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COREGULAR SEMIGROUPS

OF FULL TRANSFORMATIONS

Abstract. This paper is mainly dedicated to the description of coregular subsemi-
groups of the symmetric semigroup Tn of transformations on an n-element set. Namely,
we characterize all coregular transformation semigroups S with |S| ≤ 3. In the sub-
semigroup En of all extensive transformations, the coregular elements coincide with the
idempotent ones. We characterize all bands within En. Within the subsemigroup OEn

of all order-preserving extensive transformations, we also determine the maximal bands
(with respect to the inclusion).

1. Introduction and preliminaries

Regular semigroups play an important role in the semigroup theory and
they have been studied from various aspects. We want to investigate a parti-
cular class of regular semigroups.

An element α of a semigroup S is called coregular if there is a β ∈ S
such that

α = αβα = βαβ.

A semigroup is called coregular if each element of it is coregular ([2]).

Coregular semigroups have been also studied in [4] and [8]. A coregular
semigroup can be characterized as a semigroup S with a = a3 for all a ∈ S
or as a union of disjoint groups with elements of order ≤ 2. Since in a group,
a = a3 if and only if a has an order ≤ 2, coregular elements in a semigroup
generalize elements of a group of order 2. For example, a square matrix with
n rows that satisfies A3 −A = 0 = (A− 1)A(A+ 1), is a coregular element
in the semigroup Mn(R) of all square matrices with n rows. The semigroup
M2(R) of all real 2 × 2 matrices is not regular (also not coregular), but it
contains coregular elements. The set
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{(
cosα sinα

sinα − cosα

)
| 0 ≤ α < 2π

}

is a coregular semigroup within M2(R), which defines the axial symmetries
of the figures of a given plane (see also [1]). Let us also note that the
pseudoinverse matrix concept introduced by E. H. Moore ([7]) in 1920, is
very useful for solving some optimization problems. Every symmetric matrix
is equal to its pseudoinverse if and only if it is coregular (see [1]).

We begin by recalling some notation and definitions that will be useful
in the paper. For standard terms and concepts in semigroup theory we
refer to [6]. Let us start by defining the semigroups that will be objects of
study in this paper. For n ∈ N, let Xn be a finite chain with n elements,
say Xn = {1 < 2 < . . . < n}. As usual, we denote by Tn the symmetric
semigroup of all full transformations on Xn. Every transformation α ∈ Tn

may be expressed as

α =

(
A1 A2 · · · Ar

a1 a2 · · · ar

)
,

where A1, . . . , Ar are the kerα-classes (the blocks of α) and aiα
−1 = Ai for

1 ≤ i ≤ r ≤ n. Then every idempotent transformation is characterized by
the property that ai ∈ Ai for 1 ≤ i ≤ r ≤ n.

We say that a transformation α in Tn is order-preserving if x ≤ y implies
xα ≤ yα for all x, y ∈ Xn, and α is extensive if x ≤ xα for all x ∈ Xn. De-
note by En the subsemigroup of all extensive transformations on Xn and by
OEn the semigroup of all order-preserving extensive transformations on Xn.
These monoids were studied for example in [5] and [9]. The coregular semi-
groups within the symmetric semigroup T3 are characterized in [3].

In Section 2, we characterize all coregular semigroups with ≤ 3 elements
within Tn. The coregular elements coincide with the idempotent elements in
the semigroup En. In this case, the study of the coregular semigroups within
En means the investigation of the bands (idempotent semigroups) within
En. For a subsemigroup S of Tn, we denote by E(S) the set of idempotents
in S. In an inverse semigroup, the idempotents form a semigroup, but in
general, this is not true. The maximal bands within Tn are of particular
interest. Their description is still an open problem connected with questions
in graph theory. We will give a complete answer for the subsemigroup OEn

of Tn in Section 3. Moreover, we characterize all bands within En as well as
within OEn.

For completion, we recall the definition of Green’s equivalence relations
L, R, H, and J on a monoid M : for all u, v ∈ M,
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uRv ⇐⇒ uM = vM,

uLv ⇐⇒ Mu = Mv,

uHv ⇐⇒ uRv and uLv,

uJ v ⇐⇒ MuM = MvM .

For a transformation α ∈ Tn, we denote by kerα and im α the kernel and the
image of α, respectively. The kernel of a transformation is an equivalence
on Xn. For an equivalence ρ on Xn, we denote by aρ the equivalence class
(block) containing a ∈ Xn and we put Xn/ρ := {aρ | a ∈ Xn} as well as
Aρ :=

⋃
{aρ | a ∈ A} for a set A ⊆ Xn. The number rank α = |Xn/ kerα| =

|im α| is called rank of α. The symmetric semigroup Tn is regular, but the
submonoids En and OEn are not regular. The next result is well known (see
[6, Exercise 16, page 63]): for all α, β ∈ Tn,

αLβ ⇐⇒ im α = im β,

αRβ ⇐⇒ kerα = ker β,

αHβ ⇐⇒ im α = im β and kerα = kerβ,

αJ β ⇐⇒ rank α = rank β.

For a set A ⊆ Xn and an equivalence ρ on Xn such that |A| = |X/ρ|, let
Hρ,A be the following H-class:

Hρ,A := {α ∈ Tn | kerα = ρ, im α = A}.

Remember that im αβ ⊆ im β and kerα ⊆ kerαβ. Moreover, if α ∈ E(Tn)
then

• im β ⊆ im α implies βα = β,
• kerα ⊆ kerβ implies αβ = β.

Lemma 1. Let α, β ∈ E(Tn), A := im α, B := im αβ, and ρ := kerβ.

Then A ⊆ Bρ and B ⊆ Aρ.

Proof. We have Aβ = (Xα)β = B. This implies (Aβ)ρ = Bρ, where
A ⊆ (Aβ)ρ since β is an idempotent. This shows A ⊆ Bρ. On the other
hand, we have B = Aβ = (Aρ)β ⊆ Aρ since β is an idempotent.

We denote by ∆A := {(a, a) | a ∈ A} for a set A ⊆ Xn.

Lemma 2. Let α1, α2, α3 ∈ E(Tn), Ai := im αi and ρi := kerαi for i =
1, 2, 3. Then α1α2 = α3 if and only if A3 ⊆ A2, A3 ⊆ A1ρ2, A1 ⊆ A3ρ2,
ρ1 ◦ (A

2
1
∩ ρ2) ◦ ρ1 = ρ3, and ∆A3

⊆ ρ1 ◦∆A1
◦ ρ2.

Proof. Suppose that α1α2 = α3. Then, clearly, A3 ⊆ A2, A1 ⊆ A3ρ2 and
A3 ⊆ A1ρ2 by Lemma 1.
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Let (x, y) ∈ ρ1 ◦ (A
2
1
∩ ρ2) ◦ ρ1. Then there are x′, y′ ∈ Xn with (x′, y′) ∈

(A2
1
∩ ρ2) and (x′, x), (y, y′) ∈ ρ1. This implies xα1α2 = x′α1α2, yα1α2 =

y′α1α2, and x′α2 = y′α2. Since x′, y′ ∈ A1, we have x′ = x′α1 and y′ = y′α1

and thus x′α1α2 = y′α1α2. So, we have xα1α2 = yα1α2, i.e. xα3 = yα3

and thus (x, y) ∈ ρ3. Let (x, y) ∈ ρ3, i.e. xα3 = yα3. Thus xα1α2 =
yα1α2. This implies the existence of x′, y′ ∈ A1, namely x′ = x′α1 = xα1

and y′ = y′α1 = yα1. Hence x′α2 = y′α2 and (x′, y′) ∈ (A2
1
∩ ρ2), where

(x′, x), (y, y′) ∈ ρ1. This shows that (x, y) ∈ ρ1◦(A
2
1
∩ρ2)◦ρ1. Consequently,

ρ1 ◦ (A
2
1
∩ ρ2) ◦ ρ1 = ρ3.

Let x ∈ A3. Then xα1α2 = x since α1α2 = α3 is an idempotent, and
for y = xα1 ∈ A1, xα1 = y = yα1, i.e. (x, y) ∈ ρ1. Further, yα2 =
xα1α2 = x = xα2 (since x ∈ A3 ⊆ A2), i.e. (y, z) ∈ ρ2. In particular,
we have x = xα1α2 = z. So, we have (x, x) ∈ ρ1 ◦ ∆A3

◦ ρ2. This shows
∆A3

⊆ ρ1 ◦∆A1
◦ ρ2.

For the converse, we show that kerα1α2 = ρ3, im α1α2 = A3, and α1α2

is an idempotent. If this is the case, then α1α2 is the idempotent in Hρ3,A3
,

i.e. α1α2 = α3.
We have (x, y) ∈ kerα1α2 if and only if (xα1, yα1) ∈ ρ2 if and only if

there are x′, y′ ∈ A1 with (x, x′), (y, y′) ∈ ρ1, x′ = x′α1, y′ = y′α1, and
(x′, y′) ∈ ρ2 if and only if (x, y) ∈ ρ1 ◦ (A

2
1
∩ ρ2) ◦ ρ1 = ρ3.

Let x ∈ A3 ⊆ A1ρ2. Then there is y ∈ A1 with x ∈ yρ2, i.e. y = yα1

and xα2 = yα2. Since x ∈ A3 ⊆ A2, we have xα2 = x. This yields
x = xα2 = yα2 ∈ im α1α2. Let x ∈ im α1α2. Then x ∈ A2 and there
is z ∈ A1 with zα2 = x. Because of A1 ⊆ A3ρ2, there is w ∈ A3 with
(z, w) ∈ ρ2, i.e. zα2 = wα2. Since w ∈ A3 ⊆ A2, we have w = wα2. Hence
x = zα2 = wα2 = w ∈ A3. Consequently, im α1α2 ⊆ A3 and altogether
im α1α2 = A3.

Let x ∈ im α1α2 = A3. Then, since ∆A3
⊆ ρ1 ◦∆A1

◦ ρ2, there is y ∈ A1

with (x, y) ∈ ρ1 and (y, x) ∈ ρ2. Then xα1α2 = yα1α2 = yα2 = xα2. Since
x ∈ A3 ⊆ A2, we have xα2 = x, i.e. xα1α2 = x. This shows that α1α2 is an
idempotent.

2. Coregular semigroups within Tn

First we characterize the coregular elements within Tn. Let α ∈ Tn and x̄
be the kerα-class containing x. Then all elements of x̄ have the same image
under α, denoted by xα.

Definition 3. Let E2(Tn) be the set of all α ∈ Tn such that for all
x, y ∈ Xn,

xα ∈ ȳ ⇒ yα ∈ x̄.

Proposition 4. E2(Tn) is the set of all coregular elements in Tn.
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Proof. Let α ∈ E2(Tn) and x ∈ Xn. Then there is a kerα-class ȳ with
xα ∈ ȳ. Then yα ∈ x̄, and so xααα = yαα = xα, i.e. α3 = α.

Conversely, let α ∈ Tn with α3 = α and let x, y ∈ Xn with xα ∈ ȳ.
Assume that yα /∈ x̄. Then xααα = (yα)α, where yα /∈ x̄, i.e. xααα 6= xα.
So, xα = xα3 6= xα, a contradiction.

The set E2(Tn) is not closed under multiplication. The question arises
which subsets of E2(Tn) are closed. Clearly, all trivial semigroups are coreg-
ular. We will give a complete answer for subsets with ≤ 3 elements. A
characterization for sets with ≥ 4 elements is still an open problem.

Remark 5. For all α ∈ E2(Tn) \ E(Tn), α
2 ∈ E(Tn) and both α and α2

belong to the same H-class. Moreover, βα2 = α2β = β for all β in this
H-class. Hence a two-element set S ⊆ E2(Tn) is a semigroup if and only if
S is a band or there is an H-class H of Tn such that S ⊆ H and exactly one
element of S is an idempotent.

Proposition 6. Let S = {α1, α2} ⊆ E(Tn) with αi ∈ Hρi,Ai
(i ∈ {1, 2}).

Then S is a semigroup if and only if at least one of the following statements

is valid:

(i) A1 ⊆ A2 and ρ2 ⊆ ρ1.
(ii) A2 ⊆ A1 and ρ1 ⊆ ρ2.
(iii) A1 = A2.

(iv) ρ2 = ρ1.

Proof. Suppose that S is a semigroup. Then α1α2, α2α1 ∈ {α1, α2}. First,
α1α2 ∈ {α1, α2} implies A1 ⊆ A2 or ρ1 ⊆ ρ2. Moreover, α2α1 ∈ {α1, α2}
gives ρ2 ⊆ ρ1 or A2 ⊆ A1. This shows that one of the statements (i)–(iv) is
valid.

Suppose that one of the statements (i)–(iv) is valid.
(i) A1 ⊆ A2, ρ2 ⊆ ρ1, and α1, α2 ∈ E(Tn) implies α1α2 = α2α1 = α1, i.e.

S is a semilattice.
(ii) A2 ⊆ A1, ρ1 ⊆ ρ2, and α1, α2 ∈ E(Tn) implies α1α2 = α2α1 = α2,

i.e. S is a semilattice.

(iii) A1 = A2 and α1, α2 ∈ E(Tn) implies α1α2 = α1 and α2α1 = α2, i.e.
S is a left-zero-semigroup.

(iv) ρ2 = ρ1 and α1, α2 ∈ E(Tn) implies α1α2 = α2 and α2α1 = α1, i.e.
S is a right-zero-semigroup.

Remark 7. A two-element band within Tn is a semilattice or a left- (right-)
zero-semigroup.

Proposition 8. Let S ⊆ E(Tn) be a three-element set. Then S is a semi-

group if and only if there are sets A1, A2, A3 ⊆ Xn, equivalences ρ1, ρ2, ρ3
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on Xn, and pairwise distinct elements α1, α2, α3 ∈ S such that αi ∈ Hρi,Ai

(1 ≤ i ≤ 3) and at least one of the following holds:

(i) A1 ⊆ A2 ⊆ A3 and ρ3 ⊆ ρ2 ⊆ ρ1.
(ii) A1 = A2 ⊆ A3 and ρ3 ⊆ ρ2, ρ1.
(iii) A1 ⊆ A2 = A3 and ρ3, ρ2 ⊆ ρ1.
(iv) A1 ⊆ A2, A3 and ρ3 = ρ2 ⊆ ρ1.
(v) A1, A2 ⊆ A3 and ρ3 ⊆ ρ2 = ρ1.
(vi) A1 = A2 = A3.

(vii) ρ3 = ρ2 = ρ1.
(viii) A2 ⊆ A3ρ1, A3 ⊆ A2ρ1, A3 ⊆ A1, ρ2 ◦ (A2

2
∩ ρ1) ◦ ρ2 = ρ3, ∆A3

⊆
ρ2 ◦∆A2

◦ ρ1, and at least one of the following conditions holds:

(viii1) A3 ⊆ A2, A3 ⊆ A1ρ2, A1 ⊆ A3ρ2, ρ1 ◦ (A2
1
∩ ρ2) ◦ ρ1 = ρ3, and

∆A3
⊆ ρ1 ◦∆A1

◦ ρ2.
(viii2) A1 ⊆ A2.

(viii3) ρ1 ⊆ ρ2.

Proof. Let S be a semigroup. Then any two-element subset of S is a semi-
group or at least one two-element subset does not be a semigroup. Suppose
that any two-element subset is a semigroup. Then, by Proposition 6, for all
i, j ∈ {1, 2, 3} with i 6= j, Ai ⊆ Aj and ρj ⊆ ρi, or Ai = Aj , or ρi = ρj .
Then, there are pairwise distinct i1, i2, i3 ∈ {1, 2, 3} such that:

(i) Ai1 ⊆ Ai2 ⊆ Ai3 and ρi3 ⊆ ρi2 ⊆ ρi1 or
(ii) Ai1 = Ai2 ⊆ Ai3 and ρi3 ⊆ ρi1 , ρi2 or
(iii) Ai1 ⊆ Ai2 = Ai3 and ρi3 , ρi2 ⊆ ρi1 or
(iv) Ai1 ⊆ Ai2 , Ai3 and ρi3 = ρi2 ⊆ ρi1 or
(v) Ai1 , Ai2 ⊆ Ai3 and ρi3 ⊆ ρi2 = ρi1 or
(vi) Ai1 = Ai2 = Ai3 or
(vii) ρi3 = ρi2 = ρi1 .

Suppose that there is a two-element subset of S that does not be a
semigroup. Without loss of generality, we can assume that α2α1 = α3.
Then A2 ⊆ A3ρ1, A3 ⊆ A2ρ1, A3 ⊆ A1, ρ2 ◦ (A2

2
∩ ρ1) ◦ ρ2 = ρ3, and

∆A3
⊆ ρ2 ◦∆A2

◦ ρ1 by Lemma 2. Suppose that α1α2 = α3. Then A3 ⊆ A2,
A3 ⊆ A1ρ2, A1 ⊆ A3ρ2, ρ1 ◦ (A

2
1
∩ ρ2) ◦ ρ1 = ρ3, and ∆A3

⊆ ρ1 ◦∆A1
◦ ρ2

by Lemma 2. Suppose that α1α2 = α1. This gives A1 ⊆ A2. If we suppose
that α1α2 = α2 then we obtain ρ1 ⊆ ρ2. Thus (viii) holds.

Conversely, suppose that at least one of the properties (i)–(viii) holds.
Without loss of generality, we can assume that i1 = 1, i2 = 2, and i3 = 3. We
check that in each case ((i)–(viii)), S is a semigroup. In the first seven cases,
we use the fact that im α ⊆ im β implies αβ = α and that kerα ⊆ ker β
implies αβ = β for all α, β ∈ E(Tn).
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(i) S is a semilattice isomorphic to the semilattice A1 ⊆ A2 ⊆ A3 under
set intersection.

(ii) {α1, α2} is a left-zero semigroup and α3 serves as the identity.

(iii) {α2, α3} is a left-zero semigroup and α1 serves as the zero.

(iv) {α2, α3} is a right-zero semigroup and α1 serves as the zero.

(v) {α1, α2} is a right-zero semigroup and α3 serves as the identity.

(vi) S is a left-zero semigroup.

(vii) S is a semigroup.

(viii) We have α2α1 = α3 by Lemma 2. Then α2α3 = α2α2α1 = α2α1 =
α3 and α3α1 = α2α1α1 = α2α1 = α3.

(viii1) By Lemma 2, we obtain α1α2 = α3. This gives α1α3 = α1α1α2 =
α1α2 = α3 and α3α2 = α1α2α2 = α1α2 = α3. Thus S is a zero-semigroup.

(viii2) From A1 ⊆ A2 it follows α1α2 = α1. Then α1α3 = α1α2α1 =
α1α1 = α1 and α3α2 = α2α1α2 = α2α1 = α3. Hence, S is a semigroup.

(viii3) From ρ1 ⊆ ρ2, it follows α1α2 = α2. Then α1α3 = α1α2α1 =
α2α1 = α3 and α3α2 = α2α1α2 = α2α2 = α2, and so S is a semigroup.

Proposition 9. Let S ⊆ E2(Tn) be a three-element set. Then S is a

semigroup if and only if S is a band or there are sets A,B ⊆ Xn and equiv-

alences ρ, π on Xn such that S ∩ Hπ,A = {α1, α2}, where α1 ∈ E(Tn) and

α2 /∈ E(Tn), S ∩Hρ,B = {α3}, where α3 is an idempotent different from α1,

and at least one of the following holds:

(i) A ⊆ B and ρ ⊆ π.

(ii) B ⊆ A, π ⊆ ρ, α2 is the identity mapping on B, and for all ρ-classes x̄,

if y ∈ x̄ then yα2 ∈ x̄.

Proof. Suppose that there are sets A,B ⊆ Xn and equivalences ρ, π on
Xn such that S ∩ Hπ,A contains the idempotent α1 as well as the non-
idempotent α2 and S ∩ Hρ,B contains the idempotent α3. First, we have
α2α1 = α2 = α1α2 since α1, α2 ∈ Hπ,A and α1 ∈ E(Tn). Clearly, {α1, α2} is
a two-element group.

Suppose that (i) is satisfied. Then α1α3 = α1 and α2α3 = α2 since
A ⊆ B and α3 is an idempotent. Moreover, α3α1 = α1 and α3α2 = α2 since
ρ ⊆ π and α3 is an idempotent. This shows that S is a semigroup with α3

as the identity.

Suppose that (ii) is satisfied. Since B ⊆ A and π ⊆ ρ, we have α1α3 =
α3α1 = α3. Because of yα2 ∈ x̄ for all ρ-classes x̄ and all y ∈ x̄, we have
α2α3 = α3. Moreover, from yα2 = y for all y ∈ B it follows α3α2 = α3.
Hence S is a semigroup with α3 as the zero.

Conversely, let S be a semigroup that is not contained in E(Tn). Then
there is a set A ⊆ Xn and an equivalence π on Xn such that (S \ E(Tn)) ∩
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Hπ,A 6= ∅. Without loss of generality, let α2 ∈ (S \ E(Tn)) ∩ Hπ,A and
α1 = α2

2
∈ Hπ,A ∩E(Tn) ∩ S. Let α3 ∈ S \ {α1, α2}.

If α3 ∈ Hπ,A then α2
3
= α1, and so it is easy to verify that S is a 3-element

group with α2 ∈ S of order 2, which is a contradiction.
Hence α3 /∈ Hπ,A and there is a set B ⊆ Xn and an equivalence ρ on

Xn such that α3 ∈ Hρ,B 6= Hπ,A. In particular, α3 ∈ E(Tn) since otherwise
α2
3
∈ E(Tn) ∩Hρ,B would be a fourth element in S.
If α1α3 = α2 then α2 = α1α3 = α1α3α3 = α2α3 = α2α1α3 = α2α2 = α1,

which is a contradiction. Hence α1α3 ∈ {α1, α3}. By a similar argument,
we obtain α3α1 ∈ {α1, α3}.

Assume that α1α3 = α3. This implies that π ⊆ ρ. Suppose to the
contrary that α3α1 = α1. Then ρ ⊆ π and thus π = ρ. This implies
α3α2 = α2 since α3 is an idempotent.

If α2α3 = α1 then α3 = α1α3 = α2
2
α3 = α2α2α3 = α2α1 = α2.

If α2α3 = α2 then α3 = α1α3 = α2α2α3 = α2α2 = α1.
If α2α3 = α3 then α1 = α2α2 = α2α3α2 = α3α2 = α2.
So, we have a contradiction in each case. Hence α3α1 = α3. This implies

B ⊆ A. Then π ⊂ ρ since otherwise π = ρ and B ⊆ A implies A = B because
|A| = |Xn/ kerπ| = |Xn/ ker ρ| = |B|, which contradicts Hρ,B 6= Hπ,A. From
π ⊂ ρ, it follows rank α2α3 ≤ rank α3 < rank α2. But α2α3 ∈ Hρ,B ∪Hπ,A,
which implies α2α3 ∈ Hρ,B , i.e. α2α3 = α3. Let x̄ be a ρ-class. Then
x̄α2α3 = x̄α3. This is only possible if yα2 ∈ x̄ for all y ∈ x̄. From π ⊂
ρ ⊆ kerα3α2 and α3α2 ∈ S ⊆ Hρ,B ∪Hπ,A it follows ρ = kerα3α2 and thus
α3α2 ∈ Hρ,B ∩ S, i.e. α3α2 = α3. In particular, α3α2 = α3 implies that α2

is the identity mapping on B ⊆ Xn. So, we have (ii).
Suppose that α1α3 = α1. This implies that A ⊆ B. If α3α2 = α3

then α2 = α1α2 = α1α3α2 = α1α3 = α1, which is a contradiction. Thus
α3α2 ∈ {α1, α2}, which implies ρ ⊆ π. Hence (i) holds.

3. The monoids En and OEn

In this section, we investigate the bands within the semigroup En. The
first simple observation is that the bands within En coincide with the coreg-
ular subsemigroup of En.

Lemma 10. The set of all coregular elements in En is E(En), i.e. each

coregular subsemigroup of En lies in E(En).

Proof. Let α ∈ En with α3 = α. Then for every x ∈ Xn, xα = xα3 ≥ xα2 ≥
xα, i.e. xα = xα2. This shows that α2 = α, i.e. α ∈ E(En). Conversely,
each idempotent transformation α satisfies α3 = α.

Next, we determine the bands within En. For a set ∅ 6= Y ⊆ Xn, we
denote by Y ∗ the greatest element in Y .
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Remark 11. Let ρ be an equivalence on Xn with the set Π := {a1, . . . , ak}
of ρ-classes. Then

εΠ :=

(
a1 · · · ak

a∗
1
· · · a∗k

)

is the only transformation in E(En) with the kernel ρ. Thus Xn/ ker εΠ = Π
and εXn/ kerα = α for all α ∈ E(En). In particular, E(En) is the set of all
εΠ, where Π is a partition of Xn. Moreover, AεΠ = A∗ for all A ∈ Π.

Let Π be a partition of Xn and Y ⊆ Xn. Then we put

YΠ :=
⋃

{A ∈ Π | A∗ ∈ Y }.

Definition 12. Let Ω be a set of partitions of Xn such that for all
Π,Φ ∈ Ω :

1. If B ∈ Φ with BΠ 6= ∅ then B∗

Π
= B∗.

2. {BΠ | B ∈ Φ, BΠ 6= ∅} ∈ Ω.

Denote by Ωd the set of all such sets Ω.

Lemma 13. Let Φ and Π be partitions of Xn. Then

(i) xεΠεΦ = B∗ for all B ∈ Φ with BΠ 6= ∅ and all x ∈ BΠ.

(ii) {BΠ | B ∈ Φ, BΠ 6= ∅} is the set of ker εΠεΦ-classes.

Proof. Let x ∈ BΠ for some B ∈ Φ with BΠ 6= ∅. Then there is an A ∈ Π
with A∗ ∈ B such that x ∈ A. We have xεΠεΦ = A∗εΦ = BεΦ = B∗.
This shows (i). In particular, (i) shows that BΠεΠεΦ = B∗ for all B ∈ Φ
with BΠ 6= ∅. Since B∗

1
6= B∗

2
for different elements B1 and B2 of Φ, the

ker εΠεΦ-classes are given by BΠ, B ∈ Φ with BΠ 6= ∅, i.e. (ii) is valid.

Proposition 14. A set S ⊆ E(En) is a subsemigroup of En if and only

if there is Ω ∈ Ωd with

S = {εΠ | Π ∈ Ω}.

Proof. Let S ⊆ E(En) be a subsemigroup of En. Then we put

Ω := {Xn/ ker γ | γ ∈ S}

and show that Ω ∈ Ωd. For this let α, β ∈ S. Moreover, let Π and Φ be
the set of all kerα-classes and all ker β-classes, respectively. Let B ∈ Φ with
BΠ 6= ∅. Then, by Lemma 13, BΠ is a kerαβ-class and B∗

Π
αβ = B∗ (since

α = εΠ and β = εΦ by Remark 11). On the other hand, since αβ ∈ E(En),
B∗

Π
αβ = B∗

Π
(see Remark 11), so B∗ = B∗

Π
. Further, since αβ ∈ S and since

{BΠ | B ∈ Φ, BΠ 6= ∅} is the set of kerαβ-classes, i.e. {BΠ | B ∈ Φ, BΠ 6=
∅} = Xn/ kerαβ, we conclude {BΠ | B ∈ Φ, BΠ 6= ∅} ∈ Ω. Altogether, we
have Ω ∈ Ωd, where {εΠ | Π ∈ Ω} = {εXn/ ker γ | γ ∈ S} = {γ | γ ∈ S} = S.
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Conversely, let S = {εΠ | Π ∈ Ω} for some Ω ∈ Ωd. We have to show
that S is a semigroup. For this let Π,Φ ∈ Ω. Then {BΠ | B ∈ Φ, BΠ 6= ∅}
is the set of ker εΠεΦ-classes by Lemma 13 (ii). Since Ω ∈ Ωd, we have
{BΠ | B ∈ Φ, BΠ 6= ∅} ∈ Ω, i.e. Xn/ ker εΠεΦ ∈ Ω, and B∗

Π
= B∗.

Moreover, by Lemma 13 (i), we have xεΠεΦ = B∗ = B∗

Π
∈ BΠ for all x ∈ BΠ

and for all B ∈ Φ with BΠ 6= ∅. Hence εΠεΦ is an idempotent and we have
εΠεΦ = εXn/ ker εΠεΦ ∈ S.

Now, we want to study the bands within the subsemigroup OEn of En.
Recall that a set Y ⊆ Xn is called convex if x, y ∈ Y , z ∈ Xn, and x ≤ z ≤ y
implies z ∈ Y . Moreover, an α ∈ Tn is called convex if the kerα-classes
are convex and a partition of Xn is called convex if each of its elements is
convex.

Remark 15. Each α ∈ OEn is convex, i.e. Xn/ kerα is a convex partition
of Xn.

We want to describe the bands within OEn using Proposition 14.

Notation 16. Let Π and Φ be convex partitions of Xn. Then:

1. AΦ,Π will denote the set of all A ∈ Π such that B ⊆ A for some B ∈ Φ.
2. BΦ,Π will denote all B ∈ Φ such that B is the union of elements of Π.

If Π and Φ are convex partitions of Xn such that each B ∈ Φ is the
union of elements of Π or B is a subset of some A ∈ Π then AΦ,Π ∪BΦ,Π is
a partition of Xn.

Definition 17. Let Ω be a set of all convex partitions of Xn such that
for Π,Φ ∈ Ω :

1. Each B ∈ Φ is a union of elements of Π or it is contained in some A ∈ Π.
2. AΦ,Π ∪BΦ,Π ∈ Ω.

Denote by Ωe the set of all such sets Ω.

Lemma 18. Let Ω be a set of convex partitions of Xn. Then Ω ∈ Ωe if

and only if Ω ∈ Ωd.

Proof. Suppose that Ω ∈ Ωe. Let Π,Φ ∈ Ω and B ∈ Φ with BΠ 6= ∅. If B
is the union of elements of Π then BΠ =

⋃
{A ∈ Π | A∗ ∈ B} = B ∈ BΦ,Π,

i.e. B∗

Π
= B∗.

Suppose that B ⊆ A for some A ∈ Π. Since BΠ 6= ∅, it follows that
BΠ = A ∈ AΦ,Π. Moreover, BΠ = A implies B∗

Π
= A∗. From B ⊆ A it

follows B∗ ≤ A∗ and A∗ ∈ B implies A∗ ≤ B∗, i.e. A∗ = B∗ and thus
B∗

Π
= B∗. We have shown that {BΠ | B ∈ Φ, BΠ 6= ∅} ⊆ AΦ,Π ∪ BΦ,Π

and B∗

Π
= B∗ for all B ∈ Φ with BΠ 6= ∅. If B ∈ BΦ,Π then B ∈ Φ and

B =
⋃
{A ∈ Π | A∗ ∈ B} = BΠ 6= ∅. If A ∈ AΦ,Π then A ∈ Π and there is
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B ∈ Φ with B ⊆ A. Because Ω ∈ Ωe, for any B̂ of the partition Φ, B̂∩A = ∅
or B̂ ⊆ A. So, A is the union of elements of Φ. Thus there is B ∈ Φ with
B ⊆ A and A∗ ∈ B. Since A is the only element of Π with A∗ ∈ B, we have
BΠ = A 6= ∅. This shows the converse inclusion AΦ,Π∪BΦ,Π ⊆ {BΠ | B ∈ Φ,
BΠ 6= ∅}. Consequently, {BΠ | B ∈ Φ, BΠ 6= ∅} = AΦ,Π ∪ BΦ,Π ∈ Ω. This
shows that Ω ∈ Ωd.

Conversely, suppose that Ω ∈ Ωd. Let Π,Φ ∈ Ω and B ∈ Φ. Then there
is A ∈ Π with B∗ ∈ A. Suppose B 6⊆ A. Assume that there is C ∈ Π with
B ∩ C 6= ∅ and C \B 6= ∅. First, we assume that C∗ < y for all y ∈ A. Let
x := (C \ B)∗. Let B1 ∈ Φ with x ∈ B1, i.e. x = B∗

1
∈ C. Since B∗ ∈ A

we have B∗ /∈ C. Hence C∗

Φ
= B∗

1
. Moreover, B∗

1
< y for all y ∈ B and, in

particular, B∗

1
< C∗. Thus C∗

Φ
6= C∗, a contradiction to Ω ∈ Ωd. Now we

assume that A∗ < x for all x ∈ C. But this is impossible since then B∗ < x
for all x ∈ C (because B∗ ∈ A), and so B ∩ C = ∅. Therefore, for each
C ∈ Π with B ∩ C 6= ∅ holds C ⊆ B, i.e. B is the union of elements of Π.
As above, we can show that AΦ,Π ∪ BΦ,Π = {BΠ | B ∈ Φ, BΠ 6= ∅} ∈ Ω.
Hence, Ω ∈ Ωe.

Corollary 19. A subset S of E(OEn) is a band if and only if there is

Ω ∈ Ωe such that

S = {εΠ | Π ∈ Ω}.

Proof. Let S be a band. Since OEn ⊆ En, there is Ω ∈ Ωd such that
S = {εΠ | Π ∈ Ω} by Proposition 14. Since Xn/ ker εΠ = Π is a convex
partition of Xn for all Π ∈ Ω, Ω is a set of convex partitions of Xn, and by
Lemma 18, we can conclude Ω ∈ Ωe. Conversely, let S = {εΠ | Π ∈ Ω} for
some Ω ∈ Ωe. Then Ω is a set of convex partitions of Xn and Ω ∈ Ωd by
Lemma 18, i.e. S is a band by Proposition 14.

Lemma 20. Let S ⊆ E(OEn). If S is a band then {Xn/ kerα | α ∈ S}
∈ Ωe.

Proof. We have S = {εΠ | Π ∈ Ω} for some Ω ∈ Ωe by Corollary 19. On
the other hand, we have S = {εXn/ kerα | α ∈ S} since εXn/ kerα = α for
every α ∈ S. This gives {Xn/ kerα | α ∈ S} = Ω ∈ Ωe.

Finally, we want to characterize the maximal bands (with respect to the
inclusion) within OEn.

Definition 21. Let V be a set of convex subsets of Xn with

1. Xn ∈ V.
2. If A ∈ V, different from a singleton set, then there is a partition {A1, A2}

of A with A1, A2 ∈ V.
3. If A,B ∈ V then A ∩B ∈ {A,B, ∅}.
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Denote by D(Xn) the set of all such sets V.

Notation 22. For V ∈ D(Xn), let Xn(V) be the set of all partitions of Xn

with elements of V and we put

S(V) := {εΠ | Π ∈ Xn(V)}.

Lemma 23. Let α, β be elements of a band S within OEn. Moreover, let

A and B be a kerα-class and a kerβ-class, respectively. Then A ∩ B ∈
{A,B, ∅}.

Proof. Since S is a band within OEn, there is Ω ∈ Ωe such that S = {εΠ |
Π ∈ Ω} by Corollary 19. Note that both Xn/ kerα as well as Xn/ ker β
belong to Ω. Hence, A is the union of kerβ-classes C1, . . . , Cp or A is a
(proper) subset of a kerβ-class C. Suppose that A is the union of kerβ-
classes C1, . . . , Cp. If B∈{C1, . . . , Cp} then A ∩B = B. If B /∈ {C1, . . . , Cp}
then A ∩ B = ∅. Now, suppose that A is a (proper) subset of a ker β-class
C. If B = C then A ∩B = A. If B 6= C then A ∩B = ∅.

Proposition 24. A set S ⊆ E(OEn) is a maximal band within OEn if

and only if there is V ∈ D(Xn) with S(V) = S.

Proof. Let S be a maximal band within OEn. Then we put

V :=
⋃

{Xn/ ker δ | δ ∈ S}

and show that V ∈ D(Xn).

1. Let λ ∈ OEn with {Xn} = Xn/ kerλ. Clearly, λ ∈ E(OEn). Since
im λ = {n} and n ∈ im α for all α ∈ OEn, we have λα = αλ = λ for all
α ∈ OEn. Thus λ ∈ S because of the maximality of S. This shows that
Xn ∈ V.

2. Let A ∈ V be different from a singleton set. Then there is σ ∈ S
with A ∈ Xn/ kerσ. Assume that for all α ∈ S and all proper partitions
Π of A, Π 6⊆ Xn/ kerα. Let {A1, A2} be a partition of A. Let β be the
idempotent transformation with Xn/ kerβ = (Xn/ kerσ \ {A}) ∪ {A1, A2}.
Let γ ∈ S. By Lemma 20, we have Ω := {Xn/ ker δ | δ ∈ S} ∈ Ωe. Hence,
A is the union of ker γ-classes or it is a subset of a ker γ-class. Assume
that A is the union of ker γ-classes Â1, . . . , Âp. Then {Â1, . . . , Âp} is a par-

tition of A with Âi ∈ Xn/ ker γ for all 1 ≤ i ≤ p, a contradiction to the

assumption about A. So, A is a subset of a ker γ-class Ã. Hence, both
A1 and A2 are subsets of Ã. We put γ := Xn/ ker γ, σ := Xn/ kerσ, and

β := Xn/ kerβ. Since both A1 and A2 are subsets of a ker γ-class Ã, it is
easy to check that Aγ,σ ∪Bγ,σ = Aγ,β ∪Bγ,β and Aσ,γ ∪Bσ,γ = Aβ,γ ∪Bβ,γ .

Because of Aγ,σ ∪ Bγ,σ ∈ Ω (since Ω ∈ Ωe), we have Aγ,β ∪ Bγ,β ∈ Ω ⊆
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{Xn/ ker δ | δ ∈ S ∪ {β}}, and Aβ,γ ∪Bβ,γ ∈ Ω ⊆ {Xn/ ker δ | δ ∈ S ∪ {β}}

by the same argument. Since {Xn/ ker δ | δ ∈ S} ∈ Ωe, the forego-
ing argument shows that also {Xn/ ker δ | δ ∈ S ∪ {β}} ∈ Ωe and thus
S ∪ {β} = {εXn/ ker δ | δ ∈ S ∪ {β}} is a band within OEn by Corol-
lary 19, where β /∈ S by the assumption. This contradicts the maximality
of S.

Hence, there is an α∈S such that there is a proper partition {A1, . . . , Ap}
(2 ≤ p ∈ N) of A, which is a subset of Xn/ kerα. We can choose α such
that p is minimal. We put B1 := A1 and B2 := A \ A1. Let γ ∈ S. Then
A is a subset of a ker γ-class or A is the union of ker γ-classes. If A is a
subset of a ker γ-class B then both B1 and B2 are subsets of B. Suppose
that A is the union of ker γ-classes B̃1, . . . , B̃q (2 ≤ q). Assume that there

is a B̃i (1 ≤ i ≤ q) such that B̃i is the union of kerα-classes Ar, . . . , As

(1 ≤ r < s ≤ p). Let us consider the transformation γα ∈ S. Then it is easy
to verify that there are at most p− s+ r different ker γα -classes which are
contained in A. These ker γα-classes provide a partition of A with less than
p classes. This contradicts the minimality of p. Hence each B̃i (1 ≤ i ≤ q)
is contained in a kerα-class Aki (1 ≤ ki ≤ p), which implies that each Ai

(1 ≤ i ≤ p) is the union of ker γ-classes (within B̃1, . . . , B̃q). In particular,

B1 is the union of the ker γ-classes B̃i with B̃i ⊆ A1 and B2 is the union of
the ker γ-classes B̃i with B̃i 6⊆ A1.

Let µ ∈ E(OEn) with {B1, B2} ∪ {{a} | a ∈ Xn \ A} as the set of

kerµ-classes and let us consider the set S̃ := S ∪ {µδ | δ ∈ S} and Ω̃ :=

{Xn/ ker δ | δ ∈ S̃}. Let δ ∈ S. If A is a subset of a ker δ-class then µδ = δ.
If A is the union of ker δ-classes then

Xn/ kerµδ = {D ∈ Xn/ ker δ | D 6⊆ A} ∪ {B1, B2}

since B1 as well as B2 is the union of ker δ-classes by the previous observation.
Since, for every γ ∈ S, both B1 and B2 are subsets of the same ker γ-class
or both are unions of ker γ-classes, since {Xn/ ker δ | δ ∈ S} ∈ Ωe, and since
AΦ,Π ∪ BΦ,Π ∈ {Xn/ ker δ | δ ∈ S} for all Φ,Π ∈ {Xn/ ker δ | δ ∈ S}, it is

easy to verify that Ω̃ satisfies both conditions of Definition 17, i.e. Ω̃ ∈ Ωe.
Thus, S̃ is a band within OEn (by Corollary 19) containing S. Because of the

maximality of S, we have S = S̃, and thus αµ ∈ S. This gives B1, B2 ∈ V
where A = B1 ∪B2.

3. Let A,B ∈ V. Then A ∩B ∈ {A,B, ∅} by Lemma 23.

Consequently, V ∈ D(Xn). We have still to show that Xn(V) ∈ Ωe. Let
Π,Φ ∈ Xn(V) and B ∈ Φ. Then for each A ∈ Π, A ∩ B ∈ {A,B, ∅}. This
shows that B is the union of elements of Π or B is a subset of some A ∈ Π.
Then AΦ,Π ∪ BΦ,Π ∈ Xn(V) since AΦ,Π ∪ BΦ,Π is a partition of Xn with
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elements of V. Consequently, Xn(V) ∈ Ωe and S(V) = {εΠ | Π ∈ Xn(V)} is
a band by Corollary 19. In fact, from {Xn/ ker δ | δ ∈ S} ⊆ Xn(V) it follows
S ⊆ S(V) and the maximality of S yields S = S(V).

Conversely, let S = S(V) for some V ∈ D(Xn). Clearly, S ⊆ E(OEn).
Let Ω := Xn(V). By the argument from the previous paragraph, Ω ∈ Ωe,
so S is a semigroup within E(OEn) by Corollary 19. Now, we have to show
that S is maximal. Suppose that S ⊆ S1, where S1 is a semigroup within
E(OEn). Let α ∈ S1. Then, by Lemma 23, A ∩ B ∈ {A,B, ∅} for all
kerα-classes B, all Π ∈ Ω, and all A ∈ Π.

Let B be any kerα-class. Select Π ∈ Ω and A1 ∈ Π such that B ⊆ A1

and for all Φ ∈ Ω and all C ∈ Φ, if B ⊆ C then |A1| ≤ |C|. (Such Π and A1

exist, since {Xn} ∈ Xn(V) = Ω and B ⊆ Xn.)

We claim that B = A1. If A1 is a singleton then the claim is obviously
true. Suppose |A1| ≥ 2. Then A1 = A2∪A3, where A2, A3 ∈ V and {A1, A2}

is a partition of A. Consider Π̃ := (Π \ {A1})∪{A2, A3} ∈ Ω. Then ε
Π̃
∈ S,

and so, by Lemma 23, B ∩ A2 ∈ {B,A2, ∅}. If B ∩ A2 = B then B ⊆ A2,
which contradicts the minimality of A1. If B ∩A2 = ∅ then B ⊆ A3, which,
again, contradicts the minimality of A1. Hence B ∩ A2 = A2. Similarly,
B ∩A3 = A3, and so B = A1.

Consequently, B ∈ V, which shows that Xn/ kerα ⊆ V, i.e. Xn/ kerα ∈
Xn(V). Thus εXn/ kerα = α ∈ S since S = {εΠ | Π ∈ Xn(V)}, which implies
S = S1.
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