DEMONSTRATIO MATHEMATICA
Vol. XLIV No 4 2011

10.1515/dema-2013-0342

Ilinka Dimitrova, Jorg Koppitz

COREGULAR SEMIGROUPS
OF FULL TRANSFORMATIONS

Abstract. This paper is mainly dedicated to the description of coregular subsemi-
groups of the symmetric semigroup 7T, of transformations on an n-element set. Namely,
we characterize all coregular transformation semigroups S with |S| < 3. In the sub-
semigroup E, of all extensive transformations, the coregular elements coincide with the
idempotent ones. We characterize all bands within E,. Within the subsemigroup OFE,,
of all order-preserving extensive transformations, we also determine the maximal bands
(with respect to the inclusion).

1. Introduction and preliminaries

Regular semigroups play an important role in the semigroup theory and
they have been studied from various aspects. We want to investigate a parti-
cular class of regular semigroups.

An element « of a semigroup S is called coregular if there is a 5 € S
such that

a = afa = pap.
A semigroup is called coregular if each element of it is coregular ([2]).

Coregular semigroups have been also studied in [4] and [8]. A coregular
semigroup can be characterized as a semigroup S with a = a3 for all a € S
or as a union of disjoint groups with elements of order < 2. Since in a group,
a = a? if and only if @ has an order < 2, coregular elements in a semigroup
generalize elements of a group of order 2. For example, a square matrix with
n rows that satisfies 43 — A =0 = (A —1)A(A+ 1), is a coregular element
in the semigroup M, (R) of all square matrices with n rows. The semigroup
M>(R) of all real 2 x 2 matrices is not regular (also not coregular), but it
contains coregular elements. The set
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cosa sin«o
) |0 <a<2m
sina — cos «

is a coregular semigroup within Ms(R), which defines the axial symmetries
of the figures of a given plane (see also [1]). Let us also note that the
pseudoinverse matrix concept introduced by E. H. Moore ([7]) in 1920, is
very useful for solving some optimization problems. Every symmetric matrix
is equal to its pseudoinverse if and only if it is coregular (see [1]).

We begin by recalling some notation and definitions that will be useful
in the paper. For standard terms and concepts in semigroup theory we
refer to [6]. Let us start by defining the semigroups that will be objects of
study in this paper. For n € N, let X,, be a finite chain with n elements,
say X, = {1 < 2 < ... < n}. As usual, we denote by 7T, the symmetric
semigroup of all full transformations on X,. Every transformation o € T),

may be expressed as
Ay Ay -+ A,
o= ,
al az e ar

where A1, ..., A, are the ker a-classes (the blocks of ) and a;a~! = A; for
1 < i <r < n. Then every idempotent transformation is characterized by
the property that a; € A; for 1 <i <r <n.

We say that a transformation « in T;, is order-preserving if x < y implies
ra < ya for all x,y € X,, and « is extensive if x < xa for all x € X,,. De-
note by E, the subsemigroup of all extensive transformations on X,, and by
OE,, the semigroup of all order-preserving extensive transformations on X,,.
These monoids were studied for example in [5] and [9]. The coregular semi-
groups within the symmetric semigroup 73 are characterized in [3].

In Section 2, we characterize all coregular semigroups with < 3 elements
within 7},. The coregular elements coincide with the idempotent elements in
the semigroup E,. In this case, the study of the coregular semigroups within
E,, means the investigation of the bands (idempotent semigroups) within
E,,. For a subsemigroup S of T, we denote by E(S) the set of idempotents
in S. In an inverse semigroup, the idempotents form a semigroup, but in
general, this is not true. The maximal bands within 7,, are of particular
interest. Their description is still an open problem connected with questions
in graph theory. We will give a complete answer for the subsemigroup OFE,
of T,, in Section 3. Moreover, we characterize all bands within E,, as well as
within OFE,,.

For completion, we recall the definition of Green’s equivalence relations
L, R, H, and J on a monoid M: for all u,v € M,



Coregular semigroups of full transformations 741

uRv <= uM =vM,

ulv <= Mu= Mv,
uHv <= uRv and ulv,
uJv <— MuM = MuvM.

For a transformation o € T,,, we denote by ker @ and im « the kernel and the
image of «, respectively. The kernel of a transformation is an equivalence
on X,. For an equivalence p on X,,, we denote by ap the equivalence class
(block) containing a € X,, and we put X,,/p := {ap | a € X, } as well as
Ap:=J{ap|a e A} for aset A C X,,. The number rank a = | X,,/ kera| =
lim «af is called rank of . The symmetric semigroup 7, is regular, but the
submonoids F,, and OE,, are not regular. The next result is well known (see
[6, Exercise 16, page 63|): for all o, f € T,

alf <= ima=im f,
aRf <= kera = kerf,
aHpB <= im a=im [ and ker o = ker g3,

aJpB <= rank a =rank .

For a set A C X,, and an equivalence p on X, such that |A| = |X/p|, let
H, 4 be the following H-class:
H,p:={a €T, |kera=p, imaoa=A}

Remember that im af C im  and ker a C ker af8. Moreover, if a € E(T},)
then

e im § C im « implies Sa = j,

e ker o C ker 8 implies a8 = .
LEMMA 1. Let o, € E(T},), A :=im a, B := im af3, and p := ker 3.
Then A C Bp and B C Ap.

Proof. We have A = (Xa)B = B. This implies (Af8)p = Bp, where
A C (Ap)p since B is an idempotent. This shows A C Bp. On the other
hand, we have B = Af = (Ap)B C Ap since 8 is an idempotent. m

We denote by Ay :={(a,a) | a € A} for a set A C X,,.

LEMMA 2. Let aq, a9, a3 € E(T},), A; := im «; and p; := keroy for i =
1,2,3. Then ajae = as if and only if A3 C As, A3 C Aips, A1 C Aspo,
p1o (AN pa)opr = p3, and A, C p1oAa, opa.

Proof. Suppose that ajas = az. Then, clearly, A3 C Ao, A1 C Aszpo and
A3 C Aypo by Lemma 1.
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Let (z,y) € p1o(A2Np2)opr. Then there are 2/, y' € X,, with (2/,y') €
(A3 N po) and (2/,z), (y,y') € p1. This implies zajae = 2'aa9, yaray =
Yy aras, and x'ay = 3y ag. Since 2/, 1y’ € A1, we have 2/ = 2’y and ¢ = ¢/
and thus 2’ajas = y'ajas. So, we have rajas = yajas, i.e. rag = yas
and thus (z,y) € p3. Let (z,y) € p3, i.e. zaz = yas. Thus zajay =
yaqag. This implies the existence of 2/, v/ € Ay, namely 2/ = 2’1 = 2oy
and y' = y'a; = ya;. Hence 2'as = y'az and (2/,y') € (A2 N ps), where
(2',2), (y,y') € p1. This shows that (z,y) € p1o(AZNp2)op1. Consequently,
p1 o (AT N p2)opr = ps.

Let x € As. Then zajas = x since ajas = ag is an idempotent, and
for y = za; € Ay, zay = y = yaq, ie. (x,y) € p1. Further, yay =
rajae = x = xag (since x € A3 C Ag), i.e. (y,z) € p2. In particular,
we have © = rajas = z. So, we have (z,x) € p1 o Ay, o pa. This shows
Ay, S prolAp opo.

For the converse, we show that ker cjae = p3, im ajas = Az, and ajas
is an idempotent. If this is the case, then ajasz is the idempotent in H), 4,
l1.e. x1vg = Q3.

We have (x,y) € kerajap if and only if (zaq,ya1) € pa if and only if
there are 2/, y' € Ay with (z,2'), (y,¢') € p1, ' = 2’1, ¥ = ¥y, and
(2',4) € pz if and only if (z,y) € p1 o (AT N p2) 0 p1 = ps.

Let x € A3 C Ay1pz. Then there is y € Ay with z € yp2, i.e. y =y
and xas = yas. Since x € Az C Ay, we have xas = x. This yields
T = xay = yaz € im ajas. Let x € im ajas. Then x € As and there
is z € Ay with zag = x. Because of Ay C Asps, there is w € Az with
(z,w) € pa, i.e. zag = way. Since w € Az C Ag, we have w = wag. Hence
T = zas = wag = w € As. Consequently, im ajag C As and altogether
im a1 = A3.

Let x € im ajap = Asz. Then, since Ay, C p1 oAy, opg, thereis y € Ay
with (x,y) € p1 and (y,z) € p2. Then zajas = yajas = yag = zas. Since
x € A3 C Ay, we have zas = x, i.e. zajas = x. This shows that ajas is an
idempotent. =

2. Coregular semigroups within 7),

First we characterize the coregular elements within 7,,. Let o € T}, and Z
be the ker a-class containing . Then all elements of  have the same image
under «, denoted by za.

DEFINITION 3. Let E3(T,) be the set of all & € T,, such that for all
T,y € Xn,
T €Y = Yo € T.

PROPOSITION 4. FE5(T),) is the set of all coreqular elements in T,,.
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Proof. Let a € Fy(T,) and = € X,,. Then there is a ker a-class y with
za € . Then ya € T, and so zaaa = yaa = za, ie. o’ = a.

Conversely, let a € T, with o® = « and let z,y € X,, with za € 7.
Assume that ya ¢ z. Then zaaa = (ya)a, where ya ¢ z, i.e. zaaa # za.

So, za = za® # za, a contradiction. m

The set E2(T,) is not closed under multiplication. The question arises
which subsets of Eq(T),) are closed. Clearly, all trivial semigroups are coreg-
ular. We will give a complete answer for subsets with < 3 elements. A
characterization for sets with > 4 elements is still an open problem.

REMARK 5. For all a € Ex(T,,) \ E(T},), o* € E(T,) and both a and o?
belong to the same H-class. Moreover, fa? = o3 = f for all B in this
H-class. Hence a two-element set S C Fy(7),) is a semigroup if and only if
S is a band or there is an H-class H of T, such that S C H and exactly one
element of S is an idempotent.

PROPOSITION 6. Let S = {a1, a2} C E(T,) with oy € Hy, 4, (i € {1,2}).
Then S is a semigroup if and only if at least one of the following statements
15 valid:

(i) Ax € Ay and p2 C p1.
(i) A2 € Ay and p1 C po.
(iii) A = As.
(iv) p2 = p1.
Proof. Suppose that S is a semigroup. Then ajao, asa; € {aq, a2}, First,
ajag € {aq,as} implies Ay C As or p; C pa. Moreover, asay € {aq, s}
gives pa C p; or Ay C A;. This shows that one of the statements (i)—(iv) is
valid.
Suppose that one of the statements (i)—(iv) is valid.
(i) A1 C Asg, p2 C p1, and aq, ag € E(T),) implies ayae = asay = ag, i.e.
S is a semilattice.
(ii) Aa C Ay, p1 C po, and a1, a0 € E(T),) implies ajag = asa; = ag,
i.e. S is a semilattice.
(i) Ay = A2 and oy, a0 € E(T,,) implies ajag = ap and agag = ag, i.e.
S is a left-zero-semigroup.
(iv) p2 = p1 and a1, ay € E(T),) implies ayae = ag and asag = oy, i.e.
S is a right-zero-semigroup. m

REMARK 7. A two-element band within 7, is a semilattice or a left- (right-)
Zero-semigroup.

PROPOSITION 8. Let S C E(T),,) be a three-element set. Then S is a semi-
group if and only if there are sets Ay, As, A3 C X, equivalences p1, p2, p3
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on X, and pairwise distinct elements oy, o, a3 € S such that oy € H,
(1 <4< 3) and at least one of the following holds:

7Ai

() A1 - A2 - A3 andp3 Cpg C P1-
(i) Ay = Az C A3 and p3 C p2, p1.
(iii) Al C Ag = A3 and ps3, p2 C p1.
(iv) A; C Ay, Az and p3 = p2 C p1.
(v) A17A2 C Az and p3 C p2 = p1.
(vi) A = A3.
(vii) P3 = P2 = p1.
(viii) Ay C Azpy, A3 C Aagpr, Az C Ay, pao (A3Np1)ope = p3, Aa, C
p2 0 Ay, 0 p1, and at least one of the following conditions holds:
(Viiil) A3 g Ag, Ag g Alpg, A1 g Agpg, pP1 © (A% ﬂpg) o p1 = pPs3, and
Apy, CprolAy, opo.
(Viiig) A1 g AQ,
(viiig) p1 € pa.

Proof. Let S be a semigroup. Then any two-element subset of S is a semi-
group or at least one two-element subset does not be a semigroup. Suppose
that any two-element subset is a semigroup. Then, by Proposition 6, for all
i,j € {1,2,3} with i # j, A; € A; and p; C p;, or A; = Aj, or p; = p;.
Then, there are pairwise distinct i1, 42,43 € {1, 2,3} such that:

()
(ii
(iii
(iv

)
)
iv)
(v)
i)
)

Aiy C© Aiy C Ay and piy C piy, C pyy o
A - Ai2 C Ai3 and Pis S Piys Piy OF
AZl C A;, = A, and pjy, pi, € pi; OF
Ay C Ajy, Aiy and piy = pi, C pjy or
AllvAiz - Ais and pi; C pi, = piy or
( A“ = AiQ = Aig or

(Vil) pis = piy = pi; -

Suppose that there is a two-element subset of S that does not be a
semigroup. Without loss of generality, we can assume that asa; = as.
Then Ay C Aspi, A3 C Aspy, A3 C Ay, p2 o (A% ﬁpl) o p2 = p3, and
Apy C p20oAy,op; by Lemma 2. Suppose that ayae = ag. Then Az C Ay,
As C Aipa, A1 C Asps, p1o (A2 N p2)opr = ps, and Ay, C proAy, opy
by Lemma 2. Suppose that ajas = 1. This gives A1 C Asy. If we suppose
that ajs = g then we obtain p; C po. Thus (viii) holds.

Conversely, suppose that at least one of the properties (i)—(viii) holds.
Without loss of generality, we can assume that i1 = 1, 73 = 2, and i3 = 3. We
check that in each case ((i)—(viii)), S is a semigroup. In the first seven cases,
we use the fact that im o C im g implies af = « and that kera C ker 3
implies a8 = 8 for all o, 5 € E(T},).
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(i) S is a semilattice isomorphic to the semilattice A; C Ay C A3 under
set intersection.

(ii) {a1, a2} is a left-zero semigroup and ag serves as the identity.

(iii) {ag, as} is a left-zero semigroup and o serves as the zero.

(iv) {ae, a3} is a right-zero semigroup and o serves as the zero.

(v) {a1, a2} is a right-zero semigroup and a3 serves as the identity.

(vi) S is a left-zero semigroup.

(vii) S is a semigroup.

(viii) We have aga; = a3 by Lemma 2. Then asag = asasa; = agag =
ag and g3 = g = g = a3,

(viii;) By Lemma 2, we obtain ajag = ag. This gives ajag = ajajog =
a1ae = a3 and agay = ajasas = ajas = as. Thus S is a zero-semigroup.

(viiig) From A; C As it follows ajae = 3. Then ajas = ajaea; =
a1 = and 30 = g1 (g = (igx1 = (3. Hence, Sisa semigroup.

(viiiz) From p; C pg, it follows ajas = ag. Then ajag = ajapa; =
s = a3 and agag = sy = oy = ae, and so S is a semigroup. m

PROPOSITION 9. Let S C Ey(T),) be a three-element set. Then S is a
semigroup if and only if S is a band or there are sets A, B C X,, and equiv-
alences p, ™ on X, such that S N Hy g4 = {a1, 0}, where aq € E(T,,) and
as ¢ E(T,), SNH,p = {as}, where ag is an idempotent different from o,
and at least one of the following holds:

(i) ACB and p C .
(il) BC A, m C p, ag is the identity mapping on B, and for all p-classes ,
ify € T then yag € .

Proof. Suppose that there are sets A, B C X,, and equivalences p, ™ on
Xy such that S N H; 4 contains the idempotent a; as well as the non-
idempotent ap and S N H, p contains the idempotent 3. First, we have
a0 = g = aqa since a, ap € Hy 4 and oy € E(T,,). Clearly, {aq, s} is
a two-element group.

Suppose that (i) is satisfied. Then ajas = a1 and asaz = ag since
A C B and ag is an idempotent. Moreover, aga; = a1 and azas = ag since
p C 7 and ag is an idempotent. This shows that S is a semigroup with ag
as the identity.

Suppose that (ii) is satisfied. Since B C A and 7 C p, we have ajag =
asa; = ag. Because of yas € & for all p-classes z and all y € T, we have
aga3 = ag. Moreover, from yag = y for all y € B it follows azas = as.
Hence S is a semigroup with ag as the zero.

Conversely, let S be a semigroup that is not contained in E(T,). Then
there is a set A C X, and an equivalence 7 on X,, such that (S'\ E(7,))N
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H. s # 0. Without loss of generality, let as € (S \ E(T,)) N Hr 4 and
a1 =0a3 € Hr AN E(T,)NS. Let az € S\ {a1, as}.

If s € Hy 4 then a% = a7, and so it is easy to verify that S is a 3-element
group with as € S of order 2, which is a contradiction.

Hence a3 ¢ Hr 4 and there is a set B C X,, and an equivalence p on
X, such that a3 € H, g # Hy 4. In particular, az € E(T},) since otherwise
o3 € E(T,) N H, g would be a fourth element in S.

If vyag = ag then as = a3 = ajagas = asag = a3 = asag = Qi
which is a contradiction. Hence ajaz € {a1,a3}. By a similar argument,
we obtain agag € {a1,as}.

Assume that ajas = ag. This implies that 7 C p. Suppose to the
contrary that asa; = aj. Then p C 7 and thus @ = p. This implies
a3as = g since ag is an idempotent.

If avavg = a1 then a3 = aqag = oz%ag = qurary = ia] = Q9.

If asavs = a9 then a3 = g = vy = sy = .

If asars = g then o = gy = avazary = agag = Q.

So, we have a contradiction in each case. Hence gy = 3. This implies
B C A. Then w C p since otherwise m = p and B C A implies A = B because
|A| = | X,/ ker 7| = | X,,/ ker p| = | B|, which contradicts H, g # Hr 4. From
™ C p, it follows rank asas < rank a3 < rank as. But asas € H, p U Hy 4,
which implies a3 € H,p, i.e. asaz = az. Let T be a p-class. Then
Taogag = Tag. This is only possible if yas € T for all y € . From 7© C
p C ker agap and azay € S € H, p U Hy 4 it follows p = ker azap and thus
azaz € H,pN S, ie. agaz = a3. In particular, azae = ag implies that as
is the identity mapping on B C X,,. So, we have (ii).

Suppose that ajag = «aq. This implies that A C B. If asas = a3
then oo = ajas = ayazas = ajas = «q, which is a contradiction. Thus
aszag € {aq, a2}, which implies p C 7. Hence (i) holds. m

3. The monoids F, and OF,

In this section, we investigate the bands within the semigroup F,. The
first simple observation is that the bands within F,, coincide with the coreg-
ular subsemigroup of F,.

LEMMA 10. The set of all coregular elements in E, is E(E,), i.e. each
coregular subsemigroup of E,, lies in E(Ey,).

Proof. Let o € E,, with o® = a. Then for every z € X,,, za = za® > za? >
ra, ie. xa = xa?. This shows that a? = «, i.e. a € E(E,). Conversely,

each idempotent transformation « satisfies o = . m

Next, we determine the bands within E,. For a set § # Y C X,,, we
denote by Y* the greatest element in Y.
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REMARK 11. Let p be an equivalence on X,, with the set IT := {a1,...,ar}

of p-classes. Then
a/l .. ak
11 i —
al - af

is the only transformation in E(E,,) with the kernel p. Thus X,,/ kerery = II
and €y, /kera = @ for all a € E(Ey,). In particular, E(E,) is the set of all
en, where II is a partition of X,,. Moreover, Aepy = A* for all A € II.

Let IT be a partition of X,, and Y C X,,. Then we put
Yi=|J{Aen| A" ey}

DEFINITION 12. Let € be a set of partitions of X, such that for all
ILoe:

1. If B € ® with By # ) then Bj; = B*.
2. {By | B € ®, By # 0} € Q.

Denote by €4 the set of all such sets €2.
LEMMA 13. Let ® and II be partitions of X,,. Then

(i) zenee = B* for all B € ® with By # 0 and all x € Byy.
(ii) {Br | B € ®, By # 0} is the set of ker eneg-classes.

Proof. Let x € By for some B € ® with By # (). Then there is an A € II
with A* € B such that x € A. We have zepee = A*cp = Begp = B*.
This shows (i). In particular, (i) shows that Bpepee = B* for all B € ®
with By # (. Since BY # Bj for different elements By and Bs of @, the
ker eqjeg-classes are given by By, B € ® with By # (), i.e. (ii) is valid. =

PROPOSITION 14. A set S C E(E,) is a subsemigroup of Ey, if and only
if there is & € Qg with
S = {EH ’ II Q}

Proof. Let S C E(E,,) be a subsemigroup of E,,. Then we put
Q:={X,/kery |y €S}

and show that € € Q4. For this let o, 8 € S. Moreover, let II and ® be
the set of all ker a-classes and all ker B-classes, respectively. Let B € ® with
Br # 0. Then, by Lemma 13, By is a ker af-class and Bjja8 = B* (since
a =¢eqp and § = €9 by Remark 11). On the other hand, since af € E(E,),
Bfiaf = By (see Remark 11), so B* = Bj;. Further, since o8 € S and since
{Bn | B € ®, Byy # (0} is the set of ker af-classes, i.e. {By| B € ®, By #
0} = X,/ ker a8, we conclude {By | B € ®, By # 0} € Q. Altogether, we
have Q € Qq, where {ef |11 € 2} = {ex, /kery |7V €St ={7 7€ S} = 5.
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Conversely, let S = {ery | IT € Q} for some Q € Q4. We have to show
that S is a semigroup. For this let I, ® € Q. Then {By | B € ®, By # 0}
is the set of kerepeg-classes by Lemma 13 (ii). Since £ € Q4, we have
{Bn | B € @ B # 0} € Q, ie. X,/kerenee € Q, and Bjj = B*.
Moreover, by Lemma 13 (i), we have zepjegp = B* = Bjj € By for all x € By
and for all B € ® with By # (0. Hence epjes is an idempotent and we have
ENED = €X,,/kereqeqp < S. =

Now, we want to study the bands within the subsemigroup OF,, of E,.
Recall that a set Y C X, is called convex if x,y € Y,z € X,,,andz <z <y
implies z € Y. Moreover, an a € T, is called convex if the ker a-classes
are convex and a partition of X, is called convex if each of its elements is
convex.

REMARK 15. Each a € OF,, is convex, i.e. X, /kera is a convex partition
of X,,.

We want to describe the bands within OF,, using Proposition 14.
NoTATION 16. Let IT and ® be convex partitions of X,. Then:

1. Ag n will denote the set of all A € II such that B C A for some B € ®.
2. Be n will denote all B € ® such that B is the union of elements of II.

If IT and ® are convex partitions of X, such that each B € ® is the
union of elements of IT or B is a subset of some A € II then Ag 1 U B 11 is
a partition of X,.

DEFINITION 17. Let € be a set of all convex partitions of X,, such that
for I, ® € Q2 :

1. Each B € ® is a union of elements of IT or it is contained in some A € II.
2. A@}H U B@}H € Q.

Denote by Qe the set of all such sets €2.

LEMMA 18. Let Q be a set of convex partitions of X,. Then € Qe if
and only if Q € Qgq.

Proof. Suppose that Q@ € Q. Let II,® € Q and B € ® with By # (. If B
is the union of elements of II then By = J{A € Il | A* € B} = B € Bo 1,
ie. By = B*.

Suppose that B C A for some A € II. Since By # (), it follows that
B = A € Ap . Moreover, By = A implies Bf; = A*. From B C A it
follows B* < A* and A* € B implies A* < B*, i.e. A* = B* and thus
Bf; = B*. We have shown that {Br | B € ®, By # 0} € Asn U Ban
and Bf; = B* for all B € ® with By # (. If B € By then B € ® and
B=U{Acll|A*e B} =By #0. If A€ Ap then A € II and there is
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B € ® with B C A. Because €2 € e, for any B of the partition @, BNA =1
or B C A. So, A is the union of elements of ®. Thus there is B € ® with
B C A and A* € B. Since A is the only element of II with A* € B, we have
Br = A # (). This shows the converse inclusion Ag 1UBgn C {Br | B € @,
B # (0}. Consequently, {Brj | B € ®, By # 0} = Ap 1 U Bp 1 € Q. This
shows that ©Q € Qgq.

Conversely, suppose that 2 € Qq. Let II, ® € Q@ and B € ®. Then there
is A € Il with B* € A. Suppose B ¢ A. Assume that there is C' € II with
BNC # 0 and C\ B # (. First, we assume that C* < y for all y € A. Let
z:= (C\ B)*. Let B € ® with x € By, i.e. x = Bf € C. Since B* € A
we have B* ¢ C. Hence C§ = Bj. Moreover, Bf <y for all y € B and, in
particular, Bf < C*. Thus Cg # C*, a contradiction to 2 € 4. Now we
assume that A* < z for all z € C. But this is impossible since then B* < x
for all x € C (because B* € A), and so BN C = (). Therefore, for each
C €Il with BN C # 0 holds C C B, i.e. B is the union of elements of II.
As above, we can show that AgnUBen = {Bn | B € ®, By # 0} € Q.
Hence, 2 € Q. n

COROLLARY 19. A subset S of E(OE,) is a band if and only if there is
Q € Q¢ such that

SZ{&H’HEQ}.

Proof. Let S be a band. Since OF, C E,, there is £ € 4 such that
S ={en | I € Q} by Proposition 14. Since X,,/kerery = II is a convex
partition of X,, for all IT € €, € is a set of convex partitions of X,,, and by
Lemma 18, we can conclude Q € Qe. Conversely, let S = {ery | I € Q} for
some 2 € Q. Then € is a set of convex partitions of X, and € € Q4 by
Lemma 18, i.e. S is a band by Proposition 14. =

LEMMA 20. Let S C E(OE,). If S is a band then {X,/kera | o € S}
€ Qe.

Proof. We have S = {er7 | I € Q} for some 2 € Q¢ by Corollary 19. On
the other hand, we have S = {ex, /kera | @ € S} since ex, jiera = « for
every a € S. This gives {X,,/kera|a €S} =Q € Qe.

Finally, we want to characterize the maximal bands (with respect to the
inclusion) within OE,,.

DEFINITION 21. Let V be a set of convex subsets of X,, with

1. X, eV.

2. If A € V, different from a singleton set, then there is a partition {A;, A}
of A with Ay, Ay € V.

3. If A,Be€Vthen AN B € {A, B,0}.
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Denote by D(X,,) the set of all such sets V.

NoOTATION 22. For V € D(X,,), let X,,(V) be the set of all partitions of X,
with elements of V and we put

S(V) :=A{en [l € Xn(V)}.

LEMMA 23. Let a, 8 be elements of a band S within OFE,,. Moreover, let
A and B be a ker a-class and a ker B-class, respectively. Then AN B €
{4,B,0}.

Proof. Since S is a band within OF,,, there is © € Qe such that S = {eyy |
IT € Q} by Corollary 19. Note that both X, /kera as well as X,/ ker 5
belong to 2. Hence, A is the union of ker -classes C1,...,Cp or A is a
(proper) subset of a ker 8-class C'. Suppose that A is the union of ker -
classes C1,...,Cp. f BE{C4,...,Cp}then ANB=B. If B¢ {Cy,...,Cp}
then AN B = (). Now, suppose that A is a (proper) subset of a ker 8-class
C.ftB=Cthen ANB=A. If B#C then ANB=0. u

PROPOSITION 24. A set S C E(OE,,) is a mazimal band within OFE,, if
and only if there is V € D(X,) with S(V) = S.

Proof. Let S be a maximal band within OFE,,. Then we put
V= J{Xn/kers | 5 € S}

and show that V € D(X,,).

1. Let A € OF, with {X,,} = X,,/ker . Clearly, A\ € E(OE,). Since
im A = {n} and n € im « for all & € OFE,,, we have A = aX = A for all
a € OFE,. Thus A € S because of the maximality of S. This shows that
X, eV.

2. Let A € V be different from a singleton set. Then there is ¢ € S
with A € X,/ kero. Assume that for all & € S and all proper partitions
ITof A, 11 € X,,/kera. Let {A;, A2} be a partition of A. Let 5 be the
idempotent transformation with X,/ ker § = (X,,/kero \ {A}) U {4, A2}.
Let v € S. By Lemma 20, we have Q := {X,,/kerd | § € S} € Q. Hence,
A is the union of ker~-classes or it is a subset of a kery-class. Assume
that A is the union of kery-classes A1, . .. ,Ap. Then {1211, e /lp} is a par-
tition of A with A4; € X,/ kery for all 1 < i < p, a contradiction to the
assumption about A. So, A is a subset of a ker-class A. Hence, both
A and Ap are subsets of A. We put 7 := X,,/kery, 7 := X,,/kero, and
B := X,/ker 8. Since both A; and Ay are subsets of a kery-class g, it is
easy to check that AyzU Byz = Ai? U Bﬁ? and Az~ U Bz 5 = ABW U BB:‘T
Because of A5z U Byz € Q (since © € Qg), we have A-zUB.5€QC
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{Xn/kerd |6 € SU{B}}, and A5, UBgz- € QC{X,/kerd|de SU{B}}
by the same argument. Since {X, /kerd | 6 € S} € Qe, the forego-
ing argument shows that also {X,,/kerd | 6 € SU{f}} € Qe and thus
SU{B} = {ex,/kers | 6 € SU{B}} is a band within OF, by Corol-
lary 19, where 5 ¢ S by the assumption. This contradicts the maximality
of S.

Hence, there is an o € S such that there is a proper partition {Aq,..., A}
(2 < p € N) of A, which is a subset of X,,/ker . We can choose « such
that p is minimal. We put By := A; and By := A\ A;. Let v € S. Then
A is a subset of a ker~y-class or A is the union of kery-classes. If A is a
subset of a ker~-class B then both By and Bs are subsets of B. Suppose
that A is the union of ker~y-classes By,..., By (2 < ¢). Assume that there
is a EZ (1 < i < ¢q) such that EZ is the union of ker a-classes A,,..., A
(1 <r < s<p). Let us consider the transformation yo € S. Then it is easy
to verify that there are at most p — s 4+ r different ker va -classes which are
contained in A. These ker ya-classes provide a partition of A with less than
p classes. This contradicts the minimality of p. Hence each B; (1 < i < q)
is contained in a ker a-class Ay, (1 < k; < p), which implies that each A;
(1 < i < p) is the union of ker 7—classes (Within El, ey B ¢)- In particular,
B is the union of the ker y-classes B with B C A; and By is the union of
the ker y-classes B; with B; Z Aj.

Let p € E(OEy) with {By, B2} U {{a} | a € X, \ A} as the set of
ker ji-classes and let us consider the set S := SU{ud | § € S} and Q :=
{X,/kerd |6 € S}. Let 6 € S. If A is a subset of a ker d-class then ud = 4.
If A is the union of ker d-classes then

Xn/kerpud ={D € X, /kero | D £ A} U{B1, Ba}

since Bj as well as Bs is the union of ker §-classes by the previous observation.
Since, for every v € S, both By and Bs are subsets of the same ker y-class
or both are unions of ker y-classes, since {X,,/kerd | 0 € S} € €, and since
ApnnUBon € {Xy/kerd | 6 € S} for all ,I1 € {X,,/kerd | 6 € S}, it is
easy to verify that 2 satisfies both conditions of Definition 17, i.e. Qe Q.
Thus, S is a band within OFE,, (by Corollary 19) containing S. Because of the
maximality of S, we have § = §, and thus ap € S. This gives By, By € V
where A = B; U Bs.

3. Let A,B€V. Then ANB € {A,B,0} by Lemma 23.

Consequently, V € D(X,,). We have still to show that X,,(V) € Q. Let
II,® € X,(V) and B € ®. Then for each A € II, AN B € {A, B,0}. This
shows that B is the union of elements of II or B is a subset of some A € II.
Then Ap 1 U Ba 1 € X,(V) since Ap 1 U Be 11 is a partition of X, with
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elements of V. Consequently, X, (V) € Q¢ and S(V) = {enp | II € X,,(V)} is
a band by Corollary 19. In fact, from {X,,/kerd | 6 € S} C X,,(V) it follows
S C S(V) and the maximality of S yields S = S(V).

Conversely, let S = S(V) for some V € D(X,,). Clearly, S C E(OE,,).
Let Q := X,,(V). By the argument from the previous paragraph, Q € Q,,
so S is a semigroup within F(OFE,) by Corollary 19. Now, we have to show
that S is maximal. Suppose that S C S;, where S is a semigroup within
E(OE,). Let a € S;. Then, by Lemma 23, AN B € {A, B,(} for all
ker a-classes B, all IT € €2, and all A € II.

Let B be any ker a-class. Select II € @ and A; € II such that B C Ay
and for all ® € Q and all C € ®, if B C C then |A;]| < |C|. (Such IT and A;
exist, since {X,} € X,(V)=Q and B C X,,.)

We claim that B = A;. If Ay is a singleton then the claim is obviously
true. Suppose |A1| > 2. Then A} = AyU A3, where Ag, A3 € V and {A1, Ay}
is a partition of A. Consider IT := (IT\ {41}) U{A2, A3} € Q. Then eg € S,
and so, by Lemma 23, BN Ay € {B, A2,0}. If BN Ay = B then B C As,
which contradicts the minimality of Ay. If BN Ay = () then B C Ag, which,
again, contradicts the minimality of A;. Hence B N Ay = Ay. Similarly,
BN A3z = A3, and so B = A;.

Consequently, B € V, which shows that X,,/kera C V, i.e. X,,/kera €
Xn(V). Thus ex, /kera = @ € S since S = {eq1 | [T € X,,(V)}, which implies
S=251.n
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