ Tnat : A = ∅ ∨A ∼ R}.

Example 11. Let Φ : L → L be an 〈s〉-density operator (see [2]). Then
this operator satisfies conditions 10 − 40 and

Td & TΦ

if only 〈s〉 = {sn}n∈N is an unbounded and nondecreasing sequence of posi-
tive numbers such that lim inf

n→∞

sn
sn+1

= 0.

The following example presents an operator for which the range contains
a nonmeasurable set.

Example 12. Let Y 6∈ L and Y ⊂ (0, 1). For every set A ∈ L let us put
Φ : L → 2R in the folowing manner:

Φ(A) =

{

R, A ∼ R,

Φd(A) ∩ Y, ¬(A ∼ R).

Obviously the conditions 10−40 are satisfied and Φ((0, 1)) = Φd((0, 1))∩Y =
Y 6∈ L. Simultaneously

TΦ = {A ⊂ R : A ∼ R} ∪ (Td ∩ 2Y ).

The next theorem shows that we can restrict operator Φ so that the range
is the family L.

Theorem 13. Let Φ : L → 2R be an operator satisfying conditions 10−40.
Then there exists a subfamily S ⊂ L containing ∅,R and closed under finite
intersections and an operator Φ′ : S → L satisfying conditions 10 − 40 such
that the family

TΦ′ = {A ∈ S : A ⊂ Φ′(A)}

forms a topology and
TΦ′ = TΦ,

where TΦ = {A ∈ L : A ⊂ Φ(A)}.

Proof. Let S = {A ∈ L : Φ(A) ∈ L}. Then ∅,R ∈ S and S is closed under
finite intersections. Let Φ′ = Φ|S . It is clear that Φ′ : S → L and conditions

10 − 40 are fulfiled. We show that TΦ′ = TΦ. It is sufficient to prove that
TΦ ⊂ TΦ′ . Let A ∈ TΦ. Then A ⊂ Φ(A) and Φ(A) = A ∪ (Φ(A) \ A). Since
ℓ(Φ(A) \ A) = 0 we get that A ∈ S and A ⊂ Φ(A). Thus A ∈ TΦ′ .
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By Theorem 3 the family TΦ forms a topology. Hence TΦ′ is a topology,
as well.

Let us pay attention to some properties of TΦ topologies.

Theorem 14. Let TΦ = {A ∈ L : A ⊂ Φ(A)} be a topology obtained via
operator Φ : L → 2R having the properties 10−40. Then for every set E ⊂ R
the following properties hold:

a) if E ∈ L, then E is TΦ-nowhere dense,
b) E ∈ L if and only if E is TΦ-closed and TΦ-discrete,
c) E is compact if and only if E is finite.

Moreover,

d) the space (R, TΦ) is neither Lindelöf space nor the first countable and nor
separable,

e) L ⊂ K(TΦ), where K(TΦ) is the family of meager sets on R with respect
to the topology TΦ,

f) if Tnat ⊂ TΦ, then L = B(TΦ) = Fσ(TΦ), where B(TΦ) and Fσ(TΦ) is the
family of all Borel sets and Fσ-type sets with respect to the topology TΦ,
respectively.

Proof. Conditions a)–d) can be proved in a similar way like Theorems 2.8,
2.10, 2.11 in [8], respectively. The property e) is a consequence of property
a). We shall prove condition f).

Let Tnat ⊂ TΦ and A ∈ L. Then A =
⋃∞

n=1
Fn∪B, where Fn is Tnat-closed

for n ∈ N and B ∈ L. Hence, by condition b) we get that A ∈ Fσ(TΦ) and
L ⊂ Fσ(TΦ) ⊂ B(TΦ) and we conclude that L = Fσ(TΦ) = B(TΦ).

Let us observe that condition, that the family K(TΦ) of meager sets with
respect to the topology TΦ concides with the family of the Lebesgue null
sets, is very important to get the restriction of operator Φ which becomes
the lower density operator (cf. [LMZ]). From Theorem 3 and from Theorem 5
in [4] we obtain immediately the following theorems.

Theorem 15. Let Φ : L → 2R be an operator satisfying conditions 10−40.
Then K(TΦ) = L if and only if there exist a σ-algebra S ⊂ L and a lower
density operator Φ′ : S → L such that TΦ = TΦ′ .

Theorem 16. Let Φ : L → 2R be an operator satisfying conditions 10−40.
Then K(TΦ) = L and Ba(TΦ) = L, where Ba(TΦ) is the family of sets
having the Baire property with respect to topology TΦ if and only if Φ is a
lower density operator.

The topologies generated by operator Φ : L → 2R are usually investigated
in the aspect of translation and multiplication by coefficient not equal zero
(see [1], [2]).
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Definition 17. We shall say that an operator Φ : L → 2R is invariant
with respect to translation in a set T ⊂ R if

∀
A∈L

∀
t∈T

Φ(A+ t) = Φ(A) + t.

Definition 18. We shall say that an operator Φ : L → 2R is invariant
with respect to multiplication in a set T ⊂ R if

∀
A∈L

∀
α∈T

Φ(αA) = αΦ(A).

Definition 19. We shall say that a family TΦ generated by an operator
Φ : L → 2R is invariant with respect to translation in a set T ⊂ R if

∀
A∈TΦ

∀
t∈T

A+ t ∈ TΦ.

Definition 20. We shall say that a family TΦ generated by an operator
Φ : L → 2R is invariant with respect to multiplication in a set T ⊂ R if

∀
A∈TΦ

∀
α∈T

αA ∈ TΦ.

The following property is obvious.

Property 21. If an operator Φ : L → 2R is invariant with respect to
translation (multiplication) in a set T ⊂ R, then the family TΦ generated by
the operator Φ is invariant with respect to translation (multiplication) in the
set T .

It is easy to point out an operator such that the contrary property is
not true. The following example presents an operator Φ : L → L, which
is invariant with respect to translation in the set {0}, with respect to mul-
tiplication in the set {1}, and the topology TΦ is invariant with respect to
translation in the set T = R and is invariant with respect to multiplication
in the set T = R \ {0}.

Example 22. Let x0 ∈ R and let Φ : L → L be defined as follows

Φ(A) =

{

R, A ∼ R,

Φd(A) ∩ {x0}, ¬(A ∼ R)

for any A ∈ L. Then

∀
t∈R\{0}

∃
A∈L

Φ(A+ t) 6= Φ(A) + t

and

∀
α∈R\{1}

∃
A∈L

Φ(αA) 6= αΦ(A).

Simultaneously, by Remark 9

TΦ = {A ⊂ R : A = ∅ ∨A ∼ R}
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and we have that
∀

t∈R
∀

A∈TΦ
A+ t ∈ TΦ

and
∀

α∈R\{0}
∀

A∈TΦ
αA ∈ TΦ.

At this moment we present some general properties concerning the in-
variance of an operator Φ and the topology generated by the operator Φ.

Proposition 23. Let Φ : L → 2R be an opeartor generating a topology TΦ
which is invariant with respect to translation in the set R. Let A ∈ TΦ and
α ∈ R. Then the following property holds

(

∀
B∈L

(0 ∈ Φ(B) ⇒ 0 ∈ Φ(αB))
)

⇒ (αA ∈ TΦ).

Proof. Let A ∈ TΦ and α 6= 0. Let y ∈ αA. Then y
α
∈ A ⊂ Φ(A). Hence

0 ∈ Φ(A)− y
α
= Φ(A− y

α
). By the assumption 0 ∈ Φ(αA− y) = Φ(αA)− y.

Hence y ∈ Φ(αA) and we get that αA ∈ TΦ.
Let α = 0. Then we conclude that the condition

∀
B∈L

(0 ∈ Φ(B) ⇒ 0 ∈ Φ({0}))

is not true. Indeed, let us suppose that this condition is true. Evidently,
putting B = R we have that 0 ∈ Φ(R). Thus {0} ⊂ Φ({0}) and {0} ∈ TΦ.
By translation property we obtain that {x} ∈ TΦ for any x ∈ R. This
contradicts the fact that the topology TΦ is included in the family L. In this
way the proof is completed.

Proposition 24. Let Φ : L → 2R be an opeartor generating a topology
TΦ and let Φ be invariant with respect to translation in the set R. Then for
every α ∈ R the following conditions are equivalent:

a) ∀
A∈TΦ

(0 ∈ A⇒ 0 ∈ Φ(αA)),

b) ∀
A∈TΦ

(αA ∈ TΦ).

Proof. Let α 6= 0. We shall prove that a)⇒b).
Let A ∈ TΦ and y ∈ αA. Then y

α
∈ A. It implies that 0 ∈ A − y

α
and

by the assumption 0 ∈ Φ(αA − y) = Φ(αA) − y. Hence y ∈ Φ(αA). Thus
αA ⊂ Φ(αA). It means that αA ∈ TΦ.

Now, we shall prove b)⇒a).
Let us suppose that

∃
A∈TΦ

(0 ∈ A ∧ 0 6∈ Φ(αA)).

Since αA ∈ TΦ it follows that αA ⊂ Φ(αA). Moreover we have 0 ∈ Φ(αA)
because 0 ∈ A. This contradicts the fact that 0 6∈ Φ(αA).
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Let α = 0. Then the both conditions a) and b) are false. Otherwise we
obtain that {0} ∈ TΦ and thus {x} ∈ TΦ for every x ∈ R. It is a contradiction
of the fact that the topology TΦ is included in the family L.
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