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HYPER-PSEUDOFORMULAS AND M-SOLID
ORDERED PSEUDOVARIETIES

Abstract. In 2009 K. Denecke and J. Koppitz proved that for a monoid M of hyper-
substitutions M-solid positive varieties of tree languages correspond to M-solid ordered
pseudovarieties. In this paper, we will characterize M-solid ordered pseudovarieties in a
similar way in which in [14] M-solid varieties, in [3] M-solid quasivarieties, in [11] M-solid
pseudovarieties and in [12] M-solid algebraic systems were characterized. The main idea
is to show, that we have two Galois-connections and a conjugate pair of additive closure
operators. Then we can apply the general theory of conjugate pairs of additive closure
operators.

1. Introduction

In [17] and [9] M-solid varieties of tree languages and M-solid positive
varieties of tree languages were characterized by M-solid pseudovarieties and
by M-solid ordered pseudovarieties of finite algebras and of finite ordered al-
gebras, respectively. The theory of M-solid pseudovarieties was developed
in [5] and in [11]. The aim of this paper is to apply the theory of conju-
gate pairs of additive closure operators (see [7]) to get a characterization
of M-solid ordered pseudovarieties. Since M-solid ordered pseudovarieties
are finite model classes of certain sets of hyper-pseudoformulas, we can use
ideas from [12|. First we want to repeat some basic concepts on finite ordered
algebras. To describe classes of finite ordered algebras as model classes of
logical sentences we need the concept of an implicit operation. This will be
introduced at the end of this section.

An ordered algebra of type T is a triple AS = (A; (fiA)ieI, <4) consist-
ing of a set A, an indexed set (fi!);er of operations defined on A, where
fZA : A™ — A is n;-ary, and a partial order relation <4 on A, which is com-
patible with all the operations (fi*)icy, i.e. if a1 <4 b1,...,an, <4 by, then
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fa, . an) <a fADL- . bey). Let Algs, () be the class of all finite
ordered algebras of type 7. Every ordered algebra is an algebraic system (see
[1]) of type (7, (2)) (see [12]).

A simple example of an ordered algebra of type ((2),(2)) is given by
AS = ({0,1,2}; max, min, <4), where <4 is the usual order on the set
of integers {0, 1,2} and where max and min denote the maximum and the
minimum with respect to this order.

DEFINITION 1.1. Let AS = (4; (f)icr, <4) and BS = (B; (fB)ic1, <p)
be ordered algebras of type 7. We say that A= is an ordered subalgebra of B=
if (A; (f)ier) is a subalgebra of (B; (fF);cr) and < 4 is the restriction of <g
onto A% ie. <4 := <p|A% A mapping h: A — B is said to be an ordered
homomorphism h : AS — BS of AS to BS if h is an algebra homomorphism
and if from a <4 b there follows h(a) <p h(b) for all a,b € A. Let (Ajg)ng
be a family of ordered algebras of the same type 7. Then the ordered direct
product of the ordered algebras .Ajg = (4;; (fiAj)ieI, <4,) is the direct prod-
uct of the family of underlying algebras together with the product relation
<p = Qjes 4, defined by <p := {((a;)je, (bj)jes)| a; <4, bj, j € J}.
Let HS,S<, PS and Pfgm be the operators of taking arbitrary ordered ho-
momorphic images, ordered subalgebras, ordered direct products and finite
ordered direct products. Then a class K C Alg%m(T) is called an ordered

pseudovariety of type 7 if X = H SSSPJcSm(IC); i.e. if K is closed under these
operators.

Pseudovarieties of type 7 are classes of finite algebras of type 7 which are
closed under homomorphic images, subalgebras and finite direct products.
For a logical characterization of pseudovarieties Reiterman used the concept
of a pseudoidentity which is based on implicit operations (see [8]).

DEFINITION 1.2. An n-ary implicit operation on a pseudovariety V of
type 7 is given by a V-indexed family 7 := (7 4) 4ev satisfying the following
conditions :

(i) ma: A" — A is an n-ary operation on A for each A € V' and

(ii) for each homomorphism h : A — B with A,B € V there holds
h(ma(ai,...an)) = mp(h(ar),..., h(ay)) for every aq,...,a, € A, ie.
the following diagram commutes:

A TA 4
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Here h" : A" — B" is defined by (ai,...,an) — (h(a1),...,h(ay)) for
every (ai,...,ap) € A™ The set of all n-ary implicit operations on V is
denoted by Q,, V. An n-ary implicit operation on an ordered pseudovariety V<
of type 7 is defined in essentially the same way with the difference that in (ii)
we take ordered homomorphisms. This corresponds to the usual definition
of implicit operations over a category of algebraic structures with morphisms
as operations on the universe, which are compatible with these morphisms.
For an ordered pseudovariety V<, let V := HSPy;,{A | AS € V<} be the
pseudovariety which we obtain, if we delete in each ordered algebra from
V< the partial order relation. Let Q,V< be the set of all n-ary implicit
operations on the ordered pseudovariety. Since every ordered homomorphism
h : AS — BS is a homomorphism from A to B, where A, B are usual algebras
of type T belonging to AS and B<, respectively, we have Q,V C Q, V<.

2. Pseudoformulas

An ordered algebra can be regarded as an algebraic system with an in-
dexed set ( f{4)ze 1 of operations of type 7 = (n;);e; and one binary relation.
In general, an algebraic system A = (A4; (fi““)ief,('yfl)jej) of type (7,7’)
consists of a set A, an indexed sequence ( fiA)ie 1 of fundamental operations,
where fZA is n;~ary and an indexed sequence (7}4)3‘6 g of fundamental rela-
tions, where ’y]“-“ C A™. Here 7 and 7' are the sequences 7 = (n;);e;r and
7' = (nj) e, respectively. Therefore ordered algebras are algebraic systems
of type (7, (2)). Classes of algebraic systems can be defined as model classes
of sets of formulas and pseudovarieties are model classes of sets of pseu-
doidentities. For a logical description of classes of finite algebraic systems
we introduce the concept of a pseudoformula. We will define pseudoformulas
of type (7,(2)), but our definition can be generalized to an arbitrary type
(r, 7).

DEFINITION 2.1. Let V< be an ordered pseudovariety of type 7 and let
n > 1 be a natural number. An n-ary pseudoformula of type (7, (2)) on V<
is defined in the following inductive way:

(i) If 1, m2 are n-ary implicit operations on V<, then the equation m; ~ 72
is an n-ary pseudoformula of type (7,(2)) on V<.

(ii) If 7y, m are n-ary implicit operations on V< and if 7 is a binary rela-
tional symbol, then (7, 7o) is an n-ary pseudoformula of type (7, (2))
on VS'

(iii) If PF is an n-ary pseudoformula of type (7, (2)) on V<, then =(PF) is
an n-ary pseudoformula of type (7, (2)) on V<.

(iv) If PFy and PF; are n-ary pseudoformulas of type (7, (2)) on V<, then
PFy V PF; is an n-ary pseudoformula of type (7, (2)) on V<.
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(v) If PF is an n-ary pseudoformula of type (7,(2)) on V<, and z; € X,
then Jz;(PF) is an n-ary pseudoformula of type (7, (2)) on V<.

Let PF (7, (2)) (2, V<) be the set of all n-ary pseudoformulas of type (7, (2))
on Ve and let PF(r (2))(Q<) := Uzt PF(r,2))(WV<) be the set of all
pseudoformulas of type (7,(2)) on V<.

Let PF be a pseudoformula of type (7,(2)) on V< and let AS :=
(A; (ffYier, <4) be a finite ordered algebra of type 7. Then we define the
satisfaction of a pseudoformula of type (7, (2)) on V< by the ordered algebra
AS| written as AS = PF.

p.S.

DEFINITION 2.2. Let V< be an ordered pseudovariety of type 7 and let
PF be a pseudoformula of type (7, (2)).

(i) If PF is an equation m =~ 72, then AS = 7 ~ m & (1) 4< =
p.s.
(m2) A<
(ii) If PF has the form ~(mi,m2) for the binary relational symbol v and
implicit operations 7y, m on V<, then

AS E (1, m) 12 yAT (1) 42, (2) <) s true in AS

p.s.
(This means that for every (a1, ..., a,) € A" we have (1) 4<(a1,...,an)
<4 (WQ)AS (a17 ceey aTL))'

(iii) If the pseudoformula has the form —(PF) and if we inductively as-
sume that AS |=PF is already defined, then AS = —(PF) :& -
p.s. p.s.

(AS = PF).
p-s

(iv) If the bseudoformula has the form PF; V PF, and if we inductively
assume that AS = PFy, AS |=PF, are already defined, then AS |=
Db.s. p.s. p.S.
PF,V PF = AS = PRV AS = PF.
p.s. D.S.
(v) If the pseudoformula has the form Jz;(PF) and if we inductively as-
sume that AS |=PF is already defined, then AS | J2;(PF) &
p.s. p.s.
Jz;(AS EPF).

p-s.

The symbol |= defines a relation between the sets Alg?m(T) and
p.S.

PF(2) (QV<). From this relation we get a Galois-connection (PSM, PSF)
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where

PSM : P(PF (- 2))(Q2V<)) — P(Alg?in(ﬂ) and
PSF : P(Alg5,, (7)) = P(PF (7,2 (V<))
are defined by
PSM(PF) = {A% € AlgF,,(r) | VPF € PF (A= = PF)} and

p.s.

PSF(K) := {PF € PF(; (2 (<) | VAS € K (AS | PF)}
p.S.

for PF C PF(7,2))(QV<) and K C Alg?m(T), respectively.

The fixed points under the closure operators PSM PSF and PSFPSM,
respectively are called pseudo-model classes and pseudo-theories of type
(1,(2)). They form two complete lattices which are dually isomorphic to
each other. It is routine work to prove that every pseudo-model class of
type (7,(2)) is an ordered pseudovariety of type 7. For the opposite direc-
tion we may apply Theorem 3.3 from [6] which is formulated for admissi-
ble pseudovarieties of algebraic systems A = (A; (f)ier, (7;4)]-6 J) of type
(1,7"). Moreover, it is assumed that there are only finitely many funda-
mental relations, i.e. J is finite and that the pseudovariety V is admissible,
meaning that 'yj“-“ # () for every j € J and every A € V. Then W C V is a
sub-pseudovariety of V' if and only if there exists a set PF of pseudoformu-
las of the form (i) from Definition 2.1 and of the form ~;(71,...,m,;) with
a relation symbol v; and implicit operations 71, ..., T, over V such that
W = PSMPSF(W). The satisfaction of v;(m1,...,m,;) in an algebraic
system A := (A; (fM)ier, (7}4)]-6]) is defined by

A | yj(me,. . ) & ’Y]A((M)A, ooy (mny)a) is true in A
p.s.

This generalizes (ii) from Definition 2.2. Using this result we have the fol-
lowing Birkhoff-type-characterization of ordered pseudovarieties.

THEOREM 2.3. A class K C Alg?m(T) is an ordered pseudovariety of type
7 if and only if K= PSMPSF(K).

We remark that in Definition 2.1 and in Definition 2.2 the ordered pseu-
dovariety can be replaced by a class V' of algebraic systems of type (7,7")
which is closed under taking of homomorphisms, subsystems, and finite di-
rect products of algebraic systems (see [1]). Definition 2.1(ii) can be replaced
by
(ii") If 71, ..., m,, are n-ary implicit operations on V, and if ~y; is an nj-ary

relation symbol, then v;(my,. .. ,wnj) is an n-ary pseudoformula of type
(r,7") on V.
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Definition 2.2(ii) will be replaced by

(ii") If PF has the form ~;(m,...,m,;) for the nj-ary relational symbol -;
and implicit operations 71, ..., my,;, then

A = v(m, .., my) & 7]“-4((71'1)A, ooy (Tn;)4) 18 true in A.
p.s.

If 7/ is a finite type of relations and 'y]A # () for all j € J, Theorem 3.3 from
[6] can be applied also in this case. Let Algsysfn(7,7') be the class of all
finite algebraic systems of type (7,7').

THEOREM 2.4. A class K C Algsys?m(T7 7') of finite algebraic systems
with a finite set of relations and such that ’y]A # 0 for all j € J and all

Ae Algsys?m(T, 7') is closed under homomorphisms, subsystems and finite

direct products of algebraic systems if and only if K = PSMPSF(K).

3. Hyper-pseudoformulas

Hypersubstitutions of type 7 are introduced in [10] with the aim to de-
fine hyperidentities, i.e. identities which are defined for algebras of the cor-
responding type in the stronger sense that they are valid after substituting
the occurring operation symbols by terms (see [4] and [7]). Let (f;)icr be
an indexed set of operation symbols and let (vj)jcs be an indexed set of
relation symbols where n; € N \ {0} is the arity of f; and n; € N \ {0} is
the arity of v;. Then the set W,(X,,) of all n-ary terms of type 7 is defined
using an n-element set X,, = {x1,...,x,} of individual variables in the usual
way saying that each z; € X, is an n-ary term and if ¢4,...,%,, are n-ary
terms of type 7 and f; is an n;-ary operation symbol, then f;(¢1,...,ty,) is
an n-ary term of type 7. Then the set of all n-ary formulas F, .(W:(Xy))
of type (7,7') is defined in a similar way as we defined pseudoformulas in
Definition 2.1, with the difference that in (i) we take terms t1,t2 and ob-
tain an identity ¢; ~ to and in (ii) we define n-ary formulas ;(t1,...,t,;)
using n-ary terms ti,...,t,; and an nj-ary relation symbol ;. The result
is the set F(; . (Wr(Xy)) of all n-ary formulas of type (7,7) and the set
Frmy(We(X)) == U Frry(Wr(Xy)) of all formulas of type (7,7'). Let

n>1

p1 2 Wr(X)? — W,(X) be the first projection defined on W, (X)2. In [12]
hypersubstitutions for algebraic systems were defined in the following way:

DEFINITION 3.1. Any mapping o : {f;|i € I} U{vy;|j € J} = W (X)U
Fry(W7(X)) which maps operation symbols to terms preserving arities
and relation symbols to formulas preserving arities is called a hypersubsti-
tution for algebraic systems of type (7,7'). Let Hyprel(r,7’) be the set of
all hypersubstitutions for algebraic systems of type (7, 7).
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Let Hyprel(r,7") be the collection of all hypersubstitutions for algebraic
systems of type (7,7"). We defined the extension & : W (X) U F(, 1) (W (X))
— Wr(X) U Fir7y (W7 (X)) and proved that the set Hyprel(r,7") together

with a binary operation o, defined by o1 o, 09 := 01 o g9, and the hy-
persubstitution ¢;q mapping f; to the term fi(z1,...,2p,),7 € I and the
relation symbols 7; to the formula v;(z1,...,2y,), | € J forms the monoid

(HypT@l (T7 7—,)7 Or, Uid)'
Let V< be an ordered pseudovariety of type 7. As for pseudovarieties
on the set (2,,V< one can define a topology such that €2,,V< equipped with

operations fz-Q"VS,z' € I, defined by

Qn V<

fi —(7r1,...,ﬂni)A(al,...,an)
<
= fiA ((7T1)A§ (al, e ,an), ey (an)Ag (al, e ,an))
for all ay,...,a, € A becomes a Hausdorff topological algebra which is

compact and totally disconnected. This algebra can be regarded as an or-
dered algebra if we add the partial order AﬁnV<' Then for every m € Q,,V<

there exists a sequence ((tj:‘) Aev)k>1 where t, are terms of type 7 such that
T = klim (tf)Aev- Let Hyp(7) be the set of all usual hypersubstitutions,
— 00

and let o denote the product of usual hypersubstitutions. Then for every
hypersubstitution oy € Hyp(7) as in [11] a mapping og : Q, V< — Q, V<
can be defined by ap(7) := klim (65 [tr]) acy. This mapping will be used
— 00

to define hypersubstitutions for pseudoformulas of type (7, (2)).
DEFINITION 3.2. Let V< be an ordered pseudovariety of type 7 and
AS € V<. Let 0 € Hyprel(r,(2)). Then we define a mapping o* :

PF (,2)(QV<) = PF (1, (2))(Q2V<) inductively as follows:
(i *[7‘(‘1%7‘(‘2] = 5’H(7T1)%6'H(7T2),
(i) o*[y(m1, m2)] == y(m(m1), 51 (m2)),
i *F(P )] = =(c"[PF)),
[

This definition can be generalized to classes of finite algebraic systems
closed under homomorphic images, subsystems and finite direct products of
algebraic systems.

DEFINITION 3.3. Let V< be an ordered pseudovariety of type 7 and
AS € V<. A pseudoformula PF in V< is said to be satisfied as a hyper-
pseudoformula in A< if & (7) exists for all implicit operations occurring in
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PF and if AS = o*[PF)] for all o € Hyprel(r,(2)). In this case we write
D.S.
AS E PF.
h.p.s.

This hypersatifaction relation |= defines a second Galois-connection
h.p.s.
(HPSM,HPSF) with

HPSM : P(PF (), (QV<)) = P(Alg5,,(r)) and
HPSF : P(AlgS, (7)) — P(PF (7,2 (@V))

defined by
HPSM(PF) :={A= € Alg5, (1) | VPF € PF (AS = PF)} and
h.p.s.
HPSF(K) :={PF € PF(;5))(QV<) |V A € K (A | PF)},

h.p.s.

respectively for PF C PF(r,2))(QV<) and K C AlgF, (7). If instead of
all hypersubstitutions, we use hypersubstitutions from a submonoid M C

Hyprel(t,(2)) we obtain a relation | and a similar Galois-connection
Mh.p.s.

(Hy PSM, Hy PSF).

For the extension of hypersubstitutions from Hyprel(r, (2)) to pseudo-
formulas we have:

LEMMA 3.4. Let 01,02 € Hyprel(t,(2)). Then (01 o, 02)* = o} o 03.

Proof. We will give a proof by induction following the inductive definition
of a pseudoformula PF' of type (7, (2)).

(i) If PF is a pseudoidentity 7 = p, then by Definition 3.2(i),

(01 0r 02)*[m = p] = (01 0 02) (7) = (01 07 02) 1 (p)

(01)m on (02) ) (p) by Lemma 3.4 in [12]

= ((01)m on (02) g) () =~ (
= ((G1)g o (T2)n) 7r) ~ ((El)H o(d2)m)(p) by Lemma 2.7 in [11]
G2)H(
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(ii) If PF has the form ~(m, p), then

(01 07 02) (1), (01 01 72) 5 (p))

V(1) m on (02) ) (), ((01) 1 on (02) 1) (p))
(

(

(0107 02)"[7(m, p)] = 7((

( )

(@) w0 (@2)u)(7), (@1)m © (@2)m)(p))
( )] )

@) E((T2)u (1)), (1) ((@2)H(P))

g1

(@2)u(7), (@2)1(p))]
a2"[y(m, p)ll = (01" 0 o2™)[¥(, p)].
(iii) If the pseudoformula has the form —(PF) for a pseudoformula PF and
assume that (o1 o, 02)*[PF] = (01* 0 09™)[PF]. Then
(0100 02)*[2(PF)] = =(01 0p 02)*[PF] by Definition 3.2(iii)
~((01" 0 02")[PF])
(01" (o2 [PF]]
=01 [~(02*[PF])] by Definition 3.2(iii)
= 01"[o2*[-(PF)]] by Definition 3.2(iii)
= (01" 0 09")[=(PF)].

[
"l

01

I
J

In cases (iv) and (v) we proceed in a similar way. m

In a similar way for the identity element o;q € Hyprel(r,(2)) we can
show that o},[PF] = PF for all pseudoformulas PF' € PF (7 2 ))(QV ).

4. M-solid ordered pseudovarieties

In this section we define M-solid ordered pseudovarieties as pseudova-
rieties of finite ordered algebras, which are closed under taking of so-called
derived ordered algebras, and prove a characterization theorem for those clo-
sures. M-solid ordered pseudovarieties were used in [9] to give an Eilenberg-
type characterization of M-solid positive varieties of tree languages. Let
M C Hyprel(r,(2)) be a monoid of hypersubstitutions for algebraic sys-
tems.

For a set PF C PF(;(2))(2V<) of pseudoformulas of type (7,(2)) we
define an operator

N P(PF(r2) (V<)) = P(PF (. (2)) (<))

by
PE(PF) :={c*|PF] | o € M and PF € PF}.

Clearly, X317 (PF) :=Uppepr Xof {PF}), ie. X5f is completely additive.
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LEMMA 4.1. For every submonoid M C Hyprel(r, (2)) the operator x}t
has the properties of a completely additive closure operator.

Proof. Because of o,[PF] = PF for every pseudoformula PF € PF, the
operator X is extenswe We noticed already that X Fis completely ad-
dltlve This implies monotomclty, ie. PF; C 77.7:2 1rnphes X F(PF1) C

PE(PFs). Extenswrcy gives \PF (PF) C xVE(XAE(PF)). Conversely,
let PPy € XVE(XLE(PF)). Then there are 01,02 G M C Hyprel(r,(2))
and PFy, € PF such that PFy = of[o5[PFs]]. By Lemma 3.4, there
is a hypersubstitution in M C Hyprel(r,(2)), namely o7 o, oo such that
PF; = (01 o, 09)*[PFy] = of[o5[PF]]. Therefore, PFy € x4 (PF) and
then XU (XVE (PF)) C xLF (PF). Altogether, we have equality.

For an ordered algebra AS = (A; (f/)ier, <4) and o € Hyprel(r, (2))
we define 0(A%) := (A; (o5 (fi)™)icr, <a). The following observation shows
that we obtain again an ordered algebra. By induction on the complexity
of the term oy (f;) we show that o ( fi)” preserves the partial order <jy4.
Let og(fi) = z;,1 < j < n;, and assume that a1 <4 b1,...,an, <4 by,
Then x}“(al, cey ) = e?i’A(al, ceyly,) =a; <4 b= eni’A(bl, b)) =
xf(bl, ey bny). Assume now that og(fi) = fl(tl, ceoytn,) and

that the term operations t“f‘,...,tﬁl preserve < 4. Then we get

fl(tl,...,tnl)A(al,...,am) = fl (tl (al,...,anl) tﬁl(al,.. anl)) SA

= flA(tf(bl,...,bm),..., m(bl,...,bm)) = filt1, .. tn)A(b1, ..., by,) since

by hypothesis t{*(a1, . .., an,) <a t{(b1,...,by,) for 1 <k

preserves the partial order <a.Let M C ”Hyprel (1,(2))
Then we define:

< ny, and since fl
be any submoniod.
DEFINITION 4.2. An ordered pseudovariety V< is said to be M-solid if

o(AS) € V< for all 0 € M and all AS € V<. For M = Relhyp(r, (2)) we
call an M-solid ordered pseudovariety solid.

REMARKS. In [13] we defined for an algebraic system A =
(A; (fMVier, ('y]“-“)iej) and for any o € Hyprela(r,7’) the derived alge-
braic system o(A) by o(A) = (A; (or(fi)*)ier, (0r(1j))jes). Here o €
Hyprela(t,7') is defined as a pair (o, o) where or : {f| i € I} — T(A)
maps fundamental operations to term operations preserving arities and op
maps fundamental relations to elements of the relational algebra generated
by {’yA| j € J}. If the component o is the identity mapping on {'yj |jeJ}
we obtam a submonoid of Hyprel (T, 7").

For K C Alg?m( ) and o € Hyprel( (2)) we define a mapping x©
P(AlgF,,(r)) = P(Algs,, (7)) by XOAK) = {o(A%) | o € Hyprel(r, (2 ))7
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AS € K}, Clearly, x9YK) = Ugcer XOA(AS), ie. the operator x©4
is completely additive. For a submonoid M C Hyprel(r,(2)) we obtain a
corresponding operator x{/(K) defined by x{A(K) := {0(AS) | 0 € M,
A= € K}. Then we get

LEMMA 4.3. For any submonoid M C Hyprel(t, (2)) the operator XS\)/[A has
the properties of a completely additive closure operator.

Proof. Monotonicity of the operator X?/[A follows from additivity. Let
0iq be the identity element of the monoid M. Then o0,(AS) =
(A; (i) m (f:)Nier, <a) = (A5 (fA)ier, <a). As a consequence, the oper-
ator x§7* is completely additive. The inclusion x{/(K) € x§A(§A(K))
follows from extensivity. If AS € x{A(XJA(K)), then there are oy,09 €
M C Hyprel(r,(2)) and there is a finite ordered algebra A= € K such
that AS = o1(09(A=)) = (A;((62)u((0)a(f:) )ier, <a) = (4; (02 o
o) a(fi)Yier, <4). Since by Lemma 3.4 in [12] (01 0,09)g = (61)mon (02) 1
and since (01 op 02)g = (01)g on (02)g we obtain a hypersubstitution
010, 09 € M C Hyprel(r, (2)) with AS = (o1 o, 02)(A’S). This finishes
the proof. =

For the ordered pseudovariety V< the pseudo-satisfaction relation |= re-
p.s.
lates finite ordered algebras A< with sets of pseudoformulas of type (7, (2))

and defines a Galois-connection (PSM, PSF') with
PSM : P(PF (7,2 (QV<) — P(AlgF,, (7)) and
PSF : P(AlgF,, (7)) = P(PF (7,2))QV<).

A second Galois-connection can be defined by using the M-hyper-pseudo-

satisfaction relation |= . This gives (HyPSM, Hy PSF) for any sub-
h.p.s.

monoid M C Hyprel(r, (2)) with
HyPSM : P(PF (7,2 (QV<)) — P(AlgF,,(r)) and
Hy PSF : P(Alg3,, (1)) = P(PF (7,(2))(2V<)).

Moreover, we defined two additive closure operators XJ\O[‘ and Xf/[F . Four
more closure operators are defined by the products PSMPSF, PSFPSM,
HyPSMHPSF, and HyyPSFH;;PSM. The fixed points under these
closure operators form complete lattices. We will now prove that the closure
operators, X]\Of and xJf" form a so-called conjugate pair (see [7]). Then we
can apply the general theory of conjugate pairs of additive closure operators
which describes the relationships between the 6 complete lattices. We need
the following lemmas.
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LEMMA 4.4. Let V< be an M-solid ordered pseudovariety of type T, let
o € M C Hyprel(,(2)) and let 7 € Q,V< for some n € N*. Then

(@H(T)) as = To(as)-

Proof. Let V be the class of all finite algebras A = (4; (f{)ics) where A<
belongs to V< and let V' be the pseudovariety generated by V. It is well-
known that for every implicit operation m on V' and for every finite algebra
A € V' there is a term 4t such that 7 is the sequence ((at)*)acy. (see
e.g. Lemma 5.1.1 in [2]). Using this result and the definition of an implicit
operation (Definition 1.2) we have w4 = (4t)* for every A € V' and therefore
for every algebra A € V' C V'. Since the term operations of A = (A4; (fiA)iel)
and of AS = (A4; (fA)ier,<a) agree, this holds also for ordered algebras
from V<. This gives for o(A) the equation m,(4) = (5 A)t)"(A) with a term
st € W.(X,). Applying the theory of conjugate pairs of additive closure
operators for terms (see |7]) one has (U(A)t)"(A) = (6[U(A)t])“4. Then by
Proposition 5.2.3 from [2] we get (6[,(4)t])* = (Tu(7))4. =

LEMMA 4.5. Let AS = (A; (fiA)iej, <) be a finite ordered algebra of type
T and V< be an ordered pseudovariety of type T, AS € V<. Then for each
PF € PF(12))(QV<) and each o € Hyprel(t, (2)) we have

AS | o*[PF] & o(AS) E PF.

Proof. We will give a proof by induction on the definition of a pseudofor-
mula.

(i) If PF has the form 7 ~ p, then AS | o*[1 ~ p]
p.s.

& AS | @u(r)=7g(p) by Definition 3.2(i)
p.s.
< (@u(m)a< = (@u(p)) 4< by Definition 2.2(i)
54 TrO'(AS) = pU(.AS) by Lemma 4.4
& oS Erxp by Definition 2.2(i).
p.s.
(ii) If PF has the form (7, p), then AS = o*[y(7, p)]
p.s.

& AS E A@gn),75(p) by Definition 3.2(ii)
p.s.

& (@a() 42, @Ta(p)) 4<) € A5 by Definition 2.2(ii)

S Teag) SA Po(AS) by Lemma 4.4

=

o(AS) | y(m,p) by Definition 2.2(ii).
p.5.
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(iii) If PF has the form —(PF), and if we assume that
AS | 0*[PF] < 0(AS) | PF, then AS |= o*[~(PF)]

: AS ﬂ(a*[P;]Sj by Deﬁnitiozz.Q(iii)
p.S.
& —(AS E o*[PF]) by Definition 2.2(iii)
p.s.
& —(0(AS) &= PF) by our presumption
p.S.
& o(AS) E —(PF) by Definition 2.2(iii).
p.s.

(iv) If PF has the form PF) V PF;, and if we assume that
AS = 0*[PFj] < 0(AS) | PFj, j = 1,2, then AS = ¢*[PF,V P
p.S.

f__’:' AS | (0*[PF1]V o*[PF)) by ngnition 3.2(iv)
p.s.
& AS | of[PR)VAS | o*[PF,) by Definition 2.2(iv)
p.s. p.s.
& o(AS) E PRiVo(AS) = PF, by our presumption
p.s. p.s
& o(AS) E PRV PR by Definition 2.2(iv).
p.s.

(v) If PF has the form Jz;(PF) and if we assume that
AS | 0*[PF] < 0(AS) | PF, then AS = o*[3z;(PF)]
p.S. p.s.

:. AS | 3x;(0*[PF]) by Definition 3.2(v)
p.s.

& i (AS = o*[PF]) by Definition 2.2(v)
p.s.

&  Jxi(0(AS) = PF) by our presumption

p.s.

& o(AS) & 32 (PF) by Definition 2.2(v). m

p.s.

Now all conditions to apply the general theory of conjugate pairs of ad-
ditive closure operators are satisfied, and we can characterize M-solid or-
dered pseudovarieties. To do this we apply the characterization theorem
from [7]. Definition 4.2 means that an ordered pseudovariety is M-solid iff

OA _
Xai V<] = V<.

THEOREM 4.6. Let K C Alg%m(T) be a class of finite ordered algebras of
type T such that K = PSM(PF) for some set PF of pseudoformulas of
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type (1,(2)), i.e. K is an ordered pseudovariety. Then the following are
equivalent:

(i) K= HyPSMHPSF(K),

(i) x§7' K] = K,
(iii) PSF(K)= Hy PSF(K),

(iv) x4 (PSF(K)) = PSF(K).
Dually the following propositions (1), (ii'), (iii’) and (iv") are also pairwise
equivalent:

(i'y PF = HyPSFHyPSM(PF),

(ii') x3f [PF| =PF,
(i) PSM(PF) = HyPSM(PF),
(iv') XYA[PSM(PF)] = PSM(PF).

The equivalence (ii)<(iii) means that K is M-solid iff every pseudo-

formula is satisfied as a hyper-pseudoformula. Theorem 4.6 describes the
relationships between the complete lattices defined by the fixed points of the

closure operators mentioned before Lemma 4.4. From the theory of conju-
gate pairs of additive closure operators we obtain also the following theorem

(see [7]):
THEOREM 4.7. For all K C Alg?in(r) and all PF C PF, 5)(QV<) the
following properties hold:
(i) HuPSF(K) = PSF(x3{'[K]),
(ii HMPSF(IC) C PSF(K),
[HMPSF(IC)] = Hy PSF(K),
[PSM(HMPSF(IC))] = PSM(HMPSF(IC))

)
(iil) x
(iv)

(v) HMPSF(HMPSM(P}")) PSE(PSM(XYE(PF))), and dually
(') HyPSM(PF) = PSM (XL [PF)),
(it") HMPSM(P]:) C PSM(PF),

) XS Hu PSM(PF)] = HyPSM(PF),

(iv') XTF[PSF(HyPSM(PF))] = PSF(Hp PSM(PF)),

) HMPSM(HMPSF(IC)) = PSM(PSF(x{AK))).

As a consequence of Theorem 4.6 and Theorem 4.7 we obtain:

COROLLARY 4.8. For every K C Alg?m(T) with K = PSM(PF) for

some set PF of pseudoformulas of type (7,(2)), K is an M-solid ordered
pseudovariety iff K = PSM (x1F [PF)).

(iii
/
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Proof. “=" Assume that K is M-solid. Then x{AK] = K and
then X9A[PSM(PF) = K. From Theorem 4.6 (iii’) there follows
K = xX§{A[HyPSM(PF)] and from Theorem 4.7 (iii’) we get K =
HpPSM(PF). Now (I') from Theorem 4.7 gives K = PSM (x}F [PF)).

“e" Assume that K = PSM(xt [ [PF]). Then by Theorem 4.7 (i)
we have that = PSM(PF) = HyPSM(PF). By Theorem 4.6, this
is equivalent to x{AK] = x§{A[PSM(PF] = PSM(PF) = K and K is
M-solid. =

Corollary 4.8 means that for checking whether an ordered pseudovari-
ety which is given as the pseudo-model class of a set of pseudoformulas, is
M-solid, it is enough to check whether these pseudoformulas are satisfied as
M -hyper-pseudoformulas.

Our results show that also in the case of hyper-pseudoformulas and M-
solid ordered pseudovarieties the theory of conjugate pairs of additive closure
operators may be applied to get a characterization of those classes of finite
algebraic systems.
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