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EMBEDDING MODES INTO SEMIMODULES, PART III

Abstract. In the first part of this paper, we considered the problem of constructing
a (commutative unital) semiring defining the variety of semimodules whose idempotent
subreducts lie in a given variety of modes. We provided a general construction of such
semirings, along with basic examples and some general properties. In the second part
of the paper we discussed some selected varieties of modes, in particular, varieties of
affine spaces, varieties of barycentric algebras and varieties of semilattice modes, and
described the semirings determining their semi-linearizations, the varieties of semimodules
having these algebras as idempotent subreducts. The third part is devoted to varieties of
differential groupoids and more general differential modes, and provides the semirings of
the semi-linearizations of these varieties.

This paper is a direct continuation of the first and second parts appearing
with the same title [4] and [5]. In the first part, we considered the problem
of constructing a (commutative unital) semiring defining the variety of semi-
modules whose idempotent subreducts lie in a given variety of modes, and
such that each semimodule-embeddable member of this mode variety embeds
into a semimodule over the constructed semiring. We described a general
construction of such semirings, with basic examples and some general prop-
erties. In the second part, we investigated selected varieties of modes, and
described the semirings determining varieties of semimodules having algebras
of these classes as subreducts, and discussed properties of the corresponding
semi-affine spaces. In particular, we investigated varieties of affine spaces,
varieties of barycentric algebras and varieties of semilattice modes. The third
part is devoted to varieties of differential groupoids and more general differ-
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ential modes, and provides the semirings of the semi-linearizations of these
varieties. Apart from having interesting properties of their own, differen-
tial groupoids and differential modes play an important role in the problem
of embedding modes into semimodules, and also in the theory of finitely
generated modes. (See [2], [3], [6], [9], [10].)

We use the terminology, notation and results of the first and second parts
of the paper, and continue the section numbering from the second paper.

5. The semiring of the variety of differential groupoids

Differential groupoids are binary modes (G,-) defined by the identity
x-(x-y) =z. (See |9].) As shown in [10, Section 7.1|, the (affinization) ring
of the variety Dy of differential groupoids is the ring R(Ds) = Z[X]/(X?) =
Z[d)], where d* = 0, of integral dual numbers. (See also [9].) Its elements are
represented as m + dn for m,n € Z. The differential groupoid operation on
an R(Ds)-space is defined as = - y = zyX or equivalently as = -y = xyd. As
the quotient of Z[X, Y], the ring R(D2) can be written as

ZIX,Y]/(1-X -Y,X?) = Z[X,Y]/a,

where

a=cg((X +Y,1),(X%0)).
It is isomorphic to the ring
Z[d, €] with d + e =1 and d* = 0,

and with elements represented as em + dn for m,n € Z. Denote this ring
by R. The differential groupoid operation on an affine R-space is defined as
T -y =ze+ yd.

Note that differential groupoids form an irregular variety. Hence the
semiring S(D3) of the variety Dy can be calculated similarly as its ring
and is determined by the same relations. (Cp. [4].) In particular, S(Dz2) is
isomorphic to the semiring N[X, Y]/« and to the semiring N[d, e] with d+e =
1, and d? = 0. Denote this semiring by S. As before, the differential groupoid
operation on a semi-affine S-space is defined as = -y = xe + yd. In what
follows we identify the semiring S(Dg) with S (or with the corresponding
quotient semiring), and the ring R(Djy) with R (or with the corresponding
quotient ring).

It is clear that N[X, Y] is a subsemiring of the semiring Z[X,Y]. By the
Second Isomorphism Theorem (see e.g. [10, Theorem 1.2.4]), it follows that
the quotient N[X, Y]/« is isomorphic with a subsemiring of Z[X,Y]/«. To
describe the semiring S and its relation to the ring R in a more direct way,
we will first need several technical lemmas.
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LEMMA 5.1. The following hold for elements of both R and S for all natural
numbers k, [, m and n:

(a) de* = d;

(b ek — ekt+1 +d;
(c) e +dk = 1;
(d

m + dn = elm + d(ml + n);
efm +dn = e¥“lm + d(n — ml) in the case k > 1 and n —ml > 0;
(g) €¥m 4+ dn = m + d(n — mk), in the case n — mk > 0.

)
)
) efm 4+ dn = e*tm + d(mil + n);
)
)

Proof. First note that d + e = 1 and d? = 0 imply that de = d, whence (a)
holds.
Now €2 +d=e?+de= (e +d)e=ce. If T 4 d=eF, then e¥*t? 4 d =
eF+2 4 de = (k! + d)e = eF*1. This simple induction proves (b).
The third equality (c) follows from the previous ones:
1= (d+e)k
=d* +d" ek + d 2 (k(k—1)/2) + - + de" Tk + €F
=dk + €*.
The equality (d) follows from the first and the third ones. Indeed,
e*m + dn = e*m(el + dl) + dn = *m + d(ml + n).

The equality (e) follows from (d) for £ = 0. And (f) follows directly from
(d). Then (g) is a special case of (f) obtained for k =1[. =

The last three equalities of Lemma 5.1 easily generalize to elements of
the ring R with integer coefficients.

LEMMA 5.2. The following hold for elements of the ring R for all integers
m, n and s and natural numbers k and L:

(a) m +ds = e*m + d(mk + s);
(b) efm 4+ dn = elm + d(m(l — k) + n);
(¢) efm 4+ dn = m + d(n — mk).

Proof. The first equality follows by Lemma 5.1(c), the second from the first
one, and the third from the second by taking [ = 0. =

LEMMA 5.3. For each element m 4+ ds € R with m > 0 and s < 0, there is
a natural number k such that

m 4+ ds = e*m + d(mk + s)
and mk + s > 0.
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Proof. By Lemma 5.2(a), for any natural number &

m +ds = efm 4 d(mk + s).

In particular, k := [—s/m] is the least natural number such that mk + s
>0. =
LEMMA 5.4. Fach element of the semiring S can be written as

eFm + dn

for some natural numbers k, m,n.
Proof. First note that each element a in S has the form
a=mng+ens+ -+ eng + dng,
where ng,n1,...,nk,ng € N. Note that if & = 0, then a has the required
form. Suppose that & > 0. We will show that there are natural numbers m
and n such that
a = e*m + dn.
By Lemma 5.1, (a) and (c), one has:
a = no(e® +dk) +nie(e" 1 +d(k —1)) + - + efny + dng
=efng+ny 4+ +np) +dkng+ (k—Dny + -+ np_1 + ng).

Hence a = e®m +dn for m =ng +ny + ---+ng and n = kng + (k — 1)ny +
e+ N1+ NG m

Let Rt := {m+ds | m € Z*,s € Z} U {dn | n € N}. Note that R
is a subsemiring of the semiring R. And observe that one can identify the
elements of the ring Z[X, Y|/« with the elements of R, and the elements of
the semiring S with the elements of RT. As a corollary to Lemmas 5.1-5.4,
one obtains the following proposition.

PROPOSITION 5.5. The semiring S of the variety of differential groupoids
embeds into its ring R, and is isomorphic to the semiring R™.

The following example illustrates an application to semilattice modes
with a differential groupoid reduct.

EXAMPLE 5.6. Let V be the variety of semilattice modes (G, -, +) with
a differential groupoid reduct (G,-). By [5, Section 6| and Proposition 5.5,
each element of the semiring S(V) can be represented by m+dn for a positive
integer m and an integer n or by dn for a natural number n. The addition
of the semiring S(V) is idempotent and satisfies the identity s + 1 = 1 for
each s € S(V). In particular, m +dn = (m — 1+ dn) + 1 = 1 for each
positive integer m. And since n = 1 for all positive integers n, we also have
that dn = d. It follows that the semiring S(V) consists precisely of three
elements 0, d, 1 forming the chain 0 < d < 1.
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6. The semiring of the variety of differential modes

Ternary counterparts of differential groupoids, so-called (ternary) differ-
ential modes, are discussed in [3] and [6]. However, as noted in [3], it would
be very easy to extend all the notions and results of these papers to modes
with one n-ary operation for all n > 4. The ternary case was chosen only to
avoid technical complications. In this section we consider differential modes
of arbitrarily fixed arity, and call such algebras simply differential modes.

Differential modes are modes (G, (z1 ... Zp4+1)) with one (n + 1)-ary op-
eration, where n is a fixed positive integer, defined by the left reduction
law

(6.1) (@(yi---yin) - WnYnl - - Ynn)) = (@Y1 ... Yn)-

The affinization of the variety D,11 of ((n + 1)-ary) differential modes may
be found in a similar way as in the binary case.

The ring R(Djp+1) is a quotient of the polynomial ring Z[X, ..., X,]
(with commuting indeterminates). The indeterminates X7, ..., X, furnish
the differential mode operation on affine R(Dj1)-spaces as

n n
=1 =1

Now the operation (zzy ...xzy) satisfies the left reduction law (6.1), whence

(x(ylyll cee yln) R (ynynl .- ynn))

n n n n
=x(1-— ZXz) + Zijj(l - ZXz) + Z Yij XiX;
i=1 j=1 i=1

ij=1
n n

=z(1-— ZXi) + Zini = (Y1 ... Yn).
i=1 i=1

Equating coefficients of y;;, where ¢,j = 1,...,n, shows that all X;X; an-
nihilate affine space elements, so that R(D,+1) is a quotient of the ring
Z[Xl, .. ,Xn]/<X1X] ’ i,j = 1, .. .,n> = Z[dl, . .,dn], where didj = 0 for

i,j =1,...,n. Its elements are represented as m~+Y . ; d;s; for m, s1,...,sp
€.
Conversely, affine spaces over Z[d1, ..., d,] are differential modes under
the operation
n n
(xx1...20) = 2(l — Zdz) + szdz
i=1 i=1

It follows that R(Dp41) = Z[ X4, ..., X,]/(XiX; | i, =1,...,n).
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Similarly, as in the binary case, the ring R(D,,+1) may also be written as

n+1
Z[Xl,...,Xn,Xn+1]/<1 ~STX XX | = 1n>
=1

=~ Z[Xl, - ,Xn,XnJrl]/B:

where
n+1

—cg((ZXZ,l) (X:X;,0) | i, = 1n>

and is isomorphic to the ring

n
Zldy, ... dp, f] with Y d;+ f =1 and did; = 0, where i,j =1,...,n
i=1
As in the case of differential groupoids, differential modes form an irreg-
ular variety. The semiring of the variety D, is calculated similarly as its
ring, and is determined by the same relations. In particular, the semiring
S(Dj+1) is isomorphic to the semiring N[dy, ..., dy, f] with > d; + f =1
and d;d; =0 fori,5=1,...,n
As in the case of differential groupoids, it is clear that the semiring
N[X1,..., X, Xp+1]/8 embeds into the semiring Z[X,..., X, Xnt+1]/5.
The following calculations will provide a simple description of the elements of
the semiring S(D,,+1), and their relation to the elements of the ring R(D),+1).

LEMMA 6.1. The following hold for elements of both R(Dy+1) and S(Dp41)
for all natural numbers k, m and s1,..., Sy

(a) d;f* =d; fori=1,.

(b) (Z d;)* = 0;

(c) f f’f“+22 1 dis

(@) fF+EY di=1;

(e) m+ >0 disi = frm + >0, di(km + s;).

Proof. First note that ;" ;d; + f =1 and djd; =0 forall i,j =1,...,n,
imply that d;f = d; for all = 1,...,n. Moreover,

(i di>2 - i did; = 0,
=1 =1

whence (a) and (b) hold.

Now . . .
PaYdi=faYdif=(F+Yd)f =
=1 =1 =1
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If
fk+1 + Zdz = fk7
=1
then
fk+2 +Zdz — fk?-‘rQ +Zdlf — (fk?-‘rl +Zdl)f — fk?-‘rl.
i=1 =1 i=1

This simple induction proves (c).
The equality (d) follows from the previous ones:

1=<§n:di+f)k

=1
_nAk n,k_l n,kfl k
(;@ +<;dz> Fl+ +(Zdz)f k+ f
_ , k
_(;dz>k+f.

The last equality (e) follows from (d):

n n n n
m+S disi = fFm + (Z di)kzm +5 disi = frmt S di(km + 5;). m
i=1 i=1 i=1 i=1
The last equality easily generalizes to elements of the ring R(D,1) with
integer coefficients.

LEMMA 6.2. The following holds for elements of the ring R(Dy1) for all
integers si,...,Sn and natural numbers m and k:

n n
m + Z disi = fFm + Z di(km + s;).
i=1 i=1
Proof. The equality follows by Lemma 6.1(d). =
LEMMA 6.3. For each element m + Y ;" | d;s; € R(Dpy1) with m > 0 and
at least one of s1,..., S, negative, there is a natural number k such that

n n
m+ Z dis; = f*m + Z d;(km + s;)
i=1 i=1
with all km 4+ sq, ..., km + s, non-negative.
Proof. By Lemma 6.2, for any natural number k, one has

m + Zn:disi = fFm + Zn:dl(k:m + ;).
i=1

=1
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In particular, for k& := max([|s1|/m],...,[|sn|/m]), one has km + s; > 0,
s km4+s,>0. =

LEMMA 6.4. Each element of the semiring S(Dp41) can be written as

n
frm+ Z d;p;
i=1
for some natural numbers k,m,p1,...,pn.

Proof. First note that each element a in S(D,,4+1) has the form
a=mng+ fri+-+ g+ dims,

where ng,ni,...,ng,mi,...,m, € N. Note that if & = 0, then a has the
required form. Suppose that k& > 0. We will show that there are natural
numbers m, p1, ..., P, such that

n
a= ffm+ Z dim;.
i=1

By Lemma 6.1(d), one has:

n

a=no(ff+ Zd )+ f(fF O di)(k—1)+ ...
=1
fknk+zdimi
=1

:fk(n0+n1+---+nk)+2di(k‘no—|—(k—1)n1+...
=1
c A ng_1 +m;).

Hence a = f*m+ 31" dip; for m = ng +ny + -+ +ny, and p; = kno + (k —
1)n1+-"+nk,1+mi fori=1,....,n. m

Let T be the set:
n n
{m+2di3i]mEZJr,sl,...,snEZ}U{Zdimi | mi,...,my GN}.
i=1 =1

It is clear that T is a subsemiring of the semiring R(D,41).

PROPOSITION 6.5. The semiring S(Dp+1) of the variety of differential
modes embeds into its ring R(Dy+y1), and is isomorphic to the semiring T
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Proof. The proof follows by Lemmas 6.1-6.4. u

The next example generalizes Example 5.6 for semilattice modes with a

differential groupoid reduct.

EXAMPLE 6.6. Let V be the variety of semilattice modes (G, (xyz), +) with
ternary differential mode reduct (G, (zyz)). As in Example 5.6, the addition
of the semiring S(V) is idempotent and satisfies the identity s + 1 = 1.
Similar calculations as in Example 5.6 (but based on lemmas of this section)
show that S(V) = {0,d,e,d + e, 1} with elements ordered as shown on the
following picture.

1
d+e

e d
0

Finally let us note that a similar method for finding the semiring of the

semi-linearization can be applied to any irregular variety of modes, in par-
ticular to varieties of reductive binary mode varieties (see [10, section 8.4]).
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