

Jing Mao, Shaodong Qin

## ON PINCHING THEOREMS FOR COMPACT PSEUDO-UMBILICAL SUBMANIFOLD

**Abstract.** Consider submanifolds in the nested space. For a compact pseudo-umbilical submanifold with parallel mean curvature vector of a Riemannian submanifold with constant curvature immersed in a quasi-constant curvature Riemannian manifold, two sufficient conditions are given to let the pseudo-umbilical submanifold become a totally umbilical submanifold.

### 1. Introduction

Suppose  $M_2^{n+p+q}$  is an  $(n+p+q)$ -dimensional quasi-constant curvature Riemannian manifold,  $M_1^{n+p}(c)$  is an  $(n+p)$ -dimensional submanifold with constant curvature  $c$  in  $M_2^{n+p+q}$ , and  $M^n$  is a compact pseudo-umbilical submanifold with parallel mean curvature vector in  $M_1^{n+p}(c)$ . Then we know that  $M^n$  is a submanifold in  $M_2^{n+p+q}$ . Now, we use  $\sigma$  and  $\sigma'$  to denote the norm of second fundamental form of  $M^n$  in  $M_2^{n+p+q}$  and  $M_1^{n+p}(c)$  respectively. According to our discussion in the sequel, we can get two sufficient conditions to make the compact pseudo-umbilical submanifold  $M^n$  be a totally umbilical submanifold in  $M_1^{n+p}(c)$  as follows.

**THEOREM 1.** *Suppose  $M_1^{n+p}(c)$  is a submanifold with constant curvature  $c$  in a quasi-constant curvature space  $M_2^{n+p+q}$  and  $M^n$  is a compact pseudo-umbilical submanifold with parallel mean curvature vector in  $M_1^{n+p}(c)$ , where  $n, p \geq 2$ , if the infimum  $Q$  of Ricci curvature  $R_{ii}$  on  $M^n$  satisfies*

$$Q \geq \frac{2n(p-2)(a+H^2)+(p-2)(n+1)(b+|b|)}{2[2+n(p-1)]} \\ + (n-2)(c+H^2) - \frac{n-2}{n(n-1)}\tau',$$

then  $M^n$  is a totally umbilical submanifold in  $M_1^{n+p}(c)$ .

---

2000 *Mathematics Subject Classification*: 53C40.

*Key words and phrases*: quasi-constant curvature manifold, pseudo-umbilical submanifold, totally umbilical submanifold, Ricci curvature.

**THEOREM 2.** Suppose  $M_1^{n+p}(c)$  is a submanifold with constant curvature  $c$  in a quasi-constant curvature space  $M_2^{n+p+q}$  and  $M^n$  is a compact pseudo-umbilical submanifold with parallel mean curvature vector in  $M_1^{n+p}(c)$ , where  $n, p \geq 2$ , if the infimum  $Q$  of Ricci curvature  $R_{ii}$  on  $M^n$  satisfies one of the following conditions

$$(i) \quad Q \geq (n-2)(c+H^2) - \frac{n-2}{n(n-1)}\tau' + \mu(\sigma - nH^2),$$

$$(ii) \quad Q \geq (n-2)(c+H^2) - \frac{n-2}{n(n-1)}\tau' + \mu(\sigma' - nH^2),$$

where  $\mu = \min\left\{\frac{1}{2}, \frac{p-2}{n(p-1)}\right\}$ , then  $M^n$  is a totally umbilical submanifold in  $M_1^{n+p}(c)$ .

## 2. Local formulas

We choose a local orthogonal frame field  $\{e_1, \dots, e_n, e_{n+1}, \dots, e_{n+p}, e_{n+p+1}, \dots, e_{n+p+q}\}$  on  $M_2^{n+p+q}$ , such that  $\{e_1, \dots, e_n\}$  is a tangent frame field and  $\{e_{n+1}, \dots, e_{n+p}\}$  is a normal frame field on  $M^n$  when  $M_1^{n+p}(c)$  restricts to  $M^n$ . While  $M_2^{n+p+q}$  restricts to  $M^n$ ,  $\{e_1, \dots, e_n\}$  is a tangent frame field and  $\{e_{n+1}, \dots, e_{n+p}, e_{n+p+1}, \dots, e_{n+p+q}\}$  is a normal frame field on  $M^n$ . We fix the range of indices as follows

$$1 \leq i, j, k, \dots \leq n; \quad 1 \leq A, B, \dots \leq n+p+q,$$

$$n+1 \leq \alpha_1, \beta_1, \dots \leq n+p; \quad n+1 \leq \alpha_2, \beta_2, \dots \leq n+p+q.$$

Since  $M_2^{n+p+q}$  is a quasi-constant curvature Riemannian manifold, its curvature tensor field satisfies

$$(1) \quad K_{ABCD}^{M_2} = a(\delta_{AC}\delta_{BD} - \delta_{AD}\delta_{BC}) + b(\delta_{AC}\lambda_B\lambda_D + \delta_{BD}\lambda_A\lambda_C - \delta_{AD}\lambda_B\lambda_C - \delta_{BC}\lambda_A\lambda_D),$$

where  $\sum_A \lambda_A^2 = 1$  and  $a, b, \lambda_A$  are smooth functions on  $M_2^{n+p+q}$ .

Meanwhile, we can get the following conclusions from [1]

$$(2) \quad \sigma = \sum_{\alpha_2=n+1}^{n+p+q} \text{tr}H_{\alpha_2}^2, \quad \sigma' = \sum_{\alpha_1=n+1}^{n+p} \text{tr}H_{\alpha_1}^2, \quad \sigma \geq \sigma'.$$

Let

$$(3) \quad \tau = \sigma - \text{tr}H_{n+1}^2 = \sum_{\alpha_2=n+2}^{n+p+q} \text{tr}H_{\alpha_2}^2, \quad \tau' = \sigma' - \text{tr}H_{n+1}^2 = \sum_{\alpha_1=n+2}^{n+p} \text{tr}H_{\alpha_1}^2,$$

then by properly adjusting the normal frames so that the mean curvature vector of  $M^n$  is in the direction of  $e_{n+1}$ , this adjustment can be assured by

a degenerated transformation, we can get the following relations

$$(4) \quad \tau = \sigma - nH^2, \quad \tau' = \sigma' - nH^2, \quad \tau \geq \tau',$$

and for any  $A \in R$  the equality

$$(5) \quad \begin{aligned} & \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \\ &= (1+A) \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j,k,m} h_{ij}^{\alpha_1} (h_{km}^{\alpha_1} R_{mijk} + h_{mi}^{\alpha_1} R_{mkjk}) \\ & \quad - An(a+H^2)\tau' - Ab \left( \sum_k \lambda_k^2 \right) \tau' - Anb \sum_{\alpha_1=n+2}^{n+p} \sum_i \left( \sum_m \lambda_m h_{im}^{\alpha_1} \right)^2 \\ & \quad + A \sum_{\alpha_1=n+2}^{n+p} \sum_{\alpha_2=n+2}^{n+p+q} [\mathbf{tr}(H_{\alpha_1} H_{\alpha_2})]^2 \\ & \quad + A \sum_{\alpha_1=n+2}^{n+p} \sum_{\alpha_2=n+2}^{n+p+q} [\mathbf{tr}(H_{\alpha_1}^2 H_{\alpha_2}^2) - \mathbf{tr}(H_{\alpha_1} H_{\alpha_2})^2] \\ & \quad - A \sum_{\alpha_1=n+2}^{n+p} \sum_{\beta_1=n+2}^{n+p} [\mathbf{tr}(H_{\alpha_1}^2 H_{\beta_1}^2) - \mathbf{tr}(H_{\alpha_1} H_{\beta_1})^2], \end{aligned}$$

always holds.

Since  $0 \leq \sum_k \lambda_k^2 \leq 1$ , by Schwarz inequality, we can obtain

$$(6) \quad \begin{aligned} 0 & \leq \sum_{\alpha_1=n+2}^{n+p} \sum_i \left( \sum_m \lambda_m h_{im}^{\alpha_1} \right)^2 \\ & \leq \sum_{\alpha_1=n+2}^{n+p} \sum_i \left( \sum_m \lambda_m^2 \right) \sum_m (h_{im}^{\alpha_1})^2 \leq \sum_{\alpha_1=n+2}^{n+p} \sum_{i,m} (h_{im}^{\alpha_1})^2 = \tau'. \end{aligned}$$

**LEMMA 1.** (see [2]) Suppose  $M_1^{n+p}(c)$  is a submanifold of  $M_2^{n+p+q}$ ,  $M^n$  is a submanifold of  $M_1^{n+p}(c)$ ,  $\tau$  and  $\tau'$  are given by (3), then

$$\tau\tau' \geq \sum_{\alpha_1=n+2}^{n+p} \sum_{\alpha_2=n+2}^{n+p+q} [\mathbf{tr}(H_{\alpha_1} H_{\alpha_2})]^2 \geq \frac{1}{p-1} (\tau')^2.$$

**LEMMA 2.** (see [2]) Suppose  $M_1^{n+p}(c)$  is a submanifold of  $M_2^{n+p+q}$ ,  $M^n$  is a submanifold of  $M_1^{n+p}(c)$ ,  $\tau$  and  $\tau'$  are given by (3), then

$$\begin{aligned}
\text{(i)} \quad 0 &\leq \sum_{\alpha_1=n+2}^{n+p} \sum_{\beta_1=n+2}^{n+p} [\mathbf{tr}(H_{\alpha_1}^2 H_{\beta_1}^2) - \mathbf{tr}(H_{\alpha_1} H_{\beta_1})^2] \leq \frac{p-2}{p-1} (\tau')^2, \\
\text{(ii)} \quad 0 &\leq \sum_{\alpha_1=n+2}^{n+p} \sum_{\beta_1=n+2}^{n+p} [\mathbf{tr}(H_{\alpha_1}^2 H_{\beta_1}^2) - \mathbf{tr}(H_{\alpha_1} H_{\beta_1})^2] \\
&\leq \frac{n}{2} \sum_{\alpha_1=n+2}^{n+p} \sum_{\beta_1=n+2}^{n+p} [\mathbf{tr}(H_{\alpha_1} H_{\beta_1})]^2 \leq \frac{n}{2} (\tau')^2, \\
\text{(iii)} \quad 0 &\leq \sum_{\alpha_1=n+2}^{n+p} \sum_{\alpha_2=n+2}^{n+p+q} [\mathbf{tr}(H_{\alpha_1}^2 H_{\alpha_2}^2) - \mathbf{tr}(H_{\alpha_1} H_{\alpha_2})^2] \\
&\leq \tau \tau' - \sum_{\alpha_1=n+2}^{n+p} (\mathbf{tr} H_{\alpha_1}^2)^2 \leq \tau \tau' - \frac{1}{p-1} \tau'^2 \leq \tau \tau'.
\end{aligned}$$

**LEMMA 3.** (see [2]) Suppose  $M^n$  is a submanifold of  $M_1^{n+p}(c)$ ,  $K$  is the infimum of sectional curvatures on  $M^n$ , then

$$\sum_{\alpha_1=n+2}^{n+p} \sum_{i,j,k,m} h_{ij}^{\alpha_1} (h_{km}^{\alpha_1} R_{mijk} + h_{mi}^{\alpha_1} R_{mkjk}) \geq n \tau' K.$$

**LEMMA 4.** Suppose  $M^n$  is a pseudo-umbilical submanifold with parallel mean curvature vector in a Riemannian manifold  $M_1^{n+p}(c)$  with constant curvature ( $n \geq 2$ ),  $K$  is the infimum of sectional curvatures  $R_{ijij}$ , and  $Q$  is the infimum of Ricci curvatures  $R_{ii}$ , then

$$K \geq Q - (n-2)(c + H^2) + \frac{n-2}{n(n-1)} \tau'.$$

**Proof.** By Gauss equation, we can get the following equality

$$(7) \quad R_{ijij} = c + \sum_{\alpha_1} [h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - (h_{ij}^{\alpha_1})^2],$$

holds when  $i \neq j$ . Meanwhile, by the definition of Ricci curvature we can obtain

$$(8) \quad R_{ii} = \sum_{k \neq i} R_{ikik} = (n-1)c + \sum_{\alpha_1} h_{ii}^{\alpha_1} \sum_{k \neq i} h_{kk}^{\alpha_1} - \sum_{\alpha_1} \sum_{k \neq i} (h_{ki}^{\alpha_1})^2,$$

$$(9) \quad R_{jj} = \sum_{k \neq j} R_{jkjk} = (n-1)c + \sum_{\alpha_1} h_{jj}^{\alpha_1} \sum_{k \neq j} h_{kk}^{\alpha_1} - \sum_{\alpha_1} \sum_{k \neq j} (h_{kj}^{\alpha_1})^2.$$

Then by the identities (7), (8) and (9), we get

$$\begin{aligned}
& 2R_{ijij} - R_{ii} - R_{jj} + 2(n-2)(c + H^2) \\
&= 2c + 2 \sum_{\alpha_1} h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - \sum_{\alpha_1} 2(h_{ij}^{\alpha_1})^2 - 2c + 2(n-2)H^2 \\
&\quad - \sum_{\alpha_1} h_{ii}^{\alpha_1} \sum_{k \neq i} h_{kk}^{\alpha_1} + \sum_{\alpha_1} \sum_{k \neq i} (h_{ki}^{\alpha_1})^2 - \sum_{\alpha_1} h_{jj}^{\alpha_1} \sum_{k \neq j} h_{kk}^{\alpha_1} + \sum_{\alpha_1} \sum_{k \neq j} (h_{kj}^{\alpha_1})^2 \\
&= \sum_{\alpha_1 \neq n+1} \left[ \sum_{k \neq i} (h_{ki}^{\alpha_1})^2 + \sum_{k \neq j} (h_{kj}^{\alpha_1})^2 + 2h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - 2(h_{ij}^{\alpha_1})^2 \right. \\
&\quad \left. - h_{ii}^{\alpha_1} \sum_{k \neq i} h_{kk}^{\alpha_1} - h_{jj}^{\alpha_1} \sum_{k \neq j} h_{kk}^{\alpha_1} \right] \\
&\quad + 2(n-2)H^2 + \sum_{k \neq i} (h_{ki}^{n+1})^2 + \sum_{k \neq j} (h_{kj}^{n+1})^2 + 2h_{ii}^{n+1} h_{jj}^{n+1} - 2(h_{ij}^{n+1})^2 \\
&\quad - h_{ii}^{n+1} \sum_{k \neq i} h_{kk}^{n+1} - h_{jj}^{n+1} \sum_{k \neq j} h_{kk}^{n+1}.
\end{aligned}$$

Furthermore, since  $M^n$  is a pseudo-umbilical submanifold ( $h_{ij}^{n+p} = H\delta_{ij}$ ), (3) and (4), we have

$$\begin{aligned}
& 2R_{ijij} - R_{ii} - R_{jj} + 2(n-2)(c + H^2) \\
&= \sum_{\alpha_1 \neq n+1} \left[ \sum_{k \neq i} (h_{ki}^{\alpha_1})^2 + \sum_{k \neq j} (h_{kj}^{\alpha_1})^2 + 2h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - 2(h_{ij}^{\alpha_1})^2 \right. \\
&\quad \left. - h_{ii}^{\alpha_1} \sum_{k \neq i} h_{kk}^{\alpha_1} - h_{jj}^{\alpha_1} \sum_{k \neq j} h_{kk}^{\alpha_1} \right] \\
&= \sum_{\alpha_1 \neq n+1} \left[ \sum_{k \neq i} (h_{ki}^{\alpha_1})^2 + \sum_{k \neq j} (h_{kj}^{\alpha_1})^2 + 2h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - 2(h_{ij}^{\alpha_1})^2 + (h_{ii}^{\alpha})^2 + (h_{jj}^{\alpha})^2 \right] \\
&= \sum_{\alpha_1 \neq n+1} \left[ \sum_k (h_{ki}^{\alpha_1})^2 + \sum_k (h_{kj}^{\alpha_1})^2 + 2h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - 2(h_{ij}^{\alpha_1})^2 \right].
\end{aligned}$$

That is

$$\begin{aligned}
& 2R_{ijij} - R_{ii} - R_{jj} + 2(n-2)(c + H^2) \\
&= \sum_{\alpha_1 \neq n+1} \left[ \sum_k (h_{ki}^{\alpha_1})^2 + \sum_k (h_{kj}^{\alpha_1})^2 + 2h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - 2(h_{ij}^{\alpha_1})^2 \right].
\end{aligned}$$

Summing from 1 to  $n$  with respect to index  $i$  ( $i \neq j$ ), and using the identity (3), we can obtain

$$\begin{aligned}
& \sum_{i \neq j} 2R_{ijij} - \sum_{i \neq j} R_{ii} - (n-1)R_{jj} + 2(n-1)(n-2)(c+H^2) \\
&= \sum_{\alpha_1 \neq n+1} \left[ \sum_{i,k} (h_{ki}^{\alpha_1})^2 - \sum_k (h_{kj}^{\alpha_1})^2 + (n-1) \sum_k (h_{kj}^{\alpha_1})^2 \right. \\
&\quad \left. + \sum_{i \neq j} 2h_{ii}^{\alpha_1} h_{jj}^{\alpha_1} - 2 \sum_{i \neq j} (h_{ij}^{\alpha_1})^2 \right] \\
&= \sum_{\alpha_1 \neq n+1} \sum_{i,k} (h_{ki}^{\alpha_1})^2 + (n-2) \sum_{\alpha_1 \neq n+1} \sum_k (h_{kj}^{\alpha_1})^2 + 2 \sum_{\alpha_1 \neq n+1} \left( \sum_i h_{ii}^{\alpha_1} - h_{jj}^{\alpha_1} \right) h_{jj}^{\alpha_1} \\
&\quad - 2 \sum_{\alpha_1 \neq n+1} \left[ \sum_i (h_{ij}^{\alpha_1})^2 - (h_{jj}^{\alpha_1})^2 \right] \\
&= \tau' + (n-4) \sum_{\alpha_1 \neq n+1} \sum_k (h_{kj}^{\alpha_1})^2,
\end{aligned}$$

which implies

$$\begin{aligned}
\sum_{i \neq j} 2R_{ijij} &= \sum_{i \neq j} R_{ii} + (n-1)R_{jj} - 2(n-1)(n-2)(c+H^2) \\
&\quad + \tau' + (n-4) \sum_{\alpha_1 \neq n+1} \sum_k (h_{kj}^{\alpha_1})^2.
\end{aligned}$$

Since  $R_{ii} \geq Q, R_{jj} \geq Q$ , we get

$$\begin{aligned}
\sum_{i \neq j} 2R_{ijij} &\geq 2(n-1)Q - 2(n-1)(n-2)(c+H^2) \\
&\quad + \tau' + (n-4) \sum_{\alpha_1 \neq n+1} \sum_k (h_{kj}^{\alpha_1})^2.
\end{aligned}$$

Because the choice of index  $j$  is arbitrary, we can sum over the index  $j$  from 1 to  $n$  and get

$$\sum_{i \neq j} \left( \sum_j 2R_{ijij} \right) \geq 2n(n-1)Q - 2n(n-1)(n-2)(c+H^2) + 2(n-2)\tau'.$$

Since  $K$  is the infimum of sectional curvatures, we have

$$K \geq Q - (n-2)(c+H^2) + \frac{n-2}{n(n-1)}\tau',$$

which completes the proof of the Lemma. ■

### 3. Proofs of theorems

**Proof of Theorem 1.** Let  $A \geq 0$ , we can derive the following results from identities (4), (5), (6), Lemma 1, Lemma 3 and Lemma 2(ii).

(i) When  $b \geq 0$

$$\begin{aligned} & \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \\ & \geq (1+A)n\tau'K - An(a+H^2)\tau' - Ab\tau' - Anb\tau' + A\frac{1}{p-1}(\tau')^2 - \frac{n}{2}(\tau')^2 \\ & = \tau' \left\{ (1+A)nK - An(a+H^2) - A(n+1)b + \frac{A}{p-1}\tau' - \frac{n}{2}\tau' \right\}. \end{aligned}$$

Let  $A = \frac{n(p-1)}{2}$ , then we have

$$\begin{aligned} (10) \quad & \frac{1}{2}\Delta\tau' = \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j,k} (h_{ijk}^{\alpha_1})^2 + \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \\ & \geq \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j,k} (h_{ijk}^{\alpha_1})^2 \\ & \quad + \frac{n\tau'}{2} \{ [2 + (p-1)n]K - (p-1)n(a+H^2) - (p-1)(n+1)b \} \\ & \geq \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j,k} (h_{ijk}^{\alpha_1})^2 + \frac{n\tau'}{2} \left\{ [2 + (p-1)n] \left[ Q - (n-2)(c+H^2) + \frac{n-2}{n(n-1)}\tau' \right] \right. \\ & \quad \left. - (p-1)n(a+H^2) - (p-1)(n+1)b \right\}, \end{aligned}$$

(ii) When  $b < 0$

$$\begin{aligned} & \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \geq (1+A)n\tau'K - An(a+H^2)\tau' + A\frac{1}{p-1}(\tau')^2 - \frac{n}{2}(\tau')^2 \\ & = \tau' \left\{ (1+A)nK - An(a+H^2) + \left[ \frac{A}{p-1} - \frac{n}{2} \right] \tau' \right\}. \end{aligned}$$

Let  $A = \frac{n(p-1)}{2}$ , then we have

$$\begin{aligned} (11) \quad & \frac{1}{2}\Delta\tau' = \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j,k} (h_{ijk}^{\alpha_1})^2 + \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \\ & \geq \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j,k} (h_{ijk}^{\alpha_1})^2 + \frac{n\tau'}{2} \left\{ [2 + (p-1)n] \left[ Q - (n-2)(c+H^2) \right. \right. \\ & \quad \left. \left. + \frac{n-2}{n(n-1)}\tau' \right] - (p-1)n(a+H^2) \right\}. \end{aligned}$$

Obviously, the right hand side of inequalities (10) and (11) are nonnegative. By Hopf maximum principle, we know that  $\tau'$  is a constant, then  $\Delta\tau' = 0$ , so

$$(12) \quad \frac{n\tau'}{2} \left\{ [2 + (p-1)n] \left[ Q - (n-2)(c + H^2) + \frac{n-2}{n(n-1)}\tau' \right] - (p-1)n(a + H^2) - (p-1)(n+1)b \right\} = 0, \quad b \geq 0,$$

and

$$(13) \quad \frac{n\tau'}{2} \left\{ [2 + (p-1)n] \left[ Q - (n-2)(c + H^2) + \frac{n-2}{n(n-1)}\tau' \right] - (p-1)n(a + H^2) \right\} = 0, \quad b < 0.$$

When

$$Q > \frac{2n(p-2)(a + H^2) + (p-2)(n+1)(b + |b|)}{2[2 + n(p-1)]} + (n-2)(c + H^2) - \frac{n-2}{n(n-1)}\tau'.$$

Using the identities (12) and (13), we can get

$$\tau' = 0.$$

When

$$Q = \frac{2n(p-2)(a + H^2) + (p-2)(n+1)(b + |b|)}{2[2 + n(p-1)]} + (n-2)(c + H^2) - \frac{n-2}{n(n-1)}\tau',$$

inequalities in Lemma 2.1 and Lemma 2.2 become equalities, so

$$(14) \quad \sum_{\alpha_1=n+2}^{n+p} \sum_{\beta_1=n+2}^{n+p} [\mathbf{tr}(H_{\alpha_1}^2 H_{\beta_1}^2) - \mathbf{tr}(H_{\alpha_1} H_{\beta_1})^2] = \frac{p-2}{p-1} \left[ \sum_{\alpha_1=n+2}^{n+p} \mathbf{tr}H_{\alpha_1}^2 \right]^2.$$

The identity (14) holds if and only if the two following identities hold

$$(15) \quad \left( \sum_{\alpha_1=n+2}^{n+p} \mathbf{tr}H_{\alpha_1}^2 \right)^2 = (p-1) \sum_{\alpha_1}^{n+p} [\mathbf{tr}H_{\alpha_1}^2]^2,$$

$$(16) \quad (\lambda_i^{\alpha_1} - \lambda_k^{\alpha_1})^2 = 2[(\lambda_i^{\alpha_1})^2 + (\lambda_k^{\alpha_1})^2] = 2 \sum_j (\lambda_j^{\alpha_1})^2.$$

However, equality (15) is equal to

$$(17) \quad \mathbf{tr}H_{n+2}^2 = \mathbf{tr}H_{n+3}^2 = \cdots = \mathbf{tr}H_{n+p}^2,$$

and we can derive the following identity from (16)

$$(18) \quad \lambda_i^{\alpha_1} = 0, \quad i = 1, \dots, n$$

which implies

$$(19) \quad \operatorname{tr} H_{\alpha_1}^2 = \sum_i (\lambda_i^{\alpha_1})^2 = 0.$$

Combining (17) with equality (19), we obtain  $\tau' = 0$ . Together with the fact  $M^n$  is a pseudo-umbilical submanifold in  $M_1^{n+p}(c)$ , then we get that  $M^n$  is a totally umbilical submanifold in  $M_1^{n+p}(c)$ . ■

**Proof of Theorem 2.** Let  $A = 0$ , combining (4), (5), Lemma 2.3 with Lemma 2.2 (i), (ii), we can obtain the following inequalities

$$\begin{aligned} (i) \quad & \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \geq n\tau' K - \frac{p-2}{p-1} (\tau')^2 \\ & = n\tau' [K - \frac{p-2}{n(p-1)} (\sigma' - nH^2)] \\ & \geq n\tau' [Q - (n-2)(c + H^2) + \frac{n-2}{n(n-1)} \tau - \frac{p-2}{n(p-1)} (\sigma' - nH^2)], \end{aligned}$$

$$\begin{aligned} (ii) \quad & \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \geq n\tau' K - \frac{p-2}{p-1} (\tau')^2 \\ & \geq \tau' [nK - \frac{p-2}{p-1} \tau] = n\tau' [K - \frac{p-2}{n(p-1)} (\sigma - nH^2)] \\ & \geq n\tau' [Q - (n-2)(c + H^2) + \frac{n-2}{n(n-1)} \tau' - \frac{p-2}{n(p-1)} (\sigma - nH^2)], \end{aligned}$$

$$\begin{aligned} (iii) \quad & \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \geq n\tau' K - \frac{n}{2} (\tau')^2 \geq n\tau' (K - \frac{1}{2} \tau) \\ & = \frac{n\tau'}{2} [2K - (\sigma - nH^2)] \\ & \geq \frac{n\tau'}{2} \{2[Q - (n-2)(c + H^2) + \frac{n-2}{n(n-1)} \tau'] - (\sigma - nH^2)\}, \end{aligned}$$

$$\begin{aligned} (iv) \quad & \sum_{\alpha_1=n+2}^{n+p} \sum_{i,j} h_{ij}^{\alpha_1} \Delta h_{ij}^{\alpha_1} \geq n\tau' K - \frac{n}{2} (\tau')^2 = n\tau' (K - \frac{1}{2} \tau') \\ & = n\tau' [K - \frac{1}{2} (\sigma' - nH^2)] \\ & \geq n\tau' [Q - (n-2)(c + H^2) + \frac{n-2}{n(n-1)} \tau' - \frac{1}{2} (\sigma' - nH^2)]. \end{aligned}$$

Similar with the proof of Theorem 1, we can get the conclusion that  $M^n$  is a totally umbilical submanifold in  $M_1^{n+p}(c)$  under the assumption of Theorem 2. ■

**REMARK 3.** The key Lemma 4 has been pointed out in [3] for showing that under suitable assumptions therein a compact pseudo-umbilical submanifold with parallel mean curvature vector in a space form must be a totally umbilical submanifold. Here we would like to give the detailed proof again to emphasize the importance of this lemma in the derivation of Theorem 1 and Theorem 2. The sufficient conditions given here are sharper than those in [4], which implies our conclusions generalize the main results in [4].

### References

- [1] S. S. Chern, W. H. Chern, K. S. Lam, *Lectures on Differential Geometry*, World Scientific Publishing Company, 2006.
- [2] S. T. Yau, *Submanifolds with constant mean curvature I-II*, Amer. J. Math. 96(2) (1974), 346–366, 97(1) (1975), 76–100.
- [3] J. Mao, G. Li, *The compact pseudo-umbilical submanifold with parallel mean curvature vector in the Riemannian manifold with constant curvature*, Journal of Hubei University (Natural Science) 31(4) (2009), 339–342 (in Chinese).
- [4] J. Mao, L. Zhang, *Pinching theorems for pseudo-umbilical submanifold*, Journal of Jianghan University (Natural Science) 36(3) (2008), 8–10 (in Chinese).

Jing Mao

SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE  
HUBEI UNIVERSITY  
WUHAN 430062, PEOPLE'S REPUBLIC OF CHINA

and

DEPARTAMENTO DE MATEMÁTICA  
INSTITUTO SUPERIOR TÉCNICO  
TECHNICAL UNIVERSITY OF LISBON  
EDIFÍCIO CIÊNCIA, PISO 3  
Av. Rovisco Pais  
1049-001 LISBOA, PORTUGAL  
E-mail: jiner120@163.com, jiner120@tom.com

S. Qin

SCHOOL OF BUSINESS  
MBA EDUCATIONAL CENTER  
HUBEI UNIVERSITY  
WUHAN 430062, PEOPLE'S REPUBLIC OF CHINA  
E-mail: 271818069@qq.com

Received May 27, 2009.