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EMBEDDING MODES INTO SEMIMODULES, PART II

Abstract. The first part of this paper specified the semi-affinization semiring of
a mode variety as the universal scalar semiring for semimodules whose idempotent sub-
reducts lie in the given variety of modes. The current part of the paper focusses on some
selected varieties of modes (affine spaces, barycentric algebras, semilattice modes), and
computes the semi-affinization semirings of these varieties.

This paper is a direct continuation of the first part appearing with the
same title [7]. In the first part, we considered the problem of constructing
a (commutative unital) semiring defining the variety of semimodules whose
idempotent subreducts lie in a given variety V of modes, and such that each
semimodule-embeddable member of V embeds into a semimodule over such a
semiring. For a given variety V of modes, such a variety of semimodules was
called its semi-linearization, the semiring of the semi-linearization was called
the (semi-affinization) semiring of the variety V, and the class of idempotent
reducts of the semi-linearization was called the semi-affinization of V. We
described the general construction of semi-affinization semirings, with basic
examples and some general properties. In the current, second part, we in-
vestigate some selected varieties of modes, and provide a description of their
semi-affinization semirings. In particular, we investigate varieties of affine
spaces, varieties of barycentric algebras, and varieties of semilattice modes.
We also show that the semi-affinization of the affinization of a variety of
modes is equivalent to the affinization. We provide a new representation
theorem for (real and dyadic) barycentric algebras, based on our description
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of semi-affinization of the corresponding varieties of such algebras. Finally,
we provide a new method of finding the semi-affinization semirings of semi-
lattice modes.

Recall, that the Szendrei identity for a binary operation coincides with
the entropic law. It follows that all modes with only binary basic operations
embed as subreducts into semimodules over commutative semirings.

We use the terminology, notation and results of the first part of the paper,
and continue the section numbering from that paper.

4. Semi-affinization of affine spaces

As mentioned in Part I, each variety of Mal’cev modes is equivalent
to a variety R of affine R-spaces for an appropriate commutative ring R.
Moreover, the affinization of R coincides with R [11], [14, Ch. 4]. One may
thus expect that the semi-affinization and the affinization also coincide in
such a case, or more precisely, that the semi-affinization of R and the variety
R are equivalent varieties. Indeed, we will show that the semiring S = S(R)
is just the semiring R, obtained from the ring R by disregarding subtraction,
and that the semi-affinization of R is a variety equivalent to the variety R.

Let us begin with the variety Z of integral affine spaces. The variety
of such algebras is known to be equivalent to the variety of Mal’cev modes
(A,P ) with one ternary Mal’cev operation P , denoted also as (xyz). The
operations n for n ∈ Z are defined by means of P [14, Ch. 6]. Recall that
in a semiring (S,+, o, ·), two elements x and y are said to be opposite if
x+ y = o. If there is p ∈ S such that the unit 1 and p are opposite, then S
is a ring. Indeed, for each element s ∈ S, we have

s · 1 + s · p = s(1 + p) = s · 0 = 0.

Hence the opposite of any s ∈ S is sp. Moreover, p2 = (2p + 1)2 = 4p(p +
1) + 1 = 1, and more generally p2n = 1 and p2n+1 = p.

Proposition 4.1. The semiring S(Z) of the variety Z of integral affine

spaces is isomorphic to the semiring Z of integers. The semi-affinization of

Z is a variety equivalent to the variety of integral affine spaces.

Proof. The semiring S(Z) is calculated as a quotient of the semiring
N[d, e, f ]. The operation P is defined in each S(Z)-semimodule by

(xyz) = xd+ ye+ zf.

It is idempotent, and satisfies the Mal’cev identities (xyy) = x = (yyx).
These identities imply the following relations between d, e, f : we have
d + e + f = 1, d + e = 0 and e + f = 0, and hence also d = 1 = f and
1 + e = 0. It follows that the opposite of 1 is e and the semiring S(Z) is a
ring. It is clear now that each element of this ring can be written as n+ ie
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for natural n and i. Hence the ring S(Z) is (isomorphic to) the ring N[j]
with j + 1 = 0, and to the ring N[X]/cg(X + 1, 0).

The Mal’cev operation P of each S(Z)-semimodule A is defined by

(xyz) = x+ yj + z .

The element j generates a subring isomorphic to Z. Now the semiring N[X] is
free over {X}, and the mapping h : N[X] → Z; f(X) 7→ f(−1) is a surjective
semiring homomorphism uniquely extending the mapping X 7→ −1. Since
the kernel of this homomorphism is the congruence cg(X + 1, 0), it follows
that the semirings N[X]/cg(X + 1, 0) and Z are isomorphic.

Since the semiring S(Z) is actually the ring Z, it follows that the lin-
earization and the semi-linearization of Z coincide (or more precisely are
equivalent). Thus the same holds for the affinization and semi-affinization.

Each subvariety of Z has the form Zn, where n ∈ Z+, and is defined by

one additional identity

(4.1) (y(x(y . . . y)x)y) = x,

where y is repeated n times.

Proposition 4.2. For each n ∈ N, the semiring S(Zn) of the variety Zn

of affine Zn-spaces is isomorphic to the semiring Zn of integers modulo n.

The semi-affinization of Zn is a variety equivalent to the variety Zn.

Proof. For a given integer n, the semiring S(Zn) is obtained as a quotient of

the semiring S(Z), determined by the identity (4.1). Since, in integral affine

spaces, (xyz) = x + yj + z, moreover j2k = 1 and j2k+1 = j, the left-hand
side of (4.1) equals 2x(j+j3+ · · ·+j2k−1)+2y(1+j2+ · · ·+j2k−2)+yj2k =
y(2k+1)+x2kj in the case n = 2k+1, and 2x(j+ j3+ · · ·+ j2k−3)+2y(1+
j2 + · · · + j2k−2) + xj2k−1 = y2k + x(2k − 1)j in the case n = 2k. Hence
yn+x(n−1)j = x, which shows that n = 0 in S(Zn), and finally that S(Zn)

is isomorphic to the semiring Zn.

The remaining part is proved similarly as in the previous proposition.

Now, let us consider the general case of affine spaces over an arbitrary
commutative unital ring R.

Theorem 4.3. The semi-affinization semiring S(R) of the variety R of

affine spaces over R is isomorphic to the semiring R. The semi-affinization

of R is a variety equivalent to the variety R.

Proof. As each affine R-space has the Mal’cev operation P , it follows that
the semiring S(R) is a ring and contains the ring N[j] with j + 1 = 0,
isomorphic to Z or to Zn for some n ∈ N, as a subring.
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As before, the semiring S(R) is constructed as the quotient

N[X,Xr, Yr | r ∈ R]/cg((X + 1, 0), (Xr + Yr, 1) | r ∈ R) .

The congruence of the free semiring in the latter formula is the kernel of
the homomorphism h : N[X,Xr, Yr | r ∈ R] → R uniquely extending the
mapping X 7→ −1. It follows that the semirings S(R) and R are isomorphic.
And hence the semi-affinization of R is equivalent to R.

As a corollary one obtains the following.

Corollary 4.4. The semi-affinization of the affinization of a variety of

modes is a variety equivalent to the affinization.

5. Cancellative modes

It is evident that each mode that embeds as a subreduct into an affine
space over R (and hence into a module over R) also embeds into a semi-
module (the reduct of the module) over a commutative semiring (the reduct
of the ring R). However, as we will see, this semimodule is not necessarily
minimal.

In [13], Romanowska and Smith showed that each cancellative mode em-
beds into an affine space. (See also [14, Ch. 7].) Recall that an Ω-mode
(C,Ω) of a given type τ is cancellative if it satisfies the quasi-identity

(x1 . . . xi−1yxi+1 . . . xn ω = x1 . . . xi−1zxi+1 . . . xn ω) → (y = z)

for each (n-ary) ω ∈ Ω and each i = 1, . . . , n. Since cancellative members of
a given variety V of modes belong to the class of all V-modes embeddable
into affine spaces, they all embed into affine spaces over R(V). Note that
semilattices are not cancellative, and are not embeddable into affine spaces.
On the other hand, both cancellative modes and semilattices embed into
semimodules.

Recall that each Ω-mode with a homomorphism onto an Ω-semilattice
(an Ω-algebra equivalent to a semilattice) can be represented as so-called
semilattice (Lallement) sum. In [13] (see also [14, Ch. 7]), Romanowska and
Smith showed that each semilattice sum of cancellative modes (a semilattice
sum of cancellative fibres) embeds as a subreduct into a Płonka sum of affine
spaces over a ring, say R, common for all these affine spaces. As observed in
[15], such a Płonka sum embeds into a Płonka sum of R-modules, and since
this Płonka sum of R-modules is a semimodule over R, it follows that each
semilattice sum of cancellative modes embeds into a semimodule over a ring.
If the cancellative modes in question are all members of a given variety V of
modes, then one may take the ring to be R(V).

Let SLΩ be the variety of Ω-semilattices. Let CV be the quasivariety of
cancellative members of a variety V of Ω-modes. Then each algebra (A,Ω)



Embedding modes into semimodules, Part II 785

in the quasivariety CV ◦ SLΩ, the Mal’cev product relative to the variety
of Ω-modes, is known to be a semilattice sum of CV-subalgebras (Ai, Ω)
over an Ω-semilattice (I,Ω) [14, Chs. 4, 7]. Hence (A,Ω) embeds as a
subreduct into a semimodule over the (semi)ring R(V). Note, however, that
a CV-mode also embeds into a semimodule over the semiring S(V). If V is
a regular variety, it contains SLΩ as a subvariety, and Ω-semilattices also
embed into S(V)-semimodules.

The proof of the following theorem is similar, but slightly easier than,
the case of affine space embeddings [14, §7.8].

Theorem 5.1. Let V be a regular variety of Ω-modes. Let a V-mode

(A,Ω) be a semilattice sum of cancellative modes (Ai, Ω) over a semilattice

(I,Ω). Then (A,Ω) is a subreduct of a Płonka sum of S(V)-semimodules

over (I,Ω).

Now a Płonka sum of semimodules over a given semiring is again a semi-
module over the same semiring. (Compare [14, §7.8] for the definition of
the zero element in the Płonka sum of (semi)modules.) One obtains the
following corollary.

Corollary 5.2. Let a V-mode (A,Ω) be a semilattice sum of cancellative

modes (Ai, Ω) over a semilattice (I,Ω). Then (A,Ω) embeds as a subreduct

into an S(V)-semimodule.

Corollary 5.2 gives a homogeneous embedding and homogenous repre-
sentation of all members of the quasivariety CV ◦ SLΩ as subreducts of
S(V)-semimodules. It may be considered as an improvement of the earlier
result of Romanowska and Smith. The following two examples provide typ-
ical applications of Corollary 5.2. At the same time, they also offer new
representations of some barycentric algebras.

Example 5.3. Let R be a subfield of the field R of real numbers. Let R+

0

be the semiring of non-negative reals in R. As noted in [10, Exs. 6.10, 7.3,
7.7], convex sets over R may be considered not only as subreducts of affine
spaces over R, but also as subreducts of R+

0
-semimodules. In fact, the coeffi-

cients of any non-trivial idempotent operation of an R+

0
-semimodule belong

to the open unit interval Io of R+

0
. Hence convex sets over R+

0
, considered as

algebras (C, Io), are just subalgebras of semi-affine spaces over R+

0
. Now in

contrast to the case of the field R, the semiring R+

0
has a non-trivial congru-

ence relation with {0} as a singleton class and a second class consisting of all
positive numbers in R. The two-element lattice is the quotient by this con-
gruence. Thus all Io-semilattices embed as subreducts of R+

0
-semimodules.

The class of convex sets generates the variety BA of barycentric algebras over
R. The class of Io-semilattices is the unique non-trivial subvariety of BA.



786 A. Pilitowska, A. B. Romanowska

By results of Romanowska-Smith (see e.g. [14, Th. 7.5.10]), each barycentric
algebra (B, Io) is a semilattice sum of open convex sets over its semilattice
replica. Convex sets are known to be precisely the cancellative barycentric
algebras. Hence, by Theorem 5.1, each barycentric algebra (B, Io) embeds
into a Płonka sum of semi-affine R+

0
-spaces over its semilattice replica. By

Corollary 5.2, this implies the following theorem.

Theorem 5.4. Each barycentric algebra (B, Io) embeds as a subreduct into

an R+

0
-semimodule.

This theorem enhances the Romanowska-Smith theorem that each barycen-
tric algebra embeds as a subreduct into a semimodule that is a Płonka sum
of R-modules.

Example 5.5. A similar method may be used in the case of “barycentric
algebras” over (ordered) subrings of R. In particular, we consider such al-
gebras over the ring D of rational dyadic numbers m2−n for m,n ∈ Z. In
this case, the set of barycentric operations r for r in the open unit interval
Do := D∩Io is generated by the unique multiplication operation 1/2, so that
the algebras in question are equivalent to groupoids. As the multiplication
operation is commutative, these groupoids are called commutative binary
modes. (See [11, Ch. 4], [14, §5.5], [6].)

A subset of an affine space over D is called a dyadic convex set if it is
the intersection of a real convex set with this affine D-space. Let D+

0
be the

semiring of non-negative dyadic numbers. Convex sets over D, as groupoids
(C, 1/2), may be considered as convex sets over D+

0
. They are subalgebras

of semi-affine spaces over D+

0
.

Let CBM be the variety of all commutative binary modes. The affiniza-
tion ring R(CBM) of this variety is the ring D. The semiring S(CBM) of
CBM may be calculated using our general procedure.

Lemma 5.6. The semiring S = S(CBM) of the variety CBM is the semi-

ring D+

0
of non-negative dyadic numbers.

Proof. Our general procedure of calculating the semiring of a variety shows
that the semiring S is (isomorphic to) the semiring N[d, e] with d = e, and
hence with 2d = 1. We will show that each element s ∈ S has the form ndk

for some k, n ∈ N.
First note that for i, n ∈ Z+,

(5.1) 2idn = dn−i.

Indeed, for i = 1 and any n, this follows directly from the fact that 2d = 1.
If (5.1) holds for some i, then

2i+1dn = 2 · 2idn = 2dn−i = dn−i−1.
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Hence (5.1) holds for all positive integers.
Now note that for j = k + i and i ∈ N, one has

mdk + ndj = m2idk+i + ndj = m2idj + ndj = (m2i + n)dj.

As each element of S has the form of a polynomial with one indeterminate
d and natural coefficients, this implies that each element of S equals ndk for
some natural numbers n and k. Since S = N[d], where 2d = 1, it follows
that S is isomorphic to N[1/2] = D+

0
.

As in the case of barycentric algebras over a subfield of the field of real
numbers, each commutative binary mode is a semilattice sum of cancella-
tive subalgebras [14, Th. 7.5.5]. Again, as in the case of (real) barycentric
algebras, one obtains the following theorem.

Theorem 5.7. Each commutative binary mode embeds as a subreduct into

a D+

0
-semimodule.

This theorem enhances an earlier result saying that each commutative binary
mode embeds as a subreduct into a D-semimodule [14, Cor. 7.8.6].

Unlike real barycentric algebras, commutative binary modes form in-
finitely many varieties. The lattice L(CBM) of all subvarieties of CBM was
described by Ježek and Kepka [3]. (See also [11, §4.5].) It consists of irregu-

lar subvarieties C2k+1, for k ∈ N, their regularizations C̃2k+1, and the variety
CBM. Each irregular variety C2k+1 is equivalent to the variety Z2k+1 of

affine spaces. By results of Section 4 and Proposition 2.5 of Part I, it follows
that the semi-affinization semiring of the variety Z2k+1, and also of the vari-

ety C2k+1, is just the semiring Z2k+1. By Theorem 3.3 of Part I, the semiring

of the regularization C̃2k+1 is obtained by adding a new zero to the semiring
Z2k+1. This provides the following corollary.

Corollary 5.8. For each natural number k, the semi-affinization semi-

ring S(C2k+1) of the subvariety C2k+1 of CBM is the semiring Z2k+1. The

semiring S(C̃BM) of its regularisation is the semiring Z2k+1∪{z} extending

Z2k+1 by adjoining a new zero element z.

6. Semilattice modes

As considered by Kearnes [4], semilattice modes are modes having a semi-
lattice operation. (Such an operation is necessarily unique.) Define a semi-

lattice semiring to be a commutative semiring with a semilattice additive
reduct satisfying the identity s + 1 = 1. Then define a semilattice semi-

module to be a semimodule, with a semilattice monoid reduct, whose scalar
semiring is a semilattice semiring. A consequence of results of [4] is that
each semilattice mode embeds as a subreduct into a semilattice semimodule.
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Let V be a variety of semilattice modes. Kearnes constructed a semilat-
tice semiring SK(V), based on a certain subset of the free V-algebra on two
generators, such that each V-algebra embeds as a subreduct into a semilat-
tice semimodule over SK(V). Kearnes’ result relied on a detailed analysis of
the structure of subdirectly irreducible semilattice modes. However, using
the fact that each such subdirectly irreducible algebra contains a smallest el-
ement 0, semilattice modes are readily seen to satisfy Szendrei identities [9].
Consequently, semilattice modes must be subreducts of semimodules over
commutative semirings. We will show that the semi-affinization semiring
S(V) of V coincides with SK(V).

Proposition 6.1. Let V be a variety of semilattice modes. Then the

semiring S(V) is a semilattice semiring.

Proof. Without loss of generality, assume that the semilattice operation of
a V-mode is a basic operation. Let Vτ be the variety of all semilattice modes
(A,+, Ω) of a fixed finite type τ : Ω → N.

The semi-affinization semiring S(Vτ ) is calculated using our general pro-
cedure as the quotient of the semiring N[X,Y,Xωi | ω ∈ Ω, 1 ≤ i ≤ ωτ ] over
a set of commuting indeterminates by the congruence

θ = cg
(

(X + Y, 1), (X,Y ),
(

ωτ
∑

i=1

Xωi, 1
) ∣

∣

∣
ω ∈ Ω

)

.

In particular, in the semiring S(Vτ ), we have X = Y = 1. The additive
reduct of the semiring S(Vτ ) (and of each S(Vτ )-semimodule) is obviously
a semilattice. We will show that the identity s+ 1 = 1 is satisfied in S(Vτ ).

Denote by ai,ω the congruence class (Xωi)
θ, where the Xωi pertain to

ω ∈ Ω and 1 ≤ i ≤ nω = ωτ . Let A be the set of all ai,ω for ω ∈ Ω. Note that

n ∈ 1θ for each positive integer n. Similarly nak1i1,ω1
. . . akrir ,ωr

= ak1i1,ω1
. . . akrir,ωr

for any natural numbers k1, . . . , kr. It follows that each representative of
S(Vτ ) may be written in the form of a polynomial with the variables in A and
with coefficients equal to 0 or 1. Now for any ω ∈ Ω and i = 1, . . . , n = nω,

1 + ai,ω = a1,ω + · · ·+ an,ω + ai,ω = a1,ω + · · ·+ an,ω = 1.

If 1 + ari,ω = 1, then similarly as above

1 + ar+1

i,ω = a1,ω + · · ·+ an,ω + ar+1

i,ω

= a1,ω + · · ·+ ai,ω(1 + ari,ω) + · · ·+ an,ω = a1,ω + · · ·+ an,ω = 1.

A similar induction proof shows more generally that

1 + ak1i1,ω1
· . . . · akrir ,ωr

= 1,

for any natural numbers k1, . . . , kr. Consequently, adding 1 to any element
of S(Vτ ) will give 1, i.e for each s ∈ S, we have 1 + s = 1.
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Finally, if V is a subvariety of Vτ , then the semi-affinization semiring
S(V) is a homomorphic image of S(Vτ ), whence it also satisfies the required
properties.

Example 6.2. In particular, any mode in the variety V of modes with
a semilattice operation + and one binary operation · embeds into a semi-
module. The semiring S(V) is calculated as in Proposition 6.1. As in [4,

Exercise], one shows that a1 + a2 = 1 implies that ai1 + aj
2
= 1, whence

the elements of S(V) may be represented as 0 or ai1 · a
j
2

for i, j ≥ 0. This
shows that the semiring S(V) coincides with the semiring calculated in [4,
Exercise].

Theorem 6.3. Suppose that V is a variety of semilattice modes of type

τ : Ω ∪ {+} → N. Then the semirings S(V) and SK(V) coincide.

Proof. By [4, §4.2], the semiring SK(V) is built on the interval [y, x+y] of the
free V-mode FV(x, y) over the set {x, y}, and consists of all terms t(x, y) such
that t(x, y) = t(x, y) + y = t(x+ y, y). On the other hand, by [1, §V.1], the
free S(V)-semimodule over {x, y} is isomorphic to the direct product S(V)×
S(V) with free generators x = (1, 0) and y = (0, 1). Recall also (compare
Pt. I, §2) that the free Szendrei Ω-mode on set A is isomorphic to the Ω-
subreduct generated by A of the free S(τ)-semimodule over A. It follows that
the free V-mode FV(x, y) is the subreduct of the S(V)-semimodule S(V) ×
S(V) generated by x and y. It is clear that the interval [y, x+ y] of S(V) ×
S(V) is (isomorphic to) a subalgebra of FV(x, y), and is isomorphic to the
V-reduct of S(V). It is also easy to see that, as a semiring, S(V) is isomorphic
to SK(V).
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