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SOME WEAKLY CONTRACTIVE MAPPING THEOREMS
IN PARTIALLY ORDERED SPACES AND APPLICATIONS

Abstract. The purpose of this paper is to present some fixed point theorems for
certain weakly contractive mappings, known as weakly (¢ — )-contractive mappings,
in a complete metric space endowed with a partial ordering. Subsequently, we apply
our main results to obtain a solution of a first order periodic problem and study the
possibility of optimally controlling the solutions of ordinary differential equations via
dynamic programming.

1. Introduction
A selfmap f of a metric space (X, d) is called contraction if there exists
a constant k € [0, 1) such that for all z,y € X,

(1.1) d(fx, fy) < kd(z,y).
As noted in [2], the above inequality can be expressed in the form
(1.2) d(fz, fy) < d(z,y) - qd(z,y),

where k£ = 1 — ¢, ¢ € [0,1). Therefore the following definition of weakly
contractive maps due to Alber and Guerre-Delabriere |2] seems to be natural.

A selfmap f of a metric space X is weakly contractive (or -weakly con-
tractive) if for all z,y € X,

where 1 : [0,00) — [0,00) is a continuous and nondecreasing function with
¥(0) =0, ¢(t) > 0 for all £ € (0,00), and lim;_, P(t) = oo.

It is clear that weakly contractive maps are continuous and include con-
traction maps as a special case for the choice ¥(t) = (1 — k)t.

Alber and Guerre-Delabriere 2] obtained certain fixed point theorems
in Hilbert spaces for weakly contractive maps and acknowledged that their
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results were true at least for uniformly smooth and uniformly convex Banach
spaces. Subsequently, Rhoades [21]| extended some of the results appearing
in 2] to complete metric spaces under less restricted conditions (see Theo-
rem 1.5 below) and thus establishing that the results obtained in [2] were
still valid for arbitrary Banach spaces.

Notice that (1.1) can be expressed as

where k = 2¢ with ¢ € [0, %) Therefore we have the following extension of
(1.4) to so called weakly (¢ — 1)-contractive maps in a natural way.

DEFINITION 1.1. A selfmap f of a metric space X is said to be weakly
(¢ — ¥)-contractive map of type (1) if, for all z,y € X,

where ¢ : [0,00) — [0,00) is an upper semicontinuous and nondecreasing
function and v : [0,00) — [0, 00) is a lower semicontinuous and nonincreasing
function satisfying the following conditions:

(C1) »(0) —9(0) =0,
(C2) ¢ and ® are both positive on (0,00), and
(C3) p(t) —(t) < tforallt>0.

DEFINITION 1.2. A selfmap f of a metric space X is said to be weakly
(¢ — )-contractive map of type (II) if for all z,y € X, (1.5) holds, where
¢ :[0,00) — [0,00) is an upper semicontinuous and nondecreasing function
and ¢ : [0, 00) — [0, 00) is a lower semicontinuous and nonincreasing function
satisfying the following conditions:

(D1) ¢(0) —4(0) =0,

(D2) ¢ and v are both positive on (0, 00), and

(D3) ¢(t) —P(gt) < (1 —q)t and p(gt) — (0) < gt for all t > 0 and for
some ¢ € (0,1).

REMARK 1.3. When ¢(t) =t for all ¢ > 0 our definition of weakly (¢ —)-
contractive map of type (I) (respectively type (II)) recovers the definition of
weakly contractive maps.

Recently, fixed point theorems in partially ordered spaces have been stud-
ied among others, in [1, 5, 7, 9-17, 19-20, 23]. The well-known Tarski’s the-
orem [22| has been used in [11| and [13] respectively to study the existence
of solutions for fuzzy equations and to prove existence theorems for fuzzy
differential equations. Applications to matrix equations and to ordinary dif-
ferential equations are presented in [19] and [13, 16] respectively. In [5, 7,
9, 23| fixed point theorems for mixed monotone mappings in metric spaces
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endowed with a partial ordering are proved and, wherein, the authors have
applied their results to study the existence and uniqueness of solutions for
certain boundary value problems (see [8] and [19]). The usual contraction
condition is weakened but at the expense that the operator in question is
monotone. The main idea in [13, 20| involves combining the ideas of the
well-known contraction mapping principle with those of the monotone iter-
ative techniques (see [6]). Some other references on the topic are |3, 4].

The purpose of this paper is to extend and improve Theorems 1.5 and
1.6 below to the case of weakly (¢ — 1)-contractive maps of types (I) and
(IT) in ordered metric spaces under suitable conditions on the domain of
maps. The results so obtained may be considered as extensions of those in
[21, 10]. In the sequel we apply our main results to obtain a solution of first
order periodic problem and study the possibility of optimally controlling the
solutions of ordinary differential equations via dynamic programming.

First we recall the following.

DEFINITION 1.4. If (X, <) is a partially ordered set and f : X — X, we say
that f is monotone nondecreasing (respectively, nonincreasing) if x,y € X,
x <y= f(x) < f(y) (respectively, f(z) > f(y)). This definition coincides
with the notion of a nondecreasing (respectively, nonincreasing) function in
the case where X = R and < (respectively, >) represents the usual total
order in R.

The following result is due to Rhoades [21]

THEOREM 1.5. Let (X, d) be a complete metric space and f: X — X be a
weakly contractive map. Then f has a unique fized point in X.

We note that the additional condition that lim;_,~ 1(t) = oo assumed
in [2| has been dispensed with in Theorem 1.5 above.
Recently, Harjani and Sadarangani [10] proved the following result.

THEOREM 1.6. Let (X, <) be a partially ordered set and suppose that there
exists a metric d in X such that (X,d) is a complete metric space. Let
f: X — X be a continuous and nondecreasing mapping such that

(1.6)  d(fz, fy) <d(z,y) —Y(d(z,y)) forzzy (z,y€X)

where 9 : [0,00) — [0,00) is a continuous and nondecreasing function such
that it is positive on (0,00), 1(0) = 0 and lim,_,~ () = c0. If there exists
xo € X with xo < f(xg), then f has a fized point.

2. Main results

In this section we present several fixed point theorems for weakly (¢ —1)-
contractive maps in a complete metric space endowed with a partial order.
Now onwards, N will denote the set of natural numbers.
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THEOREM 2.1. Let (X, <) be a partially ordered set and suppose that there
exists a metric d on X such that (X,d) is a complete metric space. Let
f:X — X be a continuous, nondecreasing and weakly (¢ — 1)-contractive
map of type (1) satisfying the condition

21 dfz, fy) < e(d(z,y)) = ¢(d(z,y) forz>y (z,y€X).

If there ezists xy € X with xo < f(x), then f has a fized point.

Proof. If 2y = f(zg), then we are done. Suppose that f(xg) # z¢. Since
xo < f(xp) and f is a nondecreasing function, we obtain by induction that

zo < f(20) < f*(w0) < fP(wo) < fH(z0) -+ < f(wo) < [ (wo) < -+
Put z,41 = f(z,) for each n € N. Then for each n € N, from (2.1) and, as
Ty, and x,4+1 are comparable, we have
d(Tnt1,Tn) = d(fTn, frn—1) < o(d(@n, Tn-1)) — P(d(Tn, Tn-1)).
If there exists an ng € N such that d(zy,, ny—1) = 0 then x,, = f(Tny—1) =
ZTno—1 and xp,—1 is a fixed point of f and the proof is complete.
On the other hand, if d(zy4+1,2,) # 0 for any n € N, then taking into
account (2.1) and our assumptions on ¢ and ¢ we have
d(Tpi1,2n) = d(fon, frn-1) < @(d(Tn, Tn-1)) — Y(d(Tn, Tn-1))
< d(xp, Tp—1).
Denoting d(xy+1, %) by pn we have

(2.2) pn < ©(pn—1) = ¥(pn-1) < pp-1.
Hence {p,} is a nonnegative nonincreasing sequence and possesses a limit,
say, p* such that p* > 0. We claim that p* = 0.

Now, from (2.2), if p* > 0, then by passing over to limit as n — oo, we
get

Pt < p(p") —v(p*) < p".
Thus, we have
P =p(p*) = P(p).
By (C3), for p* > 0 we obtain
Pt =w(p") —(p*) < p*,
a contradiction. Therefore, p* = 0.

Now, we show that {z,} is a Cauchy sequence. Fix ¢ > 0. Since p, =
d(Zp+1,2n) — 0 as n — oo, there exists an ng € N such that

d(Tng+1, Tny) < min {%, e —(e) + w(e)}.

We claim that f(B(an,e) N{ye X:y> xno}) C B(xpgy,€).
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Let z € B(xpy,€) N{y € X : y > x,}. Then the following cases arise.

Case 1. 0 < d(z,2pn,) < §. In this case, as z and z,, are comparable,
we have

d(f(2),2ny) < d(f(2), f(ng)) + d(f(2ng), Tno)
(2)7 f(xno)) + d(xnoJrl’ mno)

< gO(d(Z, xno)) - w(d('zv xno)) + d(xn0+1a xno)

€ €
d(z7$7l0) + d(wno-i-l?mm) < 5 + 5 <e

Case 2. § < d(z,2n,) < €. In this case, as z and x,, are comparable; ¢ is
a nondecreasing function; and v is a nonincreasing function, ¢(d(z, zn,)) <
o(€) and Y(d(z, 7)) > (), 50 that

d(f(2),2ne) < d(f(2), f(@no)) + d(f (%ng), Tno)
= d(f(z 7f(xn0)) + d(wno-i-l?mm)
(Zv xno)) - ¢(d(z, $7L0)) + d(xno+1v xno)
¢(6) + d(xnoJrl’ mno)
—(e) +e—ple) +Y(e) <€
This proves our claim.

Since Tpo+1 € B(zpng,€) N{y € X : y > xp,}, our claim gives us that
Tng+2 = [(Tngt1) € B(ny,€) N{y € X : y > x,,}. Repeating this process
it follows that =, € B(xy,,¢€) for all n > ng. Since € is arbitrary, {z,} is a
Cauchy sequence.

As X is complete, there exists an x* € X such that lim, ,o x, = x*.

Again, since p, — 0 and f is continuous it follows that z* is a fixed point
of f. m

THEOREM 2.2. Let (X, <) be a partially ordered set and suppose that there
exists a metric d on X such that (X,d) is a complete metric space. Let
f:X — X be a continuous, nondecreasing and weakly (¢ — 1)-contractive
map of type (II) satisfying the condition
(23)  d(fz, fy) < e(d(z,y)) — P(d(z,y)) foralz>y (z,y€X).
If there exists xg € X with o < f(xo), then f has a fixred point.
Proof. Following the proof of Theorem 2.1 we only need to check that {z,}
is a Cauchy sequence. Fix ¢ > 0. Since p, = d(xnt1,2,) = 0 as n — oo,
there exists ng € N such that
d(Tng+1, Tny) < min {qe, (1- q)e}.

We claim that f(B(zny,€) N {y € X 1y > zny}) C Blan, €).

Let z € B(wpy,€) N{y € X : y > x,}. Then the following cases arise.
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Case 1. 0 < d(z,xn,) < ge. In this case, as z and z,, are comparable,
we have

d(f(2),2n,) < s f(@ng)) + d(f(@ng)s Tn)

z 7f($m))) + d(an_H,an)

d(z, 2y )) = P(d(2, Ty )) + d(Tng+1, Tno)

q€) —¥(0) + d(Tng+1, Tny)

+(1—-q)e<e.

Case 2. ¢ge < d(z,2n,) < €. In this case, as z and z,, are compara-
ble and ¢ is a nondecreasing function and ¢ is a nonincreasing function,

(A2 ny)) < (€) and H(d(z, ng)) > 1(e), we have
d(f(2),zny) < d(f(2), f(ng)) + d(f(2ng), Tn)
( ( ) (mno)) + d(xnoJrl’mno)
(

QU
—
~H
—

I
S~—

ININ A
NI
A~

< Sp(d z xno)) - w(d('z7$no)) + d(.%'n0+1, xno)
< p(€) = ¥(ge) + d(@ng+1, Tny)
<(1—-q)e+ge<e.

This proves our claim. =

In what follows we prove that Theorem 2.1 is still valid for f not neces-
sarily continuous, assuming the following hypothesis on X (see [10, Theorem
3] and [13, Theorem 2.2|): if {z,} is a nondecreasing sequence in X such
that x,, — = as n — oo, then

(2.4) xn <z forallneN
THEOREM 2.3. Let (X, <) be a partially ordered set and suppose that there

exists a metric d on X such that (X,d) is a complete metric space. Assume
that the condition (2.4) holds. Let f : X — X be a nondecreasing and weakly
(¢ — v)-contractive map of type (1) satisfying the condition

d(fz, fy) < p(d(z,y) —P(d(z,y)) foralz>y (z,y€X).
If there ezists xy € X with xo < f(xo), then f has a fized point.

Proof. Following the proof of Theorem 2.1 we only need to check that
f(z) = z. In fact,

d(f(2), ) d(f(2), f(xn)) + d(f(zn), 2)
p(d(z,2n)) — (d(z, n)) + d(zn11, 2)
and taking limit as n — 0o, d(f(2), z) < 0 and this proves that d(f(z),z) =0
and, consequently f(z) =z. =

We now present an example where it can be appreciated that hypotheses
in Theorems 2.1 and 2.2 do not guarantee uniqueness of the fixed point
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(see [10]). Let X = {(1,0),(0,1)} C R? and consider the usual order
(r,y) <(zt) e rx<zandy <t

Thus, (X, <) is a partially ordered set, whose different elements are not
comparable. Besides, (X, d) is a complete metric space considering d as the
Euclidean distance. Put ¢(t) = 2(t + 1), ¢(t) = 2 for all ¢ € [0,00). The
identity map f(z,y) = (x,y) is trivially continuous and nondecreasing since
elements in X are only comparable to themselves. Observe that conditions
(2.1) and (C1)—(C3) of Theorem 2.1 are satisfied i.e., f is a weakly (¢ —1)-
contractive mapping of type (I).

On the other hand, if we consider ¢(t) = 2t, ¢(t) = 5t for all t € [0, 00),
then conditions (2.3) and (D1)—(D3) of Theorem 2.2 are satisfied i.e, f is
a weakly (¢ —1))-contractive map of type (II). To see this, let us take g = %
Moreover, (1,0) < f(1,0) = (1,0) and f has two fixed points in X.

Now there arises a natural question whether there are any sufficient con-
ditions that ensure the uniqueness of the fixed point in Theorems 2.1 and 2.2.

The answer is in affirmative. These conditions are:

(SC1) for z,y € X there exists a lower bound or an upper bound.

(SC2) X is such that if {z,} is a sequence in X whose consecutive terms
are comparable, then there exists a subsequence {z,,} of {z,} such
that every term is comparable to the limit x.

(SC3) f maps comparable elements to comparable elements, that is:

for @y € X,2<y= f(z)<fy) or f(z)>f(y).

In [13] it is proved that condition (SC1) is equivalent to: for z,y € X
there exists a z € X which is comparable to x and y.

It may be remarked that corresponding results for Theorems 2.1 and 2.2
pertaining to uniqueness of the fixed point under conditions (SC1)—(SC3)
can be obtained by applying similar arguments as in [10], so we omit the
details.

Now we state the following theorems without proof which ensure the
uniqueness of fixed points in Theorems 2.1 and 2.2 respectively. An appro-
priate blend of the proofs of Theorem 2.1 and [10, Theorem 4| works.

THEOREM 2.4. Let (X, <) be a partially ordered set, C a chain in X and
suppose that there exists a metric d on C such that (C,d) is a complete metric
space. Let f:C — C be a nondecreasing mapping such that

(2.5) d(fx, fy) < ¢(d(z,y)) —P(d(z,y)) for allz,y €C

where ¢ : [0,00) — [0,00) is an upper semicontinuous and nondecreasing
function and 1 : [0,00) — [0,00) is a lower semicontinuous and nonincreas-
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ing function satisfying conditions (C1)—(C3). If there exists xy € C with
xo < f(xo), then f has a unique fized point in C.

THEOREM 2.5. Let (X, <) be a partially ordered set, C a chain in X and
suppose that there exists a metric d on C such that (C,d) is a complete metric
space. Let f:C — C be a nondecreasing mapping such that

(2.6) d(fz, fy) < e(d(z,y)) — ¢(d(z,y)) for all z,yeC

where ¢ : [0,00) — [0,00) is an upper semicontinuous and nondecreasing
function and 1 : [0,00) — [0,00) is a lower semicontinuous and nonincreas-
ing function satisfying conditions (D1)—(D3). If there exists xg € C with
xo < f(xo), then f has a unique fized point in C.

EXAMPLE 2.6. Let X = R and let < denote the usual ordering in R. Then
(X, <) is a partially ordered set. Put

C={0ju{£2™" :n e N}
and let d be the usual metric on C. Define the mapping f : C — C by

1
fxr= 3% for all x € C.

It is obvious that C is a chain in X and it is complete. The map f is
continuous and nondecreasing. Put
o(t) = §t+ %H’ P(t) = %H for all ¢ € [0, 0).

Then conditions (C1)-(C3) are satisfied. Notice that (2.5) obviously holds.
Moreover, —% < f(—%) = —i and f has a unique fixed point 0 in C.
Besides, we notice that the iterative sequence {z,} given by zy = —%,
T = f(—%) = —%, Ty = f(—}i) = —%,--- is nondecreasing and converges
to 0. Furthermore, we observe that each x, < 0.

3. Application to ordinary differential equations

In this section we apply our main results of Section 2 to obtain a solution
of first order periodic problem.

Consider the space C(I), the class of real-valued continuous functions
defined on I = [0, 7], endowed with the metric d given by

d(xz,y) =sup{|z(t) —y(t)| : t € I} for all =,y € C(I).
Clearly, (C(I),d) is a complete metric space. Further, note that C(I) can
also be equipped with a partial order given by
z,ye C(I),z <y<x(t) <y(t) for tel.
We now prove the existence of a solution for the following first-order periodic
problem:
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(3.1) {“'(t) = f(t,u(t)), t € I =0,T],

u(0) = u(T)
where T'> 0 and f: I x R — R is a continuous function.

DEFINITION 3.1. A lower solution for (3.1) is a function a@ € C*(I) such
that

o(t) < f(t,a(t) for t € I =[0,T],
a(0) < o(T).

THEOREM 3.2. Let f: I xR — R be continuous and suppose that there
exist A >0, 0 < a <1 such that for all x,y € R with y > x

<
<

(32) 0< ft,y)+ Ay — [f(t,2) + Az]
—x)?

If a lower solution for first order periodic problem (3.1) exists then there
exists a unique solution of (3.1).

Proof. The first order periodic problem (3.1) can be written as
W' (t) + Mu(t) = f(t,u(t) + Mu(t), t € I =1[0,T],
u(0) = u(T).
The above problem is equivalent to the integral equation
T

u(t) = S G(t,s)[f(s,u(s)) + Au(s)] ds

0

where G(t, s) is the Green’s function given by

e)\(T‘f’S*t)
- fo<s<t<T,
G(t,s) =4 &
eA(s—1)
Vi ifo<t<s<T.
e —_—
Define F': C(I) — C(I) by
T
(Fu)(t) = | G(t, 5)[f(s,u(s)) + Au(s)]ds.
0

Clearly, u € C(I) is a solution of (3.1) if u € C(I) is a fixed point of F.
From hypothesis (3.2) on f, the mapping F' is nondecreasing and so, for
u > v we have
J(tu) + du > f(t,v) + M
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which implies, using the fact that G(¢,s) > 0 for (¢,s) € I x I, that

G(t,s)[f(s,u(s)) + Au(s)]ds

G(t,s)[f(s,v(s)) + Av(s)]ds = (Fv)(t)

for t € I. For u > v, we have
d(Fu, Fv) = sup|(Fu)(t) — (Fv)(t)|
tel

T

< su? S G(t,s)[f(s,u(s)) + Au(s) — f(s,v(s)) — Av(s)]ds
tel g

T
< sup |G, s) - )\[ln(u(s) —v(s)+1) +
te 0

Put

O(z) = [ln(a: +1)+ 2(;7-11)}

Obviously, @ : [0,00) — [0, 00) is nondecreasing, positive in (0, c0) (@’(x) =

éi‘;)lz) and if u > v, then

u(s) — v(s))?
[ln(u(s) —v(s)+1)+ 2(2(2))_ U(i))j_ 1)}

u — v|?
< [ln(Hu —vl|+1)+ —Q(HUL — UHH—i— 1)]

Now considering the above inequality, we obtain

(3.3) d(Fu, Fv)
T

, - (u(s) = v(s))”
< 8;/16153 (S) G(t,s) )\[ln(u(s) v(s)+1) + 2{uls) — 0(s) + 1):|d8
< [111(\\11 —vl|+1)+ M} : )\sup:g(}'(t s)ds.
= Wu—ol+ 1] 5ep)
Note that
T

A S G(t,s)ds = A 1 (1 A(Tﬂ—t)T + 1 )\(s—t):|T> 1
sup ,8)a8 = ASUp —~——~ | ~e Ze - 1.
tel 0 tel (€>‘T — 1) A 0 A ‘
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Therefore from (3.3) we obtain

(3.4) d(Fu, Fv) < [ln(Hu— v +1) + T Ul
2(Jlu = vl +1)
lu—o]?+1 1
= |In(Jlu—v||+1)+ — .
[ 2(flu=vl[+1)  2(lu—v]+1)
Put ¢(z) = In(z + 1) + mxﬂ , () = +1) Clearly, ¢ : [0,00) —
[0, 00) is upper semicontinuous, ¥ : [0,00) — [0 00) is lower semicontinuous,

¢ is nondecreasing and 1 is nonincreasing for all x € (0,00) and satisfy
conditions (C1)—(C3).
Thus, from (3.4), for u > v we obtain
d(Pu, Fv) < g(d(u,v)) — $(d(u, v)).
Let «(t) be a lower solution of (3.1). Then we will show that a < Fa. Now
a (t) + Aa(t) < f(t,at)) + Aa(t) for t € 1.
Multiplying by e, we obtain that
(a(t)eM) < [f(t, a(t)) + Aa(t)]eM for t € 1.
Integrating the above expression, we get

t

(35)  a()eM < a(0) + |[f(s,als)) + Aa(s)]eMds for t e I.
Therefore 0

a(0)e < a(T)eM < a(0) +:§[f( (5)) + Aa(s)]eds,
so that , N

a(0)eM < S T [f(s,a(s)) + Aa(s)] ds.
0

From the above ineqality and (3.5), we obtain

eMT+s) T s
a(t) < | S (s a(s) + da(s)) ds + | 7

[£(s,a(s)) + Aa(s)] ds.

Consequently, we have

t e)\(TJrs t)
(S) T (s,a(s)) + Aa(s)] ds +
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Hence
T
at) < S G(t,s)[f(s,a(s)) + Aa(s)]ds = (Fa)(t) for t € I.
0

Finally, Theorems 2.1 and 2.2 give that F' has a unique fixed point. =
REMARK 3.3. We remark that:

(i) In the proof of Theorem 3.2, the unique solution of (3.1) can be obtained
as lim,,_,o F™(z), for every € C(I). If we choose z(t) = «(t), then
F"(«) is a monotone nondecreasing sequence uniformly convergent to
the unique solution of (3.1).

(ii) Condition (3.2) of Theorem 3.2 can be replaced by

0< f(t,y) + X y— [f(t,2) + Az] < AD(y — z) for y > a.

In this case, one may assume that ® : [0,00) — [0, 00) is a function given
by
O(z) = p(x) = P(z) V € [0,00),

where ¢ : [0,00) — [0, 00) is an upper semicontinuous and nondecreasing
function and ¢ : [0,00) — [0, 00) is a lower semicontinuous and nonin-
creasing function satisfying the conditions (C1)—(C3). Examples of such
functions are:

(a) o(x) = In(z + 1) + % and ¢Y(x) = m (which appear in Theo-
rem 3.2).

(b) p(x) = % +arctan x and ¥(z) = %

4. Application to control theory

In a recent paper, Pathak and Shahzad [18] studied the possibility of
optimally controlling the solution of ordinary differential equations via dy-
namic programming. As an application of our main results in Section 2, we
continue our discussion to solve certain problems in control theory in an or-
dered space. In what follows we use the terminology of Pathak and Shahzad
[18] and Evans [§].

Let A be a compact subset of R™, and let for each given a € A,
F, : R™ — R"” be a continuous and nondecreasing weakly (¢ —)-contractive
map of type (I) such that

Fy(x) =f(z,a) Ve R",

where f : R" x A — R" is a given bounded, continuous and nondecreasing
weakly (¢ — 1))-contractive map of type (I). Consider the usual order

(1,22, 20) < (Y1, Y2, ) © T <y i=1,2,--- . n.
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Then, (R", <) is a partially ordered set. Besides, (R"™,d) is a complete metric
space, where d(z,y) = |z — y|, the Euclidean distance between x and y.

We will now study the possibility of optimally controlling the solution
x(-) of the ordinary differential equation

o(s) = f(2(s), als)), (t<s<T),
(4.1)
z(t) = x.
Here - = %, T > 0 is a fixed terminal time, and x € R™ is a given initial

point, taken on by our solution x(:) at the starting time ¢ > 0. At later
times ¢ < s < T, x(-) evolves according to the ODE (4.1). The function
a(-) appearing in (4.1) is a control; that is, some appropriate scheme for
adjusting parameters from the set A as time evolves, thereby affecting the
dynamics of the system modeled by (4.1). Let us write

(4.2) A={a:[0,T] - A: a-) is measurable}
to denote the set of admissible controls. Then since
£(z,a)] < C,
f(z,a) — £(y, a)| < ol —yl) = P(lz - y)),
for some constant C' > 0 and z,y € R", ¢ € A with > y, we have

(4.4) |Fu(z) — Fu(y)| < ¢(lz —y|) — ¥(|z — yl)

for all z,y € R with x > y, where ¢ :[0,00) — [0,00) is an upper semicon-
tinuous and nondecreasing function and 9 : [0,00) — [0, 00) is a lower semi-
continuous and nonincreasing function satisfying the conditions (C1)—(C3).
Suppose that there exists zg € X with z¢ < f(x0).

We see that for each control a(-) € A, the ODE (4.1) has a unique,
generalized Lipschitzian continuous solution x(-) = x*()(-), existing on the
time interval [¢,T] and solving the ODE for a.e. time t < s < T. We call
x(-) the response of the system to the control a(-), and x(s) the state of the
system at time s.

(4.3)

Our goal is to find a control o*(-) which optimally steers the system. In
order to define what “optimal” means however, we must first introduce a cost
criterion. Given x € R™ and 0 < t < T, let us define for each admissible
control a(-) € A the corresponding cost

T

(4.5) Crila()] = [ h(x(s), a(s))ds + g(x(T)),

where x(-) = x*()(-) solves the ODE (4.1) and
h:R"xA—-R, g¢g:R"—>R
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are given functions. We call h the running cost per unit time and g the
terminal cost, and will henceforth assume that

|Ho(x) — g(x)] < C,
(4.6) |Ho(x) — Ho(y)| < @ (lz —yl) =¥ (lz —yl),
lg(z) =g <@z —yl) =¥ (z—-y|), (x,y €R", ac A)

for some constant C' > 0, and for each given a € A, H, : R" — R" is a
bounded, continuous and nondecreasing weakly (¢ — 1)-contractive map of
type (I) defined by

H,(z) = h(z,a) Vz e R".

Given now x € R™ and 0 <t < T, we would like to find if possible a control
a*(+) which minimizes the cost functional (4.5) among all other admissible
controls.

To investigate the above problem we shall apply the method of dynamic
programming. We now turn our attention to the value function u(z,t) de-
fined by
(4.7) u(z,t) == inf Cyia(-)] (zeR",0<t<T)

a()eA

The plan is this: having defined u(z,t) as the least cost given we start at
the position = at time ¢, we want to study u as a function of x and . We are
therefore embedding our given control problem (4.1), (4.5) into the larger
class of all such problems, as x and ¢ vary. This idea can then be used to
show that u solves a certain Hamilton—Jacobi type PDE, and finally to show
conversely that a solution of this PDE helps us to synthesize an optimal
feedback control.

Let us fix x € R",0 < t < T Following the technique of Evans [8, p. 553,
we can obtain the optimality conditions in the form given below.

For each £ > 0 so small that t + £ < T

t+e
)= inf h(x(s), a(s))d t+6),t ,
u(e,t) = it { | hx(s) ae)ds +u(x(t +6) +6)}
where x(-) = x*() solves the ODE (4.1) for the control a(-). m

Acknowledgement. H. K. Pathak’s research work is supported in
part by the University Grants Commission and Department of Science and
Technology, New Delhi. S. N. Mishra would like to thank the Directorate
of Reseasearch Development, Walter Sisulu University for financial sup-
port. A special word of thanks is due to the referee for his valuable com-
ments.



(1]
2]

3]

(4]

(5]

[6]
(7]

18]

(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]
[19]

[20]

Some weakly contractive mapping theorems. . . 635

References

R. P. Agarwal, M. A. El-Gebeily, D. O’Regan, Generalized contractions in partially
ordered metric spaces, Appl. Anal. 87 (2008), 109-116.

Ya. I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert
spaces, New result in Operator Theory and Applications, (I. Gohberg and Yu Lyu-
bich, eds.), Oper. Theory Adv. Appl. 98, Birkhauser Verlag, Basel, 1997, 7-22.

A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible map-
pings satisfying generalized contractive conditions, J. Math. Anal. Appl. 341 (2008),
707-719.

J. Altum, D. Turkoglu, B. E. Rhoades, Fized points of weakly compatible maps sat-
isfying a general contractive condition of integral type, Fixed Point Theory and Ap-
plications, article ID 17301, Vol. 2007 (2007), 1-9.

Dz. Burgic, S. Kalabusic, M. R. S. Kulenovic, Global attractivity results for mized
momnotone mappings in partially ordered complete metric spaces, Fixed Point Theory
and Applications, Art. ID 762478, Vol. 2009 (2009), 1-17.

A. Cabada, J. J. Nieto, Fized points and approrimate solutions for nonlinear operator
equations, J. Comput. Appl. Math. 113 (2000), 17-25.

Lj. B. Ciri¢, N. Cakic, M. Rajovic, J. S. Ume, Monotone generalized nonlinear con-
tractions in partially ordered metric spaces, Fixed Point Theory and Applications,
Art. ID 131294, Vol. 2008 (2008), 1-11.

L. C. Evans, Partial Differential Equations, Vol. 19, American Mathematical Society,
1998.

T. Gnana Bhaskar, V. Lakshmikantham, Fized point theorems in partially ordered
metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.

J. Harjani, K. Sadarangani, Fized point theorems for weakly contractive mappings in
partially ordered sets, Nonlinear Anal. 71 (2009), 3403-3410.

V. Lakshmikantham, Lj. B. Ciri¢, Coupled fized point theorems for nonlinear contrac-
tions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341-4349.

J. J. Nieto, R. Rodriguez-Lépez, Existence of extremal solutions for quadratic fuzzy
equations, Fixed Point Theory and Applications, Vol. 2005 (3) (2005), 321-342.

J. J. Nieto, R. Rodriguez-Lépez, Contractive mapping theorms in partially ordered
sets and applications to ordinary differential equations, Order 22 (2005), 223-239.

J. J. Nieto, R. Rodriguez-Lopez, Applications of contractive-like mapping principles
to fuzzy equations, Rev. Mat. Complut. 19 (2006), 361-383.

J. J. Nieto, R. L. Pouso, R. Rodriguez-Loépez, Fized point theorems in ordered abstract
spaces, Proc. Amer. Math. Soc. 135 (2007), 2505-2517.

J. J. Nieto, R. Rodriguez -Lopez, Ezxistence and uniqueness of fixed point in partially
ordered sets and applications to ordinary differential equations, Acta Math. Sinica 23
(2007), 2205-2212.

D. O’'Regan, A. Petrusel, Fized point theorems for generalized contractions in ordered
metric spaces, J. Math. Anal. Appl. 341(2) (2008), 1241-1252.

H. K. Pathak, N. Shahzad, Fized points for generalized contractions and applications
to control theory, Nonlinear Anal. 68 (2008), 2181-2193.

A. Petrusel, I. A. Rus, Fized point theorems in ordered L-spaces, Proc. Amer. Math.
Soc. 134 (2006), 411-418.

A. C. M. Ran, M. C. B. Reurings, A fized point theorem in partially ordered sets and
some applications to matriz equations, Proc. Amer. Math. Soc. 132 (2004), 1435-
1443.



636 B. E. Rhoades, H. K. Pathak, S. N. Mishra

[21] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47
(2001), 2683-2693.

[22] A. Tarski, A latice-theoretical fizpoint theorem and its applications, Pacific J. Math.
5 (1955), 285-309.

[23] Y. Wu, New fized point theorems and applications of mized monotone operator,
J. Math. Anal. Appl. 341 (2008), 883-893.

B. E. Rhoades

DEPARTMENT OF MATHEMATICS
INDIANA UNIVERSITY
BLOOMINGTON, INDIANA 47405, U.S.A

E-mail: rhodes@indiana.edu

H. K. Pathak

SCHOOL OF STUDIES IN MATHEMATICS
PT. RAVISHANKAR SHUKLA UNIVERSITY
RAIPUR 492010, INDIA
E-mail:hkpathak05@gmail.com

S. N. Mishra

DEPARTMENT OF MATHEMATICS

WALTER SISULU UNIVERSITY

NELSON MANDELA DRIVE, MTHATHA 5117, SOUTH AFRICA

E-mail: smishra@wsu.ac.za

Received May 4, 2011; revised version August 22, 2011.



	Code: 10.1515/dema-2013-0388


