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REMARKS ON THE TOPOLOGIES IN THE LEBESGUE
MEASURABLE SETS

Abstract. This paper deals with the abstract density topologies in the family of
Lebesgue measurable sets generated by an operator similar to the density lower operator
defined in the family of measurable sets.

In the theory of density topologies on the real line, in the family of
Lebesgue measurable sets the density topology is introduced usually by an
operator having desired properties and defined on the family of Lebesgue
measurable sets. In that way we get the classical density topology, ¥-density
topology, f-density topology, (s)-density topology (see [8], [6], [5], [3], [7],
(11, 21)-

Let us assume that R is the set of reals, ¢ is the Lebesgue measure on R,
L is the family of Lebesgue measurable sets on R and L is the family of /-null
sets. By That and T3 we will denote the natural topology and the classical
density topology on R, respectively. The fact that /(AAB) = 0 for any sets
A, B € L will be denoted by A ~ B.

We shall say that an operator ® : £ — L is a lower density operator if
the following conditions are satisfied:

(D) (0) =0, ®(R) =R,

(II) ®(ANB) =®(A)N®(B) for any A, B € L,
(IIT) A~ B = ®(A) = ®(B) for any A, B € L,
(IV) ®(A) ~ A for any A € L.

Many examples of such operators are known. One of well-known examples
is the classical density operator denoted by ®4. It is worth adding that if
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we consider two lower density operators @1 and @9 then ®1(A) ~ $o(A) for
any A € L.
In this paper we will consider operator defined as follows.

DEFINITION 1. Let ® : £ — 2% be an operator such that, for any sets
A, B € L we infer that

19 ®(0) =0, 2(R) =R,
20 (AN B) = ®(A) N &(B),
3% A~ B= ®(A) = ®(B),
40 ¢(®(A)\ A) = 0.
We will call this operator an almost density operator. It is clear that the

condition 20 implies the monotonicity of ® i.e if A C B then ®(A) C ®(B)
for any A, B € L.

Obviously if an operator @ is a lower density operator, then it satisfies
conditions 1° — 4% above. There exists an operator ® : £ — £ fullfiling
conditions 1° — 4% which is not a lower density operator. Indeed, let

) Bo(4) = {gf e

for any A € L. It is easy to verify that conditions 1°-4° are fullfiled and
condition (IV) is not fullfiled.
Moreover, if ® is a lower density operator and ®* is an operator satisfying
conditions 1° — 4%, then
((@(A) \ @7(4)) =
<

((2(A)NAUR(A)\ A)\ ©7(A))

(AN ®*(A)) +L(2(A)\ A) =0

for any A € L.

REMARK 2. There exists an operator ® satisfying conditions 19 — 4° such

that for any lower density operator ®* and for every set A of positive measure

such that (A ~ R), we have that {(®*(A) \ ®(A)) > 0.

Proof. Let ® be as in (1). Obviously it satisfies conditions 1° — 4°. Let
®* be a lower density operator. Then for any set A of positive measure and
such that =(A ~ R) we have
(P (A)\ B(A)) = (D" (A) N A) +£(2"(A) \ A)
=P (A)NA)+ LA\ DP"(A) =((A) >0. m

From the above remark we obtain immediately that there exist operators
®; and P, satisfying conditions 1° — 4% such that —(®1(A) ~ ®3(A)) for
some A € L.
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Let us introduce the following notation
To={AeL:ACPA)},

for an arbitrary operator ® : £ — 2%, If the family Tg forms a topology on
R we shall say that Tg is a topology generated by the operator ®.

THEOREM 3. (cf. Th. 6 [4]) Let ® : L — 2% be an operator satisfying
conditions 1° — 4°. Then the family To = {A € L : A C ®(A)} forms a
topology on R.

Proof. By conditions 1Y and 2° it is clear that the family T3 contains (), R
and is closed under finite intersections. Let {A;}ter C Top. We show that
UteT Ar € To.

Let B be a measurable kernel of the set (J,cp A¢. Then for every t € T
we get that B N Ay ~ A;. Hence, by condition 3%, we obtain that

Bcl|JAc o) =JoBn4) coB).
teT teT teT
By condition 4 we have that ¢(®(B) \ B) = 0. Thus (J;cp 4¢ € £ and
obviously U,er At C ®(Uyer A¢). =
THEOREM 4. Let ® : £ — 2R be an operator satisfying conditions 1° — 39,
Then the family To = {A € L: A C ®(A)} forms a topology on R if and
only if
() AVE(A CP(A) = ((P(A)\ A) =0).
€
Proof. The proof of the sufficient condition runs similarly like the proof of
Theorem 3.
Necessity. Let us suppose that

S (ACAA(2(A)\4) ¢L).

Then there exists a nonmeasurable set B C ®(A)\ A. It is clear that A € Tg
and the condition 3° implies that AU{b} € Tg for every b € B. As the family
Ts forms topology, we get that | J,cg(AU{b}) = AUB € Tp. It implies that
AU B € £ and finally B € L. This contradiction ends the proof. m

It is worth noting that the condition 3° plays a part in the above proofs.
The following example demonstrates that this condition is essential.

ExXAMPLE 5. Let ®(A) = A for any A € £. Obviously this operator
satisfies conditions 1°,2% and 4° but it does not satisfy the condition 3" and
the family 7Ty = {A € L: A C ®(A)} does not form a topology.

The next theorem shows that the condition 3° can be replaced by some
property.
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PROPERTY 6. Let ® : L — 2R be an operator satisfying conditions 1°
and 2°. If there exists an operator ®* : L — 28 such that ®(A) C ®*(A) for
any A€ L and Te» ={A € L: AC ®*(A)} forms a topology on R, then the
family To ={A € L: AC P(A)} forms a topology on R as well.

Proof. By condition 1° and 2° it is clear that the family 73 contains (), R and
is closed under finite intersections. Let {A;}ier C To. Since {A;}ter C Tox
then it is clear that J;cp A¢ € L. Moreover the condition 2° implies that
User At € @(U, et At). Hence we get that (J,cr At € To. m

EXAMPLE 7. Let

R, A=R,
(3) D(A) =R\ {1}, A~RAA#R,
0, —~(A~TR)

for any A € L. It is easy to verify that conditions 1°,2% are fulfiled and the
condition 3% is not satisfied. However ®(A) C ®¢(A) for any A € L, so the
family 7o = {A € L: A C ®(A)} forms a topology on R.

The following observation proves that a nonempty measurable set for
which the result of operator ® is null set can be omitted in generated topol-
ogy Te.

OBSERVATION 8. Let ® : £L — 2R be an operator satisfying conditions
19— 3% and let Ny = {A € L : {(P(A)) =0}. Then

{AeL:ACP(A)}={AcL\Ny: ACP(A)}U{D}.
REMARK 9. Let ® : £ — 2R be an operator satisfying conditions 1° — 4°
and let Z C R. Then the operator ®z : L — 28 defined as follows

R, A~ R,
®z(A) =
(AN Z, -(A ~R)
for any A € L also satisfies conditions 19 — 4° and
To, ={ACR:A~R}U(TpN2%)

forms a topology. Moreover if the inner Lebesque measure of Z is equal to 0
then T, ={ACR: A=0VA~R}

The following examples show that there is no connection in the sense of
inclusion between the topologies generated by operators satisfying conditions
10 — 40,

ExXAMPLE 10. Let

R, A~ R,
B4) = {%(A) NR\Q), ~(A~E)
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for every A € L, where Q is the set of all rational numbers. Then according
to Remark 9 operator ® : £ — L satisfies conditions 1° —4° and Tg = {4 €
L:A~RYU(T;N28Q). Thus

{ACR:A=0VA~R}GTo G Ta

and
To N Tnat ={A € Tpat : A=0V A~R}
EXAMPLE 11. Let ® : £ — L be an (s)-density operator (see [2|). Then
this operator satisfies conditions 19 — 4% and
Ta & To

if only (s) = {sn}nen is an unbounded and nondecreasing sequence of posi-

tive numbers such that lim inf SS" =0.
n—oo “ntl

The following example presents an operator for which the range contains
a nonmeasurable set.

EXAMPLE 12. Let Y ¢ £ and Y C (0,1). For every set A € L let us put
® : £ — 2% in the folowing manner:

oo _ [® A~R,
W=\asa)ny,  ~(a~R).

Obviously the conditions 1°—4° are satisfied and ®((0, 1)) = ®4((0,1))NY =
Y & L. Simultaneously

To={ACR:A~R}U(TgN2").

The next theorem shows that we can restrict operator ® so that the range
is the family L.

THEOREM 13. Let ® : £ — 28 be an operator satisfying conditions 19 — 49,
Then there exists a subfamily S C L containing ), R and closed under finite
intersections and an operator ® : S — L satisfying conditions 1° — 4° such
that the family

Tor ={AeS:ACd'(A)}

forms a topology and

Tor = To,
where To ={A e L:AC ®(A)}.
Proof. Let S={A € L: ®(A) € L}. Then ),R € S and S is closed under
finite intersections. Let ® = ®|5. It is clear that ®' : & — £ and conditions
19 — 40 are fulfiled. We show that 7o = To. It is sufficient to prove that
To C Tor. Let A€ Tp. Then A C ®(A) and $(A) = AU (P(A) \ A). Since
0(P(A)\ A) =0 we get that A € S and A C ®(A). Thus A € Ty.
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By Theorem 3 the family 7g forms a topology. Hence Ty is a topology,
as well. m

Let us pay attention to some properties of 73 topologies.

THEOREM 14. Let To = {A € L: A C ®(A)} be a topology obtained via
operator ® : L — 28 having the properties 1°—49. Then for every set E C R
the following properties hold:

a) if E € L, then E is To-nowhere dense,
b) E €L if and only if E is Te-closed and Te-discrete,
c) E is compact if and only if E is finite.

Moreover,

d) the space (R, Tg) is neither Lindeldf space nor the first countable and nor
separable,

e) L € K(Ts), where K(Ta) is the family of meager sets on R with respect
to the topology Te,

) if That C To, then L = B(To) = Fy(Ta), where B(Te) and F,(Te) is the
family of all Borel sets and F,-type sets with respect to the topology Ta,
respectively.

Proof. Conditions a)-d) can be proved in a similar way like Theorems 2.8,
2.10, 2.11 in 8], respectively. The property e) is a consequence of property
a). We shall prove condition f).

Let Tnat C 7o and A € L. Then A = |77 | F,,UB, where F), is Tpat-closed
for n € N and B € L. Hence, by condition b) we get that A € F,(73) and
L C F;(Ts) C B(Ts) and we conclude that £ = F,(Te) = B(T3). =

Let us observe that condition, that the family K (7g) of meager sets with
respect to the topology Tg concides with the family of the Lebesgue null
sets, is very important to get the restriction of operator ® which becomes
the lower density operator (cf. [LMZ]). From Theorem 3 and from Theorem 5
in [4] we obtain immediately the following theorems.

THEOREM 15. Let ® : £ — 2R be an operator satisfying conditions 19 — 49,
Then K(Ts) = L if and only if there exist a o-algebra S C L and a lower
density operator ® : S — L such that Te = T .

THEOREM 16. Let ® : £ — 28 be an operator satisfying conditions 19 — 49,
Then K(Ts) = L and Ba(Ts) = L, where Ba(Ts) is the family of sets
having the Baire property with respect to topology T if and only if ® is a
lower density operator.

The topologies generated by operator ® : £ — 2R are usually investigated
in the aspect of translation and multiplication by coefficient not equal zero

(see [1], [2]).
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DEFINITION 17. We shall say that an operator ® : £ — 2% is invariant
with respect to translation in a set T' C R if

VOV B(A+t) = B(A) +1.
AeLl teT

DEFINITION 18. We shall say that an operator ® : £ — 2% is invariant
with respect to multiplication in a set T' C R if
V VYV d(ad) = ad(A).
AeL a€eT

DEFINITION 19. We shall say that a family T¢ generated by an operator
® : £ — 2R is invariant with respect to translation in a set 7' C R if

V VA+teTs.
AeTy teT

DEFINITION 20. We shall say that a family 7¢ generated by an operator
® : £ — 2R is invariant with respect to multiplication in a set T C R if

VYV V adeTs.
A€eTy a€T

The following property is obvious.

PROPERTY 21. If an operator ® : £L — 2% is invariant with respect to
translation (multiplication) in a set T C R, then the family To generated by
the operator ® is invariant with respect to translation (multiplication) in the
set T

It is easy to point out an operator such that the contrary property is
not true. The following example presents an operator ® : £L — L, which
is invariant with respect to translation in the set {0}, with respect to mul-
tiplication in the set {1}, and the topology 7 is invariant with respect to
translation in the set T'= R and is invariant with respect to multiplication
in the set T'=R\ {0}.

EXAMPLE 22. Let 2y € R and let ® : £ — £ be defined as follows
R A~R
(P(A) — ) )
®4(A) N{zo}, —(A~R)
for any A € £. Then

3 P(A+1t)#P(A)+1t
tGRV\{O}Aeﬁ( +1) # ®(A) +

and

3 P(aA D(A).
aGRv\{l} Ael (a )7504 ( )

Simultaneously, by Remark 9
To={ACR:A=0VvA~R}
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and we have that

V V. A+teTs
teR AcTs

and

W V oA eTp.
acR\{0} A€Ts

At this moment we present some general properties concerning the in-
variance of an operator ® and the topology generated by the operator ®.

PROPOSITION 23. Let ® : £ — 2R be an opeartor generating a topology Ta
which is invariant with respect to translation in the set R. Let A € Te and
a € R. Then the following property holds

Q%JOGMB%#OG@@B»)#(m4EEJ

Proof. Let A € T and o # 0. Let y € aA. Then £ € A C ®(A). Hence
0 ®(A)— L =0(A- L) By the assumption 0 € P(ad —y) = P(ad) —y.
Hence y € ®(aA) and we get that aA € Tp.

Let a = 0. Then we conclude that the condition

BEC(O € ®(B) = 0¢€ ¢({0}))

is not true. Indeed, let us suppose that this condition is true. Evidently,
putting B = R we have that 0 € ®(R). Thus {0} C ®({0}) and {0} € Ts.
By translation property we obtain that {z} € Tg for any x € R. This
contradicts the fact that the topology Tg is included in the family £. In this
way the proof is completed. m

PROPOSITION 24. Let ® : £ — 2R be an opeartor generating a topology
To and let @ be invariant with respect to translation in the set R. Then for
every a € R the following conditions are equivalent:

a) AEVB(O €cA=0€e P(ad)),

b) Aev’r@(aA € Tp).
Proof. Let a # 0. We shall prove that a)=Db).

Let A € Tp and y € aA. Then £ € A. It implies that 0 € A — £ and
by the assumption 0 € ®(aAd —y) = ¢(ad) —y. Hence y € ®(aA). Thus
aA C P(aA). It means that oA € Tp.

Now, we shall prove b)=-a).

Let us suppose that

3. (06470 ¢ 2(ad)).

Since oA € Tg it follows that A C ®(aA). Moreover we have 0 € ®(aA)
because 0 € A. This contradicts the fact that 0 ¢ ®(aA).
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Let w = 0. Then the both conditions a) and b) are false. Otherwise we
obtain that {0} € 73 and thus {z} € T for every x € R. It is a contradiction
of the fact that the topology T is included in the family £. =
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