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ON PINCHING THEOREMS FOR COMPACT

PSEUDO-UMBILICAL SUBMANIFOLD

Abstract. Consider submanifolds in the nested space. For a compact pseudo-
umbilical submanifold with parallel mean curvature vector of a Riemannian submanifold
with constant curvature immersed in a quasi-constant curvature Riemannian manifold,
two sufficient conditions are given to let the pseudo-umbilical submanifold become a to-
tally umbilical submanifold.

1. Introduction

Suppose M
n+p+q
2 is an (n+ p+ q)-dimensional quasi-constant curvature

Riemannian manifold, Mn+p
1 (c) is an (n+ p)-dimensional submanifold with

constant curvature c in M
n+p+q
2 , and Mn is a compact pseudo-umbilical sub-

manifold with parallel mean curvature vector in M
n+p
1 (c). Then we know

that Mn is a submanifold in M
n+p+q
2 . Now, we use σ and σ′ to denote the

norm of second fundamental form of Mn in M
n+p+q
2 and M

n+p
1 (c) respec-

tively. According to our discussion in the sequel, we can get two sufficient
conditions to make the compact pseudo-umbilical submanifold Mn be a to-
tally umbilical submanifold in M

n+p
1 (c) as follows.

Theorem 1. Suppose M
n+p
1 (c) is a submanifold with constant curvature c

in a quasi-constant curvature space M
n+p+q
2 and Mn is a compact pseudo-

umbilical submanifold with parallel mean curvature vector in M
n+p
1 (c), where

n, p ≥ 2, if the infimum Q of Ricci curvature Rii on Mn satisfies

Q ≥
2n(p− 2)(a+H2) + (p− 2)(n+ 1)(b+ |b|)

2[2 + n(p− 1)]

+ (n− 2)(c+H2)−
n− 2

n(n− 1)
τ ′,

then Mnis a totally umbilical submanifold in M
n+p
1 (c).
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Theorem 2. Suppose M
n+p
1 (c) is a submanifold with constant curvature c

in a quasi-constant curvature space M
n+p+q
2 and Mn is a compact pseudo-

umbilical submanifold with parallel mean curvature vector in M
n+p
1 (c), where

n, p ≥ 2, if the infimum Q of Ricci curvature Rii on Mn satisfies one of the
following conditions

Q ≥ (n− 2)(c+H2)−
n− 2

n(n− 1)
τ ′ + µ(σ − nH2),(i)

Q ≥ (n− 2)(c+H2)−
n− 2

n(n− 1)
τ ′ + µ(σ′ − nH2),(ii)

where µ = min
{

1
2 ,

p−2
n(p−1)

}

, then Mnis a totally umbilical submanifold in

M
n+p
1 (c).

2. Local formulas

We choose a local orthogonal frame field {e1, . . . , en, en+1, . . . , en+p,

en+p+1, . . . , en+p+q} on M
n+p+q
2 , such that {e1, . . . , en} is a tangent frame

field and {en+1, . . . , en+p} is a normal frame field on Mn when M
n+p
1 (c)

restricts to Mn. While M
n+p+q
2 restricts to Mn, {e1, . . . , en} is a tangent

frame field and {en+1, . . . , en+p, en+p+1, . . . , en+p+q} is a normal frame field
on Mn. We fix the range of indices as follows

1 ≤ i, j, k, . . . , ≤ n; 1 ≤ A,B, . . . , ≤ n+ p+ q,

n+ 1 ≤ α1, β1, . . . ≤ n+ p; n+ 1 ≤ α2, β2, . . . ≤ n+ p+ q.

Since M
n+p+q
2 is a quasi-constant curvature Riemannian manifold, its cur-

vature tensor field satisfies

KM2

ABCD = a(δACδBD − δADδBC) + b(δACλBλD(1)

+ δBDλAλC − δADλBλC − δBCλAλD),

where
∑

A λ2
A = 1 and a, b, λA are smooth functions on M

n+p+q
2 .

Meanwhile, we can get the following conclusions from [1]

(2) σ =

n+p+q
∑

α2=n+1

trH2
α2
, σ′ =

n+p
∑

α1=n+1

trH2
α1
, σ ≥ σ′.

Let

(3) τ = σ−trH2
n+1 =

n+p+q
∑

α2=n+2

trH2
α2
, τ ′ = σ′−trH2

n+1 =

n+p
∑

α1=n+2

trH2
α1
,

then by properly adjusting the normal frames so that the mean curvature
vector of Mn is in the direction of en+1, this adjustment can be assured by
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a degenerated transformation, we can get the following relations

(4) τ = σ − nH2, τ ′ = σ′ − nH2, τ ≥ τ ′,

and for any A ∈ R the equality

(5)

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij

= (1 +A)

n+p
∑

α1=n+2

∑

i,j,k,m

hα1

ij

(

hα1

kmRmijk + hα1

miRmkjk

)

−An(a+H2)τ ′ −Ab
(

∑

k

λ2
k

)

τ ′ −Anb

n+p
∑

α1=n+2

∑

i

(

∑

m

λmhα1

im

)2

+A

n+p
∑

α1=n+2

n+p+q
∑

α2=n+2

[tr(Hα1
Hα2

)]2

+A

n+p
∑

α1=n+2

n+p+q
∑

α2=n+2

[

tr(H2
α1
H2

α2
)− tr(Hα1

Hα2
)2
]

−A

n+p
∑

α1=n+2

n+p
∑

β1=n+2

[

tr(H2
α1
H2

β1
)− tr(Hα1

Hβ1
)2
]

,

always holds.

Since 0 ≤
∑

k

λ2
k ≤ 1, by Schwarz inequality, we can obtain

0 ≤

n+p
∑

α1=n+2

∑

i

(

∑

m

λmhα1

im

)2
(6)

≤

n+p
∑

α1=n+2

∑

i

(

∑

m

λ2
m

)

∑

m

(hα1

im)2 ≤

n+p
∑

α1=n+2

∑

i,m

(hα1

im)2 = τ ′.

Lemma 1. (see [2]) Suppose M
n+p
1 (c) is a submanifold of Mn+p+q

2 , Mn is

a submanifold of Mn+p
1 (c), τ and τ ′ are given by (3), then

ττ ′ ≥

n+p
∑

α1=n+2

n+p+q
∑

α2=n+2

[tr(Hα1
Hα2

)]2 ≥
1

p− 1
(τ ′)2.

Lemma 2. (see [2]) Suppose M
n+p
1 (c) is a submanifold of Mn+p+q

2 , Mn is

a submanifold of Mn+p
1 (c), τ and τ ′ are given by (3), then
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(i) 0 ≤

n+p
∑

α1=n+2

n+p
∑

β1=n+2

[

tr(H2
α1
H2

β1
)− tr(Hα1

Hβ1
)2
]

≤
p− 2

p− 1
(τ ′)2,

(ii) 0 ≤

n+p
∑

α1=n+2

n+p
∑

β1=n+2

[

tr(H2
α1
H2

β1
)− tr(Hα1

Hβ1
)2
]

≤
n

2

n+p
∑

α1=n+2

n+p
∑

β1=n+2

[tr(Hα1
Hβ1

)]2 ≤
n

2
(τ ′)2,

(iii) 0 ≤

n+p
∑

α1=n+2

n+p+q
∑

α2=n+2

[

tr(H2
α1
H2

α2
)− tr(Hα1

Hα2
)2
]

≤ ττ ′ −

n+p
∑

α1=n+2

(

trH2
α1

)2
≤ ττ ′ −

1

p− 1
τ ′2 ≤ ττ ′.

Lemma 3. (see [2]) Suppose Mn is a submanifold of M
n+p
1 (c), K is the

infimum of sectional curvatures on Mn, then

n+p
∑

α1=n+2

∑

i,j,k,m

hα1

ij

(

hα1

kmRmijk + hα1

miRmkjk

)

≥ nτ ′K.

Lemma 4. Suppose Mn is a pseudo-umbilical submanifold with parallel
mean curvature vector in a Riemannian manifold M

n+p
1 (c) with constant

curvature (n ≥ 2), K is the infimum of sectional curvatures Rijij, and Q is
the infimum of Ricci curvatures Rii, then

K ≥ Q− (n− 2)(c+H2) +
n− 2

n(n− 1)
τ ′.

Proof. By Gauss equation, we can get the following equality

(7) Rijij = c+
∑

α1

[hα1

ii h
α1

jj − (hα1

ij )
2],

holds when i 6= j. Meanwhile, by the definition of Ricci curvature we can
obtain

Rii =
∑

k 6=i

Rikik = (n− 1)c+
∑

α1

hα1

ii

∑

k 6=i

hα1

kk −
∑

α1

∑

k 6=i

(hα1

ki )
2,(8)

Rjj =
∑

k 6=j

Rjkjk = (n− 1)c+
∑

α1

hα1

jj

∑

k 6=j

hα1

kk −
∑

α1

∑

k 6=j

(hα1

kj )
2.(9)

Then by the identities (7), (8) and (9), we get
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2Rijij −Rii −Rjj + 2(n− 2)(c+H2)

= 2c+ 2
∑

α1

hα1

ii h
α1

jj −
∑

α1

2(hα1

ij )
2 − 2c+ 2(n− 2)H2

−
∑

α1

hα1

ii

∑

k 6=i

hα1

kk +
∑

α1

∑

k 6=i

(hα1

ki )
2 −

∑

α1

hα1

jj

∑

k 6=j

hα1

kk +
∑

α1

∑

k 6=j

(hα1

kj )
2

=
∑

α1 6=n+1

[

∑

k 6=i

(hα1

ki )
2 +

∑

k 6=j

(hα1

kj )
2 + 2hα1

ii h
α1

jj − 2(hα1

ij )
2

− hα1

ii

∑

k 6=i

hα1

kk − hα1

jj

∑

k 6=j

hα1

kk

]

+ 2(n− 2)H2 +
∑

k 6=i

(hn+1
ki )2 +

∑

k 6=j

(hn+1
kj )2 + 2hn+1

ii hn+1
jj − 2(hn+1

ij )2

− hn+1
ii

∑

k 6=i

hn+1
kk − hn+1

jj

∑

k 6=j

hn+1
kk .

Furthermore, since Mn is a pseudo-umbilical submanifold (hn+p
ij = Hδij),

(3) and (4), we have

2Rijij −Rii −Rjj + 2(n− 2)(c+H2)

=
∑

α1 6=n+1

[

∑

k 6=i

(

hα1

ki

)2
+

∑

k 6=j

(hαkj)
2 + 2hαiih

α
jj − 2(hα1

ij )
2

− hα1

ii

∑

k 6=i

hα1

kk − hα1

jj

∑

k 6=j

hα1

kk

]

=
∑

α1 6=n+1

[

∑

k 6=i

(hα1

ki )
2 +

∑

k 6=j

(hα1

kj )
2 + 2hα1

ii h
α1

jj − 2(hα1

ij )
2 + (hαii)

2 + (hαjj)
2
]

=
∑

α1 6=n+1

[

∑

k

(hα1

ki )
2 +

∑

k

(hα1

kj )
2 + 2hα1

ii h
α1

jj − 2(hα1

ij )
2
]

.

That is

2Rijij −Rii −Rjj + 2(n− 2)(c+H2)

=
∑

α1 6=n+1

[

∑

k

(hα1

ki )
2 +

∑

k

(hα1

kj )
2 + 2hα1

ii h
α1

jj − 2(hα1

ij )
2
]

.

Summing from 1 to n with respect to index i (i 6= j), and using the iden-
tity (3), we can obtain
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∑

i 6=j

2Rijij −
∑

i 6=j

Rii − (n− 1)Rjj + 2(n− 1)(n− 2)(c+H2)

=
∑

α1 6=n+1

[

∑

i,k

(hα1

ki )
2 −

∑

k

(hα1

kj )
2 + (n− 1)

∑

k

(hα1

kj )
2

+
∑

i 6=j

2hα1

ii h
α1

jj − 2
∑

i 6=j

(hα1

ij )
2
]

=
∑

α1 6=n+1

∑

i,k

(hα1

ki )
2 + (n− 2)

∑

α1 6=n+1

∑

k

(hα1

kj )
2 + 2

∑

α1 6=n+1

(

∑

i

hα1

ii − hα1

jj

)

hαjj

− 2
∑

α1 6=n+1

[

∑

i

(hα1

ij )
2 − (hα1

jj )
2
]

= τ ′ + (n− 4)
∑

α1 6=n+1

∑

k

(hα1

kj )
2,

which implies
∑

i 6=j

2Rijij =
∑

i 6=j

Rii + (n− 1)Rjj − 2(n− 1)(n− 2)(c+H2)

+ τ ′ + (n− 4)
∑

α1 6=n+1

∑

k

(hα1

kj )
2.

Since Rii ≥ Q,Rjj ≥ Q, we get
∑

i 6=j

2Rijij ≥ 2(n− 1)Q− 2(n− 1)(n− 2)(c+H2)

+ τ ′ + (n− 4)
∑

α1 6=n+1

∑

k

(hα1

kj )
2.

Because the choice of index j is arbitrary, we can sum over the index j from
1 to n and get
∑

i 6=j

(

∑

j

2Rijij

)

≥ 2n(n− 1)Q− 2n(n− 1)(n− 2)(c+H2) + 2(n− 2)τ ′.

Since K is the infimum of sectional curvatures, we have

K ≥ Q− (n− 2)(c+H2) +
n− 2

n(n− 1)
τ ′,

which completes the proof of the Lemma.

3. Proofs of theorems

Proof of Theorem 1. Let A ≥ 0 , we can derive the following results from
identities (4), (5), (6), Lemma 1, Lemma 3 and Lemma 2(ii).
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(i) When b ≥ 0

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij

≥ (1 +A)nτ ′K −An(a+H2)τ ′ −Abτ ′ −Anbτ ′ +A
1

p− 1
(τ ′)2 −

n

2
(τ ′)2

= τ ′
{

(1 +A)nK −An(a+H2)−A(n+ 1)b+
A

p− 1
τ ′ −

n

2
τ ′
}

.

Let A = n(p−1)
2 , then we have

(10)
1

2
∆τ ′ =

n+p
∑

α1=n+2

∑

i,j,k

(hα1

ijk)
2 +

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij

≥

n+p
∑

α1=n+2

∑

i,j,k

(hα1

ijk)
2

+
nτ ′

2
{[2 + (p− 1)n]K − (p− 1)n(a+H2)− (p− 1)(n+ 1)b}

≥

n+p
∑

α1=n+2

∑

i,j,k

(hα1

ijk)
2+

nτ ′

2

{

[2 + (p− 1)n]

[

Q−(n− 2)(c+H2)+
n−2

n(n−1)
τ ′
]

− (p− 1)n(a+H2)− (p− 1)(n+ 1)b

}

,

(ii) When b < 0

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij ≥ (1+A)nτ ′K −An(a+H2)τ ′+A
1

p− 1
(τ ′)2 −

n

2
(τ ′)2

= τ ′
{

(1 +A)nK −An(a+H2) +

[

A

p− 1
−

n

2

]

τ ′
}

.

Let A = n(p−1)
2 , then we have

1

2
∆τ ′ =

n+p
∑

α1=n+2

∑

i,j,k

(hα1

ijk)
2 +

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij(11)

≥

n+p
∑

α1=n+2

∑

i,j,k

(hα1

ijk)
2 +

nτ ′

2

{

[2 + (p− 1)n]

[

Q− (n− 2)(c+H2)

+
n− 2

n(n− 1)
τ ′
]

− (p− 1)n(a+H2)

}

.
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Obviously, the right hand side of inequalities (10) and (11) are nonnegative.
By Hopf maximum principle, we know that τ ′ is a constant, then ∆τ ′ = 0,
so

(12)
nτ ′

2

{

[2 + (p− 1)n]

[

Q− (n− 2)(c+H2) +
n− 2

n(n− 1)
τ ′
]

− (p− 1)n(a+H2)− (p− 1)(n+ 1)b

}

= 0, b ≥ 0,

and

(13)
nτ ′

2

{

[2 + (p− 1)n]

[

Q− (n− 2)(c+H2) +
n− 2

n(n− 1)
τ ′
]

− (p− 1)n(a+H2)

}

= 0, b < 0.

When

Q >
2n(p− 2)(a+H2) + (p− 2)(n+ 1)(b+ |b|)

2[2 + n(p− 1)]

+ (n− 2)(c+H2)−
n− 2

n(n− 1)
τ ′.

Using the identities (12) and (13), we can get

τ ′ = 0.

When

Q =
2n(p− 2)(a+H2) + (p− 2)(n+ 1)(b+ |b|)

2[2 + n(p− 1)]

+ (n− 2)(c+H2)−
n− 2

n(n− 1)
τ ′,

inequalities in Lemma 2.1 and Lemma 2.2 become equalities, so

(14)

n+p
∑

α1=n+2

n+p
∑

β1=n+2

[tr(H2
α1
H2

β1
)−tr(Hα1

Hβ1
)2] =

p− 2

p− 1

[

n+p
∑

α1=n+2

trH2
α1

]2
.

The identity (14) holds if and only if the two following identities hold

(

n+p
∑

α1=n+2

trH2
α1

)2
= (p− 1)

n+p
∑

α1

[trH2
α1
]2,(15)

(λα1

i − λα1

k )2 = 2[(λα1

i )2 + (λα1

k )2] = 2
∑

j

(λα1

j )2.(16)

However, equality (15) is equal to

(17) trH2
n+2 = trH2

n+3 = · · · = trH2
n+p,

and we can derive the following identity from (16)
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(18) λα1

i = 0, i = 1, . . . , n

which implies

(19) trH2
α1

=
∑

i

(λα1

i )2 = 0.

Combining (17) with equality (19), we obtain τ ′ = 0. Together with the fact
Mn is a pseudo-umbilical submanifold in M

n+p
1 (c), then we get that Mn is

a totally umbilical submanifold in M
n+p
1 (c).

Proof of Theorem 2. Let A = 0, combining (4), (5), Lemma 2.3 with
Lemma 2.2 (i), (ii), we can obtain the following inequalities

(i)

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij ≥ nτ ′K −
p− 2

p− 1
(τ ′)2

= nτ ′[K −
p− 2

n(p− 1)
(σ′ − nH2)]

≥ nτ ′[Q− (n− 2)(c+H2) +
n− 2

n(n− 1)
τ −

p− 2

n(p− 1)
(σ′ − nH2)],

(ii)

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij ≥ nτ ′K −
p− 2

p− 1
(τ ′)2

≥ τ ′[nK −
p− 2

p− 1
τ ] = nτ ′[K −

p− 2

n(p− 1)
(σ − nH2)]

≥ nτ ′[Q− (n− 2)(c+H2) +
n− 2

n(n− 1)
τ ′ −

p− 2

n(p− 1)
(σ − nH2)],

(iii)

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij ≥ nτ ′K −
n

2
(τ ′)2 ≥ nτ ′(K −

1

2
τ)

=
nτ ′

2
[2K − (σ − nH2)]

≥
nτ ′

2
{2[Q− (n− 2)(c+H2) +

n− 2

n(n− 1)
τ ′]− (σ − nH2)},

(iv)

n+p
∑

α1=n+2

∑

i,j

hα1

ij ∆hα1

ij ≥ nτ ′K −
n

2
(τ ′)2 = nτ ′(K −

1

2
τ ′)

= nτ ′[K −
1

2
(σ′ − nH2)]

≥ nτ ′[Q− (n− 2)(c+H2) +
n− 2

n(n− 1)
τ ′ −

1

2
(σ′ − nH2)].
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Similar with the proof of Theorem 1, we can get the conclusion that
Mn is a totally umbilical submanifold in M

n+p
1 (c) under the assumption of

Theorem 2.

Remark 3. The key Lemma 4 has been pointed out in [3] for showing that
under suitable assumptions therein a compact pseudo-umbilical submanifold
with parallel mean curvature vector in a space form must be a totally um-
bilical submanifold. Here we would like to give the detailed proof again to
emphasize the importance of this lemma in the derivation of Theorem 1 and
Theorem 2. The sufficient conditions given here are sharper than those in
[4], which implies our conclusions generalize the main results in [4].
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