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SMOOTH BRUCK LOOPS, SYMMETRIC SPACES,

AND NONASSOCIATIVE VECTOR SPACES

Abstract. Our purposes in this work include the following: (1) Extend and ex-
pand earlier work on symmetric spaces, particularly that done from a nonassociative
algebra point of view, from the finite-dimensional setting to the Banach space setting.
(2) Take a careful look at the equivalence of the categories of smooth pointed reflection
quasigroups (a special class of symmetric spaces) and uniquely 2-divisible Bruck loops
(= K-loops = gyrocommutative gyrogroups). (3) Propose a loop-theoretic analog of topo-
logical vector spaces. (4) Derive algebraic consequences and equivalences of smoothness
notions, particularly the notion of parallel transport. (5) Illustrate the effective interac-
tion of the algebraic operations of reflection, Bruck addition, and coaddition in the test
case of parallelograms in symmetric spaces.

1. Introduction

René Descartes and Pierre de Fermat revolutionized the study of geom-
etry with their introduction of coordinate systems and algebraic methods.
Significant outcomes were the rise of analytic geometry and the introduc-
tion of Euclidean vector spaces as an appropriate framework for Euclidean
geometry. The latter were generalized in time to the notions of Hilbert and
Banach spaces.

Attempts to find appropriate algebraic coordinatizations of more general
geometric settings have led to the study of more general algebraic structures.
A number of these have nonassociative binary operations. In recent years
A. A. Ungar has introduced certain gyrocommutative gyrogroups as an ap-
propriate structure for the development of an analytic hyperbolic geometry
[16]. M. Kikkawa considered quasigroups as algebraic models of symmet-
ric spaces [4], [5] and several other authors have followed up on this idea
over the years. We mention in particular the work of L. V. Sabinin [14]
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and P. Nagy and K. Strambach [11] as having particular relevance for our
work.

In this work we consider Bruck loops (or K-loops) as suitable algebraic
models for symmetric spaces. While earlier work focused on the finite di-
mensional setting, we consider the infinite dimensional setting as well. This
generalization is made possible through recent work of Neeb [12], who gener-
alized the machinery of connections on finite-dimensional symmetric spaces
to sprays on infinite-dimensional Banach symmetric spaces. Our goal is to
find an algebraic model that is an enriched Bruck loop and that, as closely as
possible, resembles a non-associative Banach space, with the smooth struc-
ture and the tangent bundle replaced by algebraic notions and operations
internal to the loop. These structures may be viewed as variants of the gy-
rovector space structures of Ungar [16], gyrocommutative gyrogroups with
a type of scalar multiplication, or of the odules of Sabanin [13], [14]. In the
latter part of the paper we adopt primarily the terminology and notation of
Ungar, since we find this the most suitable for highlighting analogies with
the classical theory of vector spaces.

2. Smooth symmetric spaces

One of our principal goals in what follows is to extend to the infinite-
dimensional setting (Banach manifolds) significant parts of the well-deve-
loped theory of finite-dimensional differentiable loops. We work exclusively
with C∞-differentiability, a property we refer to as smoothness. Smooth
manifolds will mean for us manifolds modeled on some Banach space for
which the charts are smoothly related.

We begin with the definition of a symmetric space. We employ the axioms
of Loos [10], since this approach connects well with nonassociative algebra
and has excellent functorial properties as well, such as the fact that the
tangent bundle of a symmetric space is again a symmetric space.

Definition 2.1. We say (M, •) is a Loos symmetric space if M is
a smooth Banach manifold, and (x, y) 7→ x • y : M ×M → M is a smooth
map with the following properties for all a, b, c ∈ M (each property is given
an alternative equivalent form in terms of the left translations Sa):

(S1) a • a = a (Saa = a);
(S2) a • (a • b) = b (SaSab = b);
(S3) a • (b • c) = (a • b) • (a • c) (SaSbc = SSabSac);
(S4) Every a ∈ M has a neighborhood U such that a • x = x implies a = x

for x ∈ U (Sa has isolated fixed points).

We say the operation • is idempotent (S1), left involutive (S2), and
left distributive (S3). Note that (S2) implies the right quasigroup property
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(a • x = b has a unique solution in x) since

(2.1) a • x = b ⇔ x = a • (a • x) = a • b.

We view the left translation Sx(y) = x • y as a point reflection or symmetry
through x. Properties (S1) and (S2) have obvious geometric interpretation.

We recall some basic notions from differential geometry that will be fun-
damental for our developments. The notion of a(n) (affine) connection on
a finite dimensional manifold becomes more subtle in the Banach manifold
setting. A useful generalization in this setting is the notion of a spray [7].

Definition 2.2. Let M be a Banach manifold and π : TM → M its
tangent bundle.

(i) A second-order vector field on M is a vector field F : TM → TTM sat-
isfying: an integral curve of the local flow ΦF on TM (with infinitesimal
generator F ) projects under π to a geodesic of F in M having the given
integral curve as the velocity curve.

(ii) A second order vector field F on TM is called a spray if πΦF (s, tv) =
πΦF (st, v) whenever either side is defined.

Definition 2.3. The domain Dexp ⊆ TM of the exponential function
of a spray is the set of all points v ∈ TxM , x ∈ M , for which the maximal
integral (or flow) curve γv : J → TM of F with γv(0) = v satisfies 1 ∈ J ; in
this case we define the exponential of v by exp(v) = expx(v) := π(γv(1)).

The geodesics have the form t 7→ exp(tv) for v ∈ Dx ⊆ TM . These are
the same as the geodesics of Definition 2.2, as one can see from property
(ii) of a spray [7, Proposition IV-4.2]. The manifold (M,F ) is geodesically
complete if any two points lie on a geodesic.

A given spray gives rise to a notion of parallel transport or parallel trans-
lation (see [7, Section VIII.3]). For a piecewise smooth curve α : [s, t] → M ,
we write

P t
s(α) : Tα(s)M → Tα(t)M

for the corresponding linear map given by parallel transport along α.

Remark 2.4. By results of [7, Section IV.4] the domain Dexp of the ex-
ponential function is an open set containing all 0x ∈ TxM . The exponential
function is smooth on Dexp. Each expx : Tx ∩ Dexp → M has derivative
the identity map at 0x, and hence is diffeomorphism onto some open set
containing x for small enough open neighborhoods of 0x.

The following are important results of Neeb [12, Theorems 3.3, 3.4 and
3.6] that will be crucial in what follows.
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Theorem 2.5. Let (M, •) be a Loos symmetric space.

(i) Identifying T (M ×M) with T (M)× T (M), then

v • w := T (µ)(v, w) where µ(x, y) := x • y

defines a Loos symmetric space on TM . In each tangent space TxM ,
v • w = 2v − w.

(ii) The function

F : TM → TTM, F (v) := −T (Sv/2 ◦ Z)(v)

defines a spray on M , where Z : M → TM is the zero section and Sv/2

is the point symmetry for v/2 from part (i).
(iii) Aut(M, •) = Aut(M,F ), where the former consists of all diffeomor-

phisms that are automorphisms with respect to • and the latter consists
of all diffeomorphisms that preserve the spray F .

(iv) F is uniquely defined as the only spray invariant under all symmetries
Sx, x ∈ M .

(v) Every geodesic of (M,F ) extends to a geodesic defined on all of R.
(vi) Let α : R → M be a geodesic and call the maps τα,s := Sα(s/2) ◦ Sα(0),

s ∈ R, translations along α. Then these are automorphisms of (M, •)
with

τα,s(α(t)) = α(t+ s) and dτα,s(α(t)) = P t+s
t (α)

for all s, t ∈ R.

The spray of the preceding theorem will be called the canonical spray of
the Loos symmetric space (M, •). In light of Theorem 2.5(v), we henceforth
assume that geodesics are defined on all of R, unless stated otherwise.

Definition 2.6. A Loos reflection quasigroup is a Loos symmetric space
(M, •) with Axiom (S4) replaced by

(M4) x • a = b has a unique solution, denoted x = a#b, which is smooth as
a function of a and b.

More generally, a reflection quasigroup is a pair (M, •) where M is a set and
the binary operation • satisfies (S1)–(S3) and (M4).

Remark 2.7.

(i) We note that a Loos reflection quasigroup is indeed a quasigroup since
(M4) guarantees the left quasigroup property and equation (2.1) the
right.

(ii) By (S2) x • a = b if and only if a = x • b. Hence a#b = b#a.
(iii) The condition that x • a = b has a unique solution is stronger than

axiom (S4), since if x• y = y, then uniqueness of solution and y • y = y
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implies x = y. Thus Sx has a unique fixed point x, in particular,
isolated fixed points.

(iv) It follows from a • b = c ⇔ a = b#c that a map between reflection
quasigroups preserves the •-operation if and only if it preserves the
#-operation. In particular from (S3), symmetries Sx preserve the #-
operation.

Geometric intuition suggests that reflection through the midpoint m of
a and b should carry a to b, i.e., the unique solution of

Sxa = x • a = b,

if it exists, should be x = m, the midpoint. Thus we interpret the left
quasigroup property, the existence of a unique solution of x • a = b, as
asserting the unique existence of a midpoint or mean, which we denote x =
a#b, not the more common notation b/a from quasigroup theory. We note
that the midpoint is a midpoint of symmetry, not a midpoint in terms of
distance.

Example 2.8. The core operation on a group G is defined by a•b = ab−1a.
A subset P of a group G is a twisted subgroup if it contains the identity and
is closed under the core operation. In this case (P, •) satisfies the first three
axioms of a symmetric space and is further a quasigroup iff P is uniquely 2-
divisible (each element of P has a unique square root in P ). Hence uniquely
divisible twisted subgroups of Lie groups that are submanifolds are Loos
reflection quasigroups with respect to the core operation, provided the square
root operation is smooth on P .

Proof. The mean a#b in this case is the unique solution in P of the Ri-
catti equation: x • a = xa−1x = b. To find the solution and establish its
uniqueness, we compute

xa−1x = b

(a−1/2xa−1/2)(a−1/2xa−1/2)=a−1/2(xa−1x)a−1/2 = a−1/2ba−1/2

a−1/2xa−1/2 = (a−1/2ba−1/2)1/2

x = a1/2(a−1/2ba−1/2)1/2a1/2.

The third line follows from the second by uniqueness of square roots. All
steps are reversible, so we have found the unique solution

a#b = a1/2(a−1/2ba−1/2)1/2a1/2.

It follows that a#b is a smooth function of a, b provided the square root
function is smooth.

The set of real numbers R endowed with the core operation s • t =
s+ (−t) + s = 2s− t defines a Loos reflection quasigroup. A one-parameter
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reflection quasigroup, or one-parameter RQ for short, into a symmetric space
(M, •) is a continuous homomorphism α : (R, •) → (M, •). We recall a result
from [9, Proposition 4.4].

Theorem 2.9. The (maximal) geodesics of a Loos symmetric space are
precisely the one-parameter RQs. They each have the form βv(t) = expx(tv),
where x ∈ M , v ∈ TxM , and hence are smooth. The correspondence v ↔ βv
with inverse β ↔ β′(0) is a bijection between TxM and all one-parameter
RQs taking the value x at 0.

This is an analog of the basic result in Lie theory that every one-para-
meter subgroup of a Lie group G has the unique representation t 7→ exp(tX),
where X is a member of the Lie algebra.

The following lemma provides a weaker set of conditions to verify that a
Loos symmetric space is a Loos reflection quasigroup. It also suggests a view-
point that will be important to our further developments, that of a pointed
reflection quasigroup. The category of pointed reflection quasigroups and
point-preserving homomorphisms is both vital and suggestive for our later
developments.

Lemma 2.10. Suppose that (M, •) satisfies (S1), (S2), and (S3). If for
some designated ε ∈ M , M satisfies the requirement that x • ε = b has
unique solution for all b, then M is a quasigroup.

Proof. By Remark 2.7(i), we need to show that x • a = b has a unique
solution for all a, b ∈ M . For each a ∈ M , let us denote the unique solution
of x • ε = a by a1/2, i.e., a1/2 = ε#a. Then a1/2 • ε = a and by (S2),
ε = a1/2 • a. Applying a1/2 to x • a = b, we obtain (by (S3))

a1/2 • b = a1/2 • (x • a) = (a1/2 • x) • (a1/2 • a) = (a1/2 • x) • ε.

Then by definition a1/2 • x = (a1/2 • b)1/2 or by (S2) we have the equivalent

(2.2) x = a1/2 • (a1/2 • b)1/2.

To verify that x is indeed a solution, we note

(a1/2 • (a1/2 • b)1/2) • a = (a1/2 • (a1/2 • b)1/2) • (a1/2 • ε)

= a1/2 • ((a1/2 • b)1/2 • ε)

= a1/2 • (a1/2 • b) = b.

The proof of the preceding lemma motivates the following definition.

Definition 2.11. In a pointed reflection quasigroup (M, •, ε), we define
a1/2 = ε#a, the unique solution of x • ε = a. We also define a2 = a • ε
and a−1 = ε • a. The squaring map x2, square root map x1/2, and inversion
x−1 are defined by these formulas. Inductively x2

n+1
= (x2

n
)2. Note that



Smooth Bruck loops 761

the squaring and inversion maps are defined in any pointed Loos symmetric
space.

Lemma 2.12. Let (M, •, ε) be a pointed Loos symmetric space. For all
v ∈ TεM , expε(v) = (expε(1/2

n)v)2
n

for each nonnegative n.

Proof. The proof is by induction on n. Certainly it is true for n = 0. Set
α(t) = expε(tv), which by Theorem 2.9 is a one-parameter RQ. For n = 1
we have
(

expε
1

2
v

)2

= α

(

1

2

)

• ε = α

(

1

2

)

• α(0) = α

(

1

2
• 0

)

= α(1− 0) = expε v.

If it is true for n = k, then
(

expε
1

2k+1
v

)2k+1

=

((

expε
1

2k

(

1

2
v

))2k)2

=

(

expε
1

2
v

)2

= expε v.

We characterize the class of Loos reflection quasigroups important for
our study.

Theorem 2.13. Let (M, •) be a Loos symmetric space endowed with its
canonical spray (Theorem 2.5), and let ε ∈ M . The following are equivalent:

(1) M is a geodesically complete Loos reflection quasigroup.
(2) The equation x • ε = b has a unique solution x = b#ε = b1/2, the

square root map is smooth, and every element of M lies on some geodesic
containing ε.

(3) Given distinct a, b ∈ M , there exists a unique (injective) one-parameter
RQ sending 0 to a and 1 to b and the squaring map is a diffeomorphism.

(4) The exponential function expε : TεM → M is bijective and the squaring
map is a diffeomorphism.

(5) The exponential function expε : TεM → M is a diffeomorphism.
(6) The exponential function expx : TxM → M is a diffeomorphism for all

x ∈ M .
(7) The square root map exists, is smooth, and for every a∈M , limn→∞ a1/2

n

= ε.

Proof. (1)⇒(2): Immediate, since (2) is a weakening of the conditions of (1).

(2)⇒(4): Let x ∈ M and let α be a geodesic with image containing x
and ε. Setting β(t) = α(t− t0), where α(t0) = ε, and setting v = β′(0), we
have from Theorem 2.9 that β(t) = expε(tv), and thus x ∈ expε(TεM).

Suppose that expε v = expεw. By Lemma 2.12 (expε(1/2
n)v)2

n
=

(expε(1/2
n)w)2

n
for all positive n, and repeated application of the hypoth-

esis of unique square roots yields expε(1/2
n)v = expε(1/2

n)w. Since expε is
locally injective, (1/2n)v = (1/2n)w for some n, so v = w.
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We note (a1/2)2 = (ε#a) • ε = a and (a2)1/2 • ε = (ε#(a • ε)) • ε = a • ε.
Thus x•ε = a•ε has solutions x = (a1/2)2 and x = (a2)1/2. By uniqueness of
solution, the two are equal. It follows that the squaring mapping and square
root mapping are inverses. The squaring map is smooth by smoothness of
the •-operation and the square root map is smooth by hypothesis. Thus the
squaring map is a diffeomorphism.

(4)⇒(5): There is some δ-ball Bδ around 0ε such that expε restricted
to Bδ is a diffeomorphism onto an open subset of M by Remark 2.4. By
Lemma 2.12, on any open ball B around 0ε we can write

expε v = (expε |Bδ
(1/2n)v)2

n
;

for n large enough the right-hand side is a diffeomorphism equal to expε.

(5)⇒(6): Suppose that expε is a diffeomorphism onto M . For any y,
y = expε(v) for some unique v ∈ TxM . Then exp(1/2)v is a midpoint for
ε = expε(0) and y = expε(v), since βv(t) = expε(tv) is a •-homomorphism.
Since Sexpε(1/2)v

is a diffeomorphic automorphism of (M, •) (by (S2) and
(S3)) carrying ε to y, by Theorem 2.5(iii) it is an automorphism of (M,F ).
We conclude that the exponential function is also a smooth homeomorphism
onto M at y.

(6)⇒(1): Let x, y ∈ M , x 6= y. By hypothesis y = expx(v) for some
v ∈ TxM . Since the map αv(t) = expx(tv) is a •-homomorphism, it also
preserves midpoints, and hence αv(1/2) = expx(1/2)v is a midpoint of x =
αv(0) and y = αv(1) = expx(v). If m = expx(w) is another midpoint of
x and y, then by the same argument m is a midpoint of x and expx(2w).
Hence expx(2w) = m • x = y = expx(v). By hypothesis, 2w = v, and thus
w = (1/2)v, m = expx(w) = expx(1/2)v. Thus the midpoint is unique; it
follows that (M, •) is a reflection quasigroup. In the course of the argument,
we have also shown that M is geodesically complete.

We note that the square root function is given by expε(1/2) logε x, where
logε is the smooth inverse of expε, and is thus smooth. It then follows from
the formula derived at the end of the proof of Lemma 2.10 that (x, y) 7→ x#y
is a smooth map from M ×M to M .

(3)⇒(4): Suppose expε(v) = expε(w). Then α(t) = expε(tv) and β(t) =
expε(tw) are both geodesics taking the value ε at 0 and expε(v) at 1. By
hypothesis they are equal, so v = α′(0) = β′(0) = w. Hence expε is injective.

Let x ∈ M . Then there exists a geodesic γ such that γ(0) = ε and
γ(1) = x. By Theorem 2.9 for v = γ′(0), γ(t) = expε(tv) for all t. Hence
x = expε v. We conclude that expε is surjective.

(4),(6)⇒(3): Given distinct a, b, then b = expa(v) for some v ∈ TaM .
Hence α(t) = expa(tv) is a geodesic such that α(0) = a and α(1) = b. It
is injective since expa is. Since all the other one-parameter RQs taking the
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value a at 0 are of the form expa(tw), w ∈ TaM (Theorem 2.9) and since
expa(w) 6= b for w 6= v, α is uniquely determined by its values at 0 and 1.

(2),(4)⇒(7): That (2),(4) imply (7) is straightforward from Lemma 2.12.
(7)⇒(5): Similar to (4) implies (5).

Example 2.14. Let A be a C∗-algebra with identity ε, let A
−1 be the

set of invertible elements, and let SymA := {a ∈ A : a = a∗}, the closed
subspace of self-adjoint elements. Let M := {aa∗ : a ∈ A

−1}, the set
of self-adjoint positive elements. Then M is a uniquely divisible twisted
subgroup of the group A

−1 of invertible elements, and an open subset of
the Banach space SymA. It follows readily that M equipped with the re-
stricted core operation a • b = ab−1a is a Loos reflection quasigroup, called
the positive definite core of A. It is standard that the exponential func-
tion from SymA to M , which can be identified with exp1 : T1M → M , is
a diffeomorphism and hence by (5) of the preceding theorem all the con-
ditions of the theorem are satisfied. The operator a#b arising from the
quasigroup structure is the standard operator geometric mean of a and b.
The unique one-parameter quasigroup determined by a, b yields the weighted
means a#tb := a1/2(a−1/2ba−1/2)ta1/2.

Remark 2.15. The surjectivity of the exponential map, and bijectivity in
the simply connected case, can often be deduced from an assumption of some
form of nonpositive curvature on the manifold M . Results of this type can
be found in [12], along with a review of earlier such results. It is shown in
[9] that the Thompson metric on M , the set of self-adjoint positive elements
in a C∗-algebra, has nonpositive curvature in the sense of Busemann, that
is, for all x, y, z ∈ M , d(x#y, x#z) ≤ (1/2)d(y, z).

3. Bruck and K-loops, gyrogroups, and B-loops

In this section we recall results that are worked out in detail and often
in more generality in [3, Chapter 6] and [15]. The interplay worked out in
this and the next section between reflection quasigroups and Bruck loops is
often reminiscent of material appearing in [11, Chapter 6], except that in
the manifold setting we relax the assumption of finite dimensionality.

We have considered quasigroups in the previous section: sets equipped
with a binary operation ⊙ such that the equations a⊙ y = b and x⊙ a = b
have unique solutions in y and x respectively. A loop is a quasigroup (L,⊙)
with a two-sided identity e. Unique left and right inverses exist and if they
agree for an element a, we denote the inverse by a−1 (recall a′ is a left inverse
of a if a′a = e).

Since we do not postulate the associative law, we adopt the following
convention to lessen the number of parentheses needed: for an, an−1, · · · , a1,



764 S. Kim, J. Lawson

inductively define

ak ⊙ ak−1 ⊙ · · · ⊙ a1 = ak ⊙ (ak−1 ⊙ · · · ⊙ a1).

This means one associates beginning on the right and working to the left.
Note in particular that a ⊙ b ⊙ c = a ⊙ (b ⊙ c). For the special case that
a = ai for every i we write an for the n-fold product. In the case inverses
exist, we define a−n = (a−1)n.

A loop L satisfies the Bol property if for all a, b, c ∈ L

(3.3) a⊙ b⊙ a⊙ c = (a⊙ b⊙ a)⊙ c.

It is a standard fact (see e.g., [3, Theorem 6.4(3)]) that loops L satisfying
the Bol property are left power alternative, that is, satisfy for all a, b ∈ L
and for all m,n ∈ Z:

(3.4) am ⊙ an ⊙ b = am+n ⊙ b.

In particular, each a ∈ L has an inverse a−1 and the powers {am : m ∈ Z}
form a cyclic subgroup.

The loop L satisfies the automorphic inverse property if every element
has an inverse and for all a, b ∈ L

(3.5) (a⊙ b)−1 = a−1 ⊙ b−1

A loop satisfying both the Bol property and the automorphic inverse prop-
erty is called a Bruck loop.

In a loop the left translations La defined by La(x) = a⊙x are bijections.
One can thus define the precession map:

(3.6) ℓ(a, b) := L−1
a⊙bLaLb.

One sees directly that

(3.7) a⊙ b⊙ c = (a⊙ b)⊙ ℓ(a, b)(c).

A loop satisfies the left inverse property if inverses exist and for all a, b ∈ L,

(3.8) a−1 ⊙ a⊙ b = b.

A K-loop was historically defined to be a loop satisfying (i) the left inverse
property, (ii) the automorphic inverse property, (iii) every l(a, b) is an auto-
morphism, and (iv) ℓ(a, b) = ℓ(a, b⊙a) for all a, b. It is a theorem of Kreuzer’s
([6], see also [3, Theorem 6.7]) that a loop is a Bruck loop if and only if it is
a K-loop, and hence the terminology is interchangeable.

A. Ungar [16] has introduced and studied gyrocommutative gyrogroups,
which have been shown to be equivalent to Bruck loops [15]. The axiom
system for a gyrocommutative gyrogroup G is reminiscent of that for a com-
mutative group:
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(G1) a⊕ b⊕ c = (a⊕ b)⊕ gyr[a, b]c, where gyr[a, b] : G×G → G (gyroasso-
ciativity);

(G2) 0⊕ a = a⊕ 0 = a (existence of identity);
(G3) a⊕ (⊖a) = ⊖a⊕ a = 0 (existence of inverses);
(G4) a⊕ b = gyr[a, b](b⊕ a) (gyrocommutativity);
(G5) gyr[0, a] =id;
(G6) gyr[a⊕ b, b] = gyr[a, b] (loop property).

It turns out in the presence of (G1), (G2), (G3), and (G5) that (G6) is equiv-
alent to the Bol property. These five properties together imply (G,⊕, 0) is
a loop, that gyr[a, b] = ℓ(a, b), the predecession map, is a automorphism of
(G,⊕), and that (G4) is equivalent to the Bruck identity (x⊕ y)⊕ (x⊕ y) =
x⊕ (y⊕ y)⊕x, which in turn is equivalent to the automorphic inverse prop-
erty. Conversely, setting gyr[a, b] = ℓ(a, b) in a Bruck loop, one sees that Ax-
ioms (G1)–(G6) are satisfied. These observations establish the equivalence
between gyrocommutative gyrogroups and Bruck loops. This equivalence
yields the following corollary.

Corollary 3.1. A gyrocommutative gyrogroup satisfies the Bol property,
the Bruck identity, and the automorphic inverse property. It is left power
alternative and the maps gyr[a, b] are equal to the predecession map ℓ(a, b)
and are automorphisms.

Let (G,⊕) be a gyrocommutative gyrogroup and let Aut0(G) be a sub-
group of its automorphism group containing all automorphisms gyr[a, b] for
a, b ∈ G. Then G×Aut0(G) is a group with respect to the operation

(3.9) (a,A)(b, B) = (a⊕A(b), gyr[a,A(b)]AB).

Using this group structure, one can readily derive several further useful prop-
erties of the maps gyr[a, b].

Lemma 3.2. Let (G,⊕) be a gyrocommutative gyrogroup, and let a, b, c ∈ G.

(1) (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c).
(2) gyr[b, a] = gyr−1[a, b], the inverse of gyr[a, b].
(3) gyr[⊖a,⊖b] = gyr[a, b].
(4) gyr[a, b⊕ a] = gyr[a, b].

We call a Bruck loop L a B-loop if every element has a unique square
root, i.e., for every y ∈ L, there exists a unique x ∈ L such that x2 = y. The
terminology dates back to the work of Glauberman [1], [2], although he only
considered the case of finite loops.

There is a close connection between B-loops and pointed reflection quasi-
groups.
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Proposition 3.3. If (L,⊙, e) is a B-loop with identity e, then (L, •, e) is a
pointed reflection quasigroup, where x•y := x2⊙y−1. Conversely if (M, •, ε)
is a pointed reflection quasigroup, then (M,⊙, ε) is a B-loop with identity ε,
where x ⊙ y := x1/2 • y−1. In the given settings the two constructions are
inverse.

Example 3.4. Let P be a uniquely 2-divisible twisted subgroup of a group
G with identity e. We have already seen in Example 2.8 that (P, •, e) is a
pointed reflection quasigroup with respect to the core operation x • y =
xy−1x. In addition, (P,⊙, e) is a B-loop with respect to the operation x ⊙
y = x1/2yx1/2 and furthermore the constructions of the previous proposition
convert the two operations into each other. It is further the case that integral
and hence dyadic powers in P agree in the group and loop multiplications.

The fact that (P,⊙, e) is a B-loop is well-known; see, for example, The-
orem 6.14 of [3]. This reference also gives the equivalence of powers.

Remark 3.5. All pointed reflection quasigroups and all B-loops arise, up
to isomorphism, via the construction of the previous example. This is the
content of Theorem 6.15 of [3] for the case of B-loops, where a B-loop is
embedded as a twisted subgroup of the permutation group generated by
the left translations. For the case of pointed reflection quasigroups, see, for
example [8], where the quadratic embedding into a twisted subgroup of the
the displacement group is constructed.

Corollary 3.6. Let (L,⊙, e) be a B-loop. Then the mean operation of the
associated reflection quasigroup (L, •, e) is given by a#b = a⊙ (a−1 ⊙ b)1/2.
In particular e#b = b1/2, so square roots agree in the loop and quasigroup.

Proof. By the previous remark we may assume, up to isomorphism, that
we are working in a uniquely 2-divisible twisted subgroup of a group L with
a⊙ b = a1/2ba1/2 and a • b = ab−1a. By Example 2.8

a#b = a1/2(a−1/2ba−1/2)1/2a1/2 = a⊙ (a−1 ⊙ b)1/2.

Remark 3.7. There are obvious categories BLoop consisting of B-loops
and homomorphisms and RQgp consisting of pointed reflection quasigroups
and distinguished point preserving homomorphisms. These categories are
straightforwardly isomorphic via the construction of Proposition 3.3 at the
object level and the set-theoretic identity at the morphism level, since via
the interrelationship of the operations ⊙ and •, one sees that a map is a
morphism in one category if and only if it is in the other. One obtains
alternatively an equivalence of categories between the category of gyrocom-
mutative gyrogroups and homomorphisms and RQgp.
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4. Smooth gyrocommutative gyrogroups

In the previous section we have observed that (X,⊕,0) is a gyrocommu-
tative gyrogroup if and only if it is a Bruck loop (resp. K-loop). We now
assume that X is a smooth (equal C∞) manifold over a Banach space E
and that the operation ⊕ is smooth as a map from X ×X to X. Our goal
is to exhibit properties of X that are analogues to vector space properties,
and this is made more transparent when we use the additive notation and
axiom system of gyrogroups. In addition Ungar [16] has developed a theory
of gyrovector spaces, and we wish to compare and contrast his theory with
ours. The whole theory of course easily translates over to Bruck loops. The
theory that we develop in this section is a variant of the theory of smooth
left odules of Sabinen [13].

We begin with some remarks about the interplay of uniquely 2-divisible
gyrocommutative gyrogroups (X,⊕,0) and pointed reflection quasigroups.
In Proposition 3.3 we have seen that (X,⊕,0) is equivalent to a pointed
reflection quasigroup (X, •,0) via the following formulas :

a • b = a⊖ (⊖a⊕ b) = a⊕ (a⊖ b) = 2a⊖ b,

a⊕ b = Sa1/2(S0b) = (a#0) • (0 • b),
(4.10)

where Sx represents the point reflection at x.

Remark 4.1. From Corollary 3.6 the mean operation is given by

a#b = a1/2 • (a1/2 • b)1/2

for any a and b in a reflection quasigroup (X, •). Using the above equivalence
of operations, we obtain

a#b = a⊕ (1/2) · (⊖a⊕ b)

in a uniquely 2-divisible gyrocommutative gyrogroup (X,⊕).

Lemma 4.2. Let (X,⊕,0) be a uniquely 2-divisible gyrocommutative gy-
rogroup, and let a • b = 2a ⊖ b be the corresponding reflection quasigroup
operation (Equation 4.10). If we choose some point a ∈ X besides 0 as dis-
tinguished point for (X, •), then the gyroaddition corresponding to (X, •, a)
is given in terms of the original gyroaddition by

x⊕a y = a⊕ ((⊖a⊕ x)⊕ (⊖a⊕ y)) .

Proof. By Equation 4.10, x⊕a y = (x#a) • (a • y). We compute:

a⊕ ((⊖a⊕ x)⊕ (⊖a⊕ y)) = a⊕ ((⊖a⊕ x)#0) • (0 • (⊖a⊕ y))

= a⊕ ((1/2) · (⊖a⊕ x) • (a⊖ y))
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= (a⊕ (1/2) · (⊖a⊕ x)) • (a⊕ (a⊖ y)

= (a#x) • (2a⊖ y)

= (x#a) • (a • y) = x⊕a y,

where first equality is an application of u⊕ v = (u#0) • (0 • v), the second
the facts that u#0 = (1/2) · u, 0 • u = u−1, and the automorphic inverse
property, the third the fact that La = S(1/2)·aS0, a composition of maps
left-distributive over •, the fourth Remark 4.1 and the power associative
property, the fifth equation (4.10), and the sixth the beginning observation
of the proof.

In the remainder of this section we assume (X,⊕,0) is a smooth gy-
rocommutative gyrogroup with unique square roots, where the gyroaddition
⊕ : X ×X → X is smooth. (In loop-theoretic terms, we are working with a
smooth B-loop.) We further make the blanket assumptions that the square
root map x 7→ (1/2)x is smooth and that limn→∞ 1/2nx = 0 for all x ∈ X.

Remark 4.3. The blanket assumptions correspond to condition (7) of
Theorem 2.13 converted to the gyrogroup setting. We could alternatively
assume gyrogroup versions of any of the other conditions as our standing
assumption. For example, condition (2) translates to the condition that
the square root map is smooth and every element lies on a continuous one-
parameter group, i.e., a continuous homomorphism from (R,+) into the
gyrogroup.

In order to show that the binary operation • is smooth, we first apply the
Implicit Mapping Theorem (Theorem 5.9 of Chapter I, [7]) with the function

f(a, b) = a⊕ b : X ×X → X.

Then La, the left translation by a, is a diffeomorphism, whose inverse map
is the left translation by ⊖a. It follows that dLa(b) = D2f(a, b) is an iso-
morphism for all b. Thus, the function

g(x) = ⊖x : U0 → V

satisfying f(x, g(x)) = 0 is also smooth on a sufficiently small open neigh-
borhood U0 of a. So the binary operation • obtained from the following
compositions is smooth :

(a, b) 7→ (a,⊖b) 7→ (a, a⊖ b) 7→ a⊕ (a⊖ b).

From Axiom (M4) of a reflection quasigroup, we know that each Sx has
only one fixed point. Thus, (X, •) becomes a Loos symmetric space. (Note
that (x, y) 7→ x#y is smooth by formula (2.2) in the proof of Lemma 2.10 and
our standing assumption that the square root function is smooth.) There-
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fore, we can apply Theorems 2.5 and 2.9 to the smooth uniquely 2-divisible
gyrocommutative gyrogroup (X,⊕) equipped with unique square roots. In
particular X has a distinguished spray and a corresponding exponential func-
tion exp : TX → X.

In the following we abbreviate the exponential functions exp0 at the
identity 0 ∈ X by exp, and the corresponding log function by log. We note
by Theorem 2.13 that these are diffeomorphisms between T0X and X.

Lemma 4.4. The continuous homomorphisms from (R,+) to (X,⊕) are
the maps αx(t) = exp(tv), where x = exp v.

Proof. We know (Theorem 2.9) that the continuous •-homomorphisms from
(R, •, 0) to (X, •,0) are precisely those of the form βv(t) = exp(tv) for
v ∈ T0X. By Remark 3.7, these must be precisely the continuous homo-
morphisms. The result now follows from Theorem 2.13(5).

In the next proposition we define a smooth scalar multiplication on X.

Proposition 4.5. Let (X,⊕) be the smooth gyrocommutative gyrogroup
satisfying the standing hypotheses of this section. Then X admits a scalar
multiplication defined by

t · x := exp(t log(x))

for any t ∈ R and x ∈ X. The scalar multiplication (t, x) 7→ t ·x from R×X
to X is smooth and satisfies:

(1) 1 · x = x, 0 · x = 0;
(2) s · (t · x) = (st) · x;
(3) s · x⊕ t · x = (s+ t) · x;
(4) gyr[a, b](t · x) = t · gyr[a, b]x.

Proof. By Theorems 2.9 and 2.13 there is a geodesic, or •-homomorphism,

αx : R → X, αx(t) = exp(tv)

arising from the canonical spray, where v = log(x) ∈ T0(X) for any x ∈ X.
We define the scalar multiplication by

t · x := αx(t) = exp(t log(x)).

The scalar multiplication is the composition of the following smooth maps

(t, x) 7→ (t, log(x)) 7→ t log(x) 7→ exp(t log(x)),

hence smooth.

(1) 1 · x = exp(log(x)) = x, and 0 · x = exp(0) = 0.

(2) For s, t ∈ R, s · (t · x) = exp(s log(t · x)) = exp(st log(x)) = (st) · x.
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(3) Since αx(t) = exp(tv) is a •-homomorphism preserving identities, it
is also an ⊕-homomorphism by Remark 3.7. Thus

s · x⊕ t · x = αx(s)⊕ αx(t) = αx(s+ t) = (s+ t) · x.

(4) We consider for a, b ∈ X a map

β : R → X, β(t) = gyr[a, b](αx(t)) = gyr[a, b](t · x).

Since gyr[a, b] is a ⊕-homomorphism, the map β is a •-homomorphism with
β(0) = 0. Thus by Theorem 2.9 we obtain β(t) = exp(tw) for some w ∈
T0(X). Therefore,

gyr[a, b](t · x) = exp(tw) = t · exp(w) = t · β(1) = t · gyr[a, b]x.

We use the preceding to define the notion of a Banach gyrovector space.

Definition 4.6. A smooth gyrovector space consists of a smooth gyrocom-
mutative gyrogroup on a Banach manifold equipped with a smooth scalar
multiplication satisfying

(1) 1 · x = x, 0 · x = 0;
(2) s · (t · x) = (st) · x;
(3) s · x⊕ t · x = (s+ t) · x;
(4) gyr[a, b](t · x) = t · gyr[a, b]x.

Proposition 4.7. In a smooth gyrovector space G the map

(a, b, c) 7→ gyr[a, b]c : G3 → G, gyr[a, b]c = ⊖(a⊕ b)⊕ (a⊕ (b⊕ c)),

is smooth, and the following additional properties hold:

(i) For all integers m, mx = m · x. In particular, (−1) · x = ⊖x.
(ii) For all s, t ∈ R, s · a⊕ t · a⊕ b = (s+ t) · a⊕ b = (s · a⊕ t · a)⊕ b.
(iii) For all s, t ∈ R and a ∈ G, gyr[s · a, t · a] =id.

Proof. The alternative characterization of gyr[a, b]c follows from the fact
that gyr[a, b] is the precession map. The asserted smoothness then follows
from the smoothness of the gyroaddition and the inversion map.

(i) The proof follows by induction for m > 0 since 1 · x = x = 1x and

(m+ 1)x = x⊕mx = 1 · x⊕m · x = (1 +m) · x

by (3) if mx = m · x. For m = −1, (−1) · x⊕ x = (−1) · x⊕ 1 · x = 0 · x = 0,
so (−1) · x = ⊖x by uniqueness of inverses. For m > 1,

(−m)x = m(⊖x) = m · (⊖x) = m · ((−1) · x) = (−m) · x.

(ii) Using (i), we see that (ii) holds for integers since a gyrocommutative
gyrogroup is left power alternative by Corollary 3.1. Then for integers i, j
and n > 0, we have
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(

i

2n

)

· a⊕

(

j

2n

)

· a⊕ b = i ·

(

1

2n
· a

)

⊕ j ·

(

1

2n
· a

)

⊕ b

= (i+ j) ·

(

1

2n
· a

)

⊕ b

=

(

i+ j

2n

)

· a⊕ b.

Thus the first equality in (ii) holds for all dyadic rationals and then by
continuity for all s, t. A similar argument establishes the second equality.

(iii) Item (iii) follows directly from item (ii) and the gyroassociativity
law.

Remark 4.8. The scalar multiplication of a smooth gyrovector space G is
the one induced in the manner of this section from the canonical spray on
the corresponding reflection quasigroup.

Proof. We note that x⊕ x = 2 · x = b has the unique solution x = (1/2) · b,
so that G has unique square roots. It follows from the definition of a smooth
gyrovector space that the map x 7→ (1/2) · x is smooth. Furthermore,
limn→∞(1/2n) · a = 0 · a = 0, so the standing hypothesis of this section
is satisfied, and a scalar multiplication is induced, as in Proposition 4.5,
which satisfies the axioms of a gyrovector space. In the given and induced
scalar multiplications, it must be the case, as we have just seen, that (1/2) ·x
is the unique square root of x, so scalar multiplication by 1/2 is the same
map for both scalar multiplications. It follows from Proposition 4.7(i) that
the scalar multiplications by any integer m agree. It follows from the scalar
multiplication laws that the scalar multiplications agree for all dyadic ratio-
nals and hence by continuity for all real numbers.

Definition 4.9. For a smooth gyrovector space, its canonical spray and
exponential map are by definition those of the corresponding reflection quasi-
group.

5. Parallel transport

We have already encountered the notion of parallel transport along geo-
desics arising from a given spray in Theorem 2.5(vi). We develop the parallel
transport along geodesics in a smooth gyrovector space X.

Proposition 5.1. Let X be a smooth gyrovector space. Let

α : R → X, α(t) = exp(tv),

where a = α(1). Then parallel transport from T0X along α to TaX is given
by

P 1
0 (α) = dLa(0).
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Furthermore, the following diagram commutes:

T0(X)

exp

��

dLa(0)=P 1
0 (α)

// Ta(X)

expa

��

X
La

// X

Proof. Via Theorem 2.5(vi) we know that the following diagram commutes
for a geodesic α such that α(t) = x and α(s+ t) = y :

Tx(X)

expx

��

dτα,s(α(t))=P t+s
t (α)

// Ty(X)

expy

��

X
τα,s=Sα(s/2)Sα(0)

// X

For the given geodesic αa(t) = exp(tv), we have α(0) = 0 and α(1) = a. By
equation (4.10)

τα,1 = Sα(1/2)Sα(0) = Sα(1/2)S0 = La.

Thus, we obtain

dLa(0) = dτα,1(αa(0)) = P 1
0 (α)

and the desired commutative diagram from the one just given.

A geodesic loop, as introduced by Kikkawa [4, 5], is one satisfying equa-
tion (5.11) in the following corollary, which corollary follows immediately
from the preceding proposition.

Corollary 5.2. In a smooth gyrovector space X, the addition is given by

(5.11) x⊕ y = expx ◦P
1
0 (α) ◦ log y,

where α(t) = exp(tv) is a geodesic with value 0 at 0 and x at 1 and P 1
0 :

T0X → TxX is parallel transport along α. Thus X is a geodesic loop.

We now introduce rooted and free gyrovectors along the lines of A. Ungar
[16, Chapter 5].
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Definition 5.3. Let a and b be elements, or points, in a smooth gyrovector
space. A rooted gyrovector (alternatively, bound gyrovector) ab is an ordered
pair of points a, b ∈ X. The points a and b of the rooted gyrovector ab are
called, respectively, the tail and the head of the rooted gyrovector.

The value in X of the rooted gyrovector ab is ⊖a ⊕ b. Accordingly, we
write

v = ⊖a⊕ b.

Furthermore, any point a ∈ X is identified with the rooted gyrovector 0a
with head a, rooted at the origin 0. Such gyrovectors are sometimes called
positional gyrovectors.

Given v ∈ TaX, the rooted gyrovector a expa(v) is called the gyrorepre-
sentation of v.

Two rooted gyrovectors ab and a′b′ are said to be equivalent,

ab ∼ a′b′,

if they have the same value in X, that is, if

⊖a⊕ b = ⊖a′ ⊕ b′.

Then the relation ∼ is given in terms of an equality so that, being reflex-
ive, symmetric, and transitive, it is an equivalence relation. The resulting
equivalence classes are called free gyrovectors.

We have another version of Proposition 5.1 in terms of rooted gyrovectors.

Corollary 5.4. Let X be a smooth gyrovector space. Then the parallel
transport of a vector v in T0X along a geodesic from 0 to a has gyrorepre-
sentation ab, where

b = a⊕ exp(v).

We next define a notion of parallel transport for rooted gyrovectors that
is equivalent to that at the tangent vector level when tangent vectors and
rooted gyrovectors are identified via internal representation.

Definition 5.5. A rooted gyrovector a1b1 = a1 expa1(v1) is said to be a
parallel transport of a rooted gyrovector a0b0 = a0 expa0(v0) if the tangent
vector v1 ∈ Ta1X is the parallel transport of the tangent vector v0 ∈ Ta0X
along the geodesic

α(t) = expa0(tw)

with a1 = α(1) for some w ∈ Ta0X.
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Theorem 5.6. Let X be a smooth gyrovector space. A rooted gyrovector
a1b1 is a parallel transport of a rooted gyrovector a0b0 if and only if their
values satisfy

(5.12) ⊖a1 ⊕ b1 = gyr[a1,⊖a0](⊖a0 ⊕ b0).

Proof. Assume that a1b1 is a parallel transport of a0b0. By definition of
parallel transport of rooted gyrovectors, we have that

b0 = expa0(v0), b1 = expa1(v1),

where

(5.13) v1 = P 1
0 (α)(v0)

for the geodesic α with α(0) = a0 and α(1) = a1. From Theorem 2.5(vi) we
have the commutivity of the following diagram:

Ta0(X)

expa0

��

dτα,1(α(0))=P 1
0 (α)

// Ta1(X)

expa1

��

X
τα,1=Sα(1/2)Sα(0)

// X

Taking expa1 on both sides in the equation (5.13) and using the above
diagram, we have

expa1(v1) = expa1(dτα,1(α(0))v0)

= τα,1(expa0(v0))

= Sα(1/2)Sα(0)(expa0(v0)).

Equivalently,

b1 = Sα(1/2)Sα(0) (b0)

= α(1/2) • (α(0) • b0)

= (a0#a1) • (a0 • b0).

We fix the point a0 as the distinguished point of (X, •) and consider the corre-
sponding gyrogroup (X,⊕a0 , a0). By Corollary 5.4 applied to this gyrogroup,
we have that the parallel transport of v0 along α has gyrorepresentation a1b1,
where b1 = a1 ⊕a0 expa0(v0) = a1 ⊕a0 b0. We then have

b1 = a1 ⊕a0 b0

= a0 ⊕ ((⊖a0 ⊕ a1)⊕ (⊖a0 ⊕ b0))

= (a0 ⊕ (⊖a0 ⊕ a1))⊕ gyr[a0,⊖a0 ⊕ a1](⊖a0 ⊕ b0)

= a1 ⊕ gyr[a1,⊖a0](⊖a0 ⊕ b0),
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where the second equality follows from Lemma 4.2, the third is the left
inverse property and the fourth follows from

gyr[a0,⊖a0 ⊕ a1] = gyr[a0 ⊕ (⊖a0 ⊕ a1),⊖a0 ⊕ a1]

= gyr[a1,⊖a0 ⊕ a1] = gyr[a1,⊖a0].

Therefore, by the left inverse property, we have

⊖a1 ⊕ b1 = ⊖a1 ⊕ (a1 ⊕ gyr[a1,⊖a0](⊖a0 ⊕ b0))

= gyr[a1,⊖a0](⊖a0 ⊕ b0).

Remark 5.7. In the special case with a0 = 0, the equation (5.12) becomes

⊖a1 ⊕ b1 = gyr[a1,0]b0 = b0.

Equivalently, we have b1 = a1 ⊕ b0, the result of Corollary 5.4.

Remark 5.8. Ungar [16] defines a1b1 to be a parallel transport of a0b0
if equation (5.12) is satisfied. However, we have derived this fact simply
from the assumption that we are working in a smooth gyrovector space.
This provides some justification for Ungar’s definition on the one hand, and
on the other demonstrates how the smoothness assumptions lead naturally
to appropriate generalizations of classical vector analysis to the context of
gyrovector spaces.

6. Parallelogram vector addition

The parallelogram vector addition law in Euclidean geometry is an al-
ternative statement of the triangle vector addition law. The parallelogram
vector addition law for a parallelogram abdc in the Euclidean vector space
gives us two equivalent conditions

d = c+ (b− a),

d = b+ (c− a).

Furthermore, the two diagonal segments in a parallelogram abdc in a Eu-
clidean vector space have a common midpoint. In particular,

a+ d

2
=

b+ c

2
.

To generalize these ideas, and a number of other ideas, to gyrovector
spaces, we introduce another addition into a gyrogroup, an operation that
Ungar [16] has called coaddition. Both addition and coaddition in a gyrovec-
tor space collapse to the usual vector addition in the associative case, but
several standard properties of vector addition tend to split between these
two operations in gyrovector spaces. Thus both turn out to be useful. As
an important “test case”, we observe the interplay of the two operations for
the study of parallelograms and midpoints in gyrovector spaces.
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Definition 6.1. In a gyrogroup (X,⊕,0) we define the coaddition ⊞ by

a⊞ b = a⊕ gyr[a,⊖b]b.

We set a⊟ b := a⊞ (⊖b) = a⊕ gyr[a, b](⊖b) = a⊖ gyr[a, b]b.

Remark 6.2. We have remarked that a gyrogroup X is a loop. Indeed,
the equation a ⊕ x = b in unknown x has a unique solution x = ⊖a ⊕ b in
X. Furthermore, the equation x⊕a = b in unknown x has a unique solution
x = b⊟ a in X.

Proof. The first assertion follows from the left inverse property. For the
second,

(b⊟ a)⊕ a = (b⊖ gyr[b, a]a)⊕ a

= (b⊕ l(a, b)(⊖a))⊕ a

= (b⊕ (⊖(b⊕ a)⊕ b))⊕ a

= b⊕ (⊖(b⊕ a)⊕ (b⊕ a))

= b,

where the next-to-last equality is an application of the Bol property. The
uniqueness follows from the fact that X is a loop.

We consider an alternative method of computing the solution of x⊕a = b
in a gyrocommutative gyrogroup with unique square roots. We recall that
x = a#b is the unique solution of x • a = b, so

b = x • a = 2x⊕ (⊖a),

where the second equality is the first equation in (4.10). From Remark 6.2
we conclude that

2 · (a#b) = 2x = b⊟ (⊖a) = b⊞ a.

Remark 6.3. From the preceding and Remark 4.1, we have the following
mixed formula for the midpoint of a and b:

a#b = (1/2) · (b⊞ a) = a⊕
1

2
· (⊖a⊕ b).

Since a#b = b#a, we conclude that a ⊞ b = b ⊞ a and have the alternative
version of the preceding equations:

a#b = (1/2) · (a⊞ b) = b⊕
1

2
· (⊖b⊕ a);

2(a#b) = a⊞ b.

In the smooth gyrovector space X where there is no parallel postulate,
we still have an analogous definition.
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Definition 6.4. Let a, b, and c be distinct noncollinear points in a smooth
gyrovector space X. Then the points a, b, c, and d are the vertices of
parallelogram abdc, ordered either clockwise or counterclockwise, if

d = (b⊞ c)⊖ a.

We call abdc the vertices of the parallelogram.

We have equivalent conditions for the vertices of a parallelogram.

Proposition 6.5. Let a, b, c, and d be distinct points in a smooth gy-
rovector space X. Then the following are equivalent :

(1) abdc are the vertices of a parallelogram.
(2) The midpoint of the two points a and d coincides with the midpoint of

the two points b and c.
(3) The following conditions hold:

a = (b⊞ c)⊖ d,

b = (a⊞ d)⊖ c,

c = (a⊞ d)⊖ b,

d = (b⊞ c)⊖ a.

(4) The rooted gyrovectors satisfy the following conditions:

⊖b⊕ d = gyr[b,⊖c] gyr[c,⊖a](⊖a⊕ c),

⊖c⊕ d = gyr[c,⊖b] gyr[b,⊖a](⊖a⊕ b).

Proof. By Remark 6.2 (letting x = b⊞ c) the condition for the vertices abdc
to be a parallelogram

d = (b⊞ c)⊖ a

is equivalent to

a⊞ d = d⊞ a = b⊞ c.

Multiplying 1/2 on both sides we have equivalently

1

2
· (a⊞ d) =

1

2
· (b⊞ c).

This gives us the equivalence among (1), (2), and (3). We now prove the
equivalence between (1) and (4).

(1) ⇒ (4): Assume that abdc are the vertices of a parallelogram. Then
we have

d = (b⊞ c)⊖ a.

We note by Corollary 3.1, several applications of property [G6] of a gyro-
commutative gyrogroup and Lemma 3.2(4), and Lemma 3.2(3) that
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gyr[gyr[b,⊖c]c, b] = gyr[l(b,⊖c)c, b] = gyr[(⊖b⊕ c)⊕ b, b]

= gyr[⊖b⊕ c, b] = gyr[⊖b⊕ c, c] = gyr[⊖b, c]

= gyr[b,⊖c].

By Lemma 3.2(1) and the gyrocommutativity, we obtain

d = (b⊞ c)⊖ a

= (b⊕ gyr[b,⊖c]c)⊖ a

= b⊕ (gyr[b,⊖c]c⊖ gyr[gyr[b,⊖c]c, b]a)

= b⊕ (gyr[b,⊖c]c⊖ gyr[b,⊖c]a)

= b⊕ gyr[b,⊖c](c⊖ a)

= b⊕ gyr[b,⊖c] gyr[c,⊖a](⊖a⊕ c).

Thus, we have equivalently

⊖b⊕ d = gyr[b,⊖c] gyr[c,⊖a](⊖a⊕ c).

Using the commutativity of coaddition and following the above steps, we can
obtain the other condition.

(4)⇒(1): Reversing the preceding steps yields (4)⇒(1).

Remark 6.6. We have seen that a uniquely 2-divisible gyrocommutative
gyrogroup X gives rise to a symmetric mean by setting

Sxy = x • y = x⊕ (x⊖ y) = 2x⊖ y.

By Proposition 6.5(2) we have that distinct points abdc are the vertices of a
parallelogram if and only if

a#d = b#c.

It follows from Remark 2.7(iv) that parallelograms are preserved under all
symmetries Sa, and hence under all translations La = Sa1/2S0.

In Euclidean space the parallelogram vector addition law is satisfied; for
a parallelogram abdc,

(−a+ b) + (−a+ c) = −a+ d.

We have the analogous parallelogram addition law of rooted gyrovectors.

Corollary 6.7. Let abdc be the vertices of a parallelogram in a smooth
gyrovector space. Then

(⊖a⊕ b)⊞ (⊖a⊕ c) = (⊖a⊕ d).

Proof. By Remark 6.6 we have that 0(⊖a ⊕ b)(⊖a ⊕ d)(⊖a ⊕ c) are the
vertices of a parallelogram, and hence by Proposition 6.5(2)

(1/2) · (⊖a⊕ d) = (⊖a⊕ b)#(⊖a⊕ c).
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Multiplying both sides by 2 yields, in light of Remark 6.3

⊖a⊕ d = (⊖a⊕ b)⊞ (⊖a⊕ c).
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