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HYPER-PSEUDOFORMULAS AND M-SOLID

ORDERED PSEUDOVARIETIES

Abstract. In 2009 K. Denecke and J. Koppitz proved that for a monoid M of hyper-
substitutions M -solid positive varieties of tree languages correspond to M -solid ordered
pseudovarieties. In this paper, we will characterize M -solid ordered pseudovarieties in a
similar way in which in [14] M -solid varieties, in [3] M -solid quasivarieties, in [11] M -solid
pseudovarieties and in [12] M -solid algebraic systems were characterized. The main idea
is to show, that we have two Galois-connections and a conjugate pair of additive closure
operators. Then we can apply the general theory of conjugate pairs of additive closure
operators.

1. Introduction

In [17] and [9] M -solid varieties of tree languages and M -solid positive
varieties of tree languages were characterized by M -solid pseudovarieties and
by M -solid ordered pseudovarieties of finite algebras and of finite ordered al-
gebras, respectively. The theory of M -solid pseudovarieties was developed
in [5] and in [11]. The aim of this paper is to apply the theory of conju-
gate pairs of additive closure operators (see [7]) to get a characterization
of M -solid ordered pseudovarieties. Since M -solid ordered pseudovarieties
are finite model classes of certain sets of hyper-pseudoformulas, we can use
ideas from [12]. First we want to repeat some basic concepts on finite ordered
algebras. To describe classes of finite ordered algebras as model classes of
logical sentences we need the concept of an implicit operation. This will be
introduced at the end of this section.

An ordered algebra of type τ is a triple A≤ := (A; (fA
i )i∈I ,≤A) consist-

ing of a set A, an indexed set (fA
i )i∈I of operations defined on A, where

fA
i : Ani → A is ni-ary, and a partial order relation ≤A on A, which is com-

patible with all the operations (fA
i )i∈I , i.e. if a1 ≤A b1, . . . , ani

≤A bni
, then
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fA
i (a1, . . . , ani

) ≤A fA
i (b1, . . . , bni

). Let Alg
≤
fin(τ) be the class of all finite

ordered algebras of type τ . Every ordered algebra is an algebraic system (see
[1]) of type (τ, (2)) (see [12]).

A simple example of an ordered algebra of type ((2), (2)) is given by
A≤ := ({0, 1, 2};max,min,≤A), where ≤A is the usual order on the set
of integers {0, 1, 2} and where max and min denote the maximum and the
minimum with respect to this order.

Definition 1.1. Let A≤ = (A; (fA
i )i∈I ,≤A) and B≤ = (B; (fB

i )i∈I ,≤B)
be ordered algebras of type τ . We say that A≤ is an ordered subalgebra of B≤

if (A; (fA
i )i∈I) is a subalgebra of (B; (fB

i )i∈I) and ≤A is the restriction of ≤B

onto A2, i.e. ≤A := ≤B |A2. A mapping h : A → B is said to be an ordered
homomorphism h : A≤ → B≤ of A≤ to B≤ if h is an algebra homomorphism
and if from a ≤A b there follows h(a) ≤B h(b) for all a, b ∈ A. Let (A≤

j )j∈J
be a family of ordered algebras of the same type τ . Then the ordered direct

product of the ordered algebras A≤
j = (Aj ; (f

Aj

i )i∈I ,≤Aj
) is the direct prod-

uct of the family of underlying algebras together with the product relation
≤P :=

⊗
j∈J ≤Aj

defined by ≤P := {((aj)j∈J , (bj)j∈J)| aj ≤Aj
bj , j ∈ J}.

Let H≤, S≤, P≤ and P
≤
fin be the operators of taking arbitrary ordered ho-

momorphic images, ordered subalgebras, ordered direct products and finite
ordered direct products. Then a class K ⊆ Alg

≤
fin(τ) is called an ordered

pseudovariety of type τ if K = H≤S≤P
≤
fin(K); i.e. if K is closed under these

operators.

Pseudovarieties of type τ are classes of finite algebras of type τ which are
closed under homomorphic images, subalgebras and finite direct products.
For a logical characterization of pseudovarieties Reiterman used the concept
of a pseudoidentity which is based on implicit operations (see [8]).

Definition 1.2. An n-ary implicit operation on a pseudovariety V of
type τ is given by a V -indexed family π := (πA)A∈V satisfying the following
conditions :

(i) πA : An → A is an n-ary operation on A for each A ∈ V and
(ii) for each homomorphism h : A → B with A,B ∈ V there holds

h(πA(a1, . . . an)) = πB(h(a1), . . . , h(an)) for every a1, . . . , an ∈ A, i.e.
the following diagram commutes:

-

-

? ?

Bn B

AAn

hn

πA

h

πB

(=)



Hyper-pseudoformulas and M-solid ordered pseudovarieties 725

Here hn : An → Bn is defined by (a1, . . . , an) 7→ (h(a1), . . . , h(an)) for
every (a1, . . . , an) ∈ An. The set of all n-ary implicit operations on V is
denoted by ΩnV. An n-ary implicit operation on an ordered pseudovariety V≤

of type τ is defined in essentially the same way with the difference that in (ii)
we take ordered homomorphisms. This corresponds to the usual definition
of implicit operations over a category of algebraic structures with morphisms
as operations on the universe, which are compatible with these morphisms.
For an ordered pseudovariety V≤, let V := HSPfin{A | A≤ ∈ V≤} be the
pseudovariety which we obtain, if we delete in each ordered algebra from
V≤ the partial order relation. Let ΩnV≤ be the set of all n-ary implicit
operations on the ordered pseudovariety. Since every ordered homomorphism
h : A≤ → B≤ is a homomorphism from A to B, where A,B are usual algebras
of type τ belonging to A≤ and B≤, respectively, we have ΩnV ⊆ ΩnV≤.

2. Pseudoformulas

An ordered algebra can be regarded as an algebraic system with an in-
dexed set (fA

i )i∈I of operations of type τ = (ni)i∈I and one binary relation.
In general, an algebraic system A = (A; (fA

i )i∈I , (γ
A
j )j∈J) of type (τ, τ ′)

consists of a set A, an indexed sequence (fA
i )i∈I of fundamental operations,

where fA
i is ni-ary and an indexed sequence (γAj )j∈J of fundamental rela-

tions, where γAj ⊆ Anj . Here τ and τ ′ are the sequences τ = (ni)i∈I and
τ ′ = (nj)j∈J , respectively. Therefore ordered algebras are algebraic systems
of type (τ, (2)). Classes of algebraic systems can be defined as model classes
of sets of formulas and pseudovarieties are model classes of sets of pseu-
doidentities. For a logical description of classes of finite algebraic systems
we introduce the concept of a pseudoformula. We will define pseudoformulas
of type (τ, (2)), but our definition can be generalized to an arbitrary type
(τ, τ ′).

Definition 2.1. Let V≤ be an ordered pseudovariety of type τ and let
n ≥ 1 be a natural number. An n-ary pseudoformula of type (τ, (2)) on V≤

is defined in the following inductive way:

(i) If π1, π2 are n-ary implicit operations on V≤, then the equation π1 ≈ π2
is an n-ary pseudoformula of type (τ, (2)) on V≤.

(ii) If π1, π2 are n-ary implicit operations on V≤ and if γ is a binary rela-
tional symbol, then γ(π1, π2) is an n-ary pseudoformula of type (τ, (2))
on V≤.

(iii) If PF is an n-ary pseudoformula of type (τ, (2)) on V≤, then ¬(PF ) is
an n-ary pseudoformula of type (τ, (2)) on V≤.

(iv) If PF1 and PF2 are n-ary pseudoformulas of type (τ, (2)) on V≤, then
PF1 ∨ PF2 is an n-ary pseudoformula of type (τ, (2)) on V≤.
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(v) If PF is an n-ary pseudoformula of type (τ, (2)) on V≤, and xi ∈ Xn,
then ∃xi(PF ) is an n-ary pseudoformula of type (τ, (2)) on V≤.

Let PF (τ,(2))(ΩnV≤) be the set of all n-ary pseudoformulas of type (τ, (2))

on V≤ and let PF (τ,(2))(ΩV≤) :=
⋃

n≥1 PF (τ,(2))(ΩnV≤) be the set of all
pseudoformulas of type (τ, (2)) on V≤.

Let PF be a pseudoformula of type (τ, (2)) on V≤ and let A≤ :=
(A; (fA

i )i∈I ,≤A) be a finite ordered algebra of type τ . Then we define the
satisfaction of a pseudoformula of type (τ, (2)) on V≤ by the ordered algebra
A≤, written as A≤ |=

p.s.

PF .

Definition 2.2. Let V≤ be an ordered pseudovariety of type τ and let
PF be a pseudoformula of type (τ, (2)).

(i) If PF is an equation π1 ≈ π2, then A≤ |=
p.s.

π1 ≈ π2 :⇔ (π1)A≤ =

(π2)A≤ .

(ii) If PF has the form γ(π1, π2) for the binary relational symbol γ and
implicit operations π1, π2 on V≤, then

A≤ |=
p.s.

γ(π1, π2) :⇔ γA
≤

((π1)A≤ , (π2)A≤) is true in A≤

(This means that for every (a1, . . . , an) ∈ An we have (π1)A≤(a1, . . . , an)
≤A (π2)A≤(a1, . . . , an)).

(iii) If the pseudoformula has the form ¬(PF ) and if we inductively as-
sume that A≤ |=

p.s.

PF is already defined, then A≤ |=
p.s.

¬(PF ) :⇔ ¬

(A≤ |=
p.s.

PF ).

(iv) If the pseudoformula has the form PF1 ∨ PF2 and if we inductively
assume that A≤ |=

p.s.

PF1, A
≤ |=

p.s.

PF2 are already defined, then A≤ |=
p.s.

PF1 ∨ PF2 :⇔ A≤ |=
p.s.

PF1 ∨ A≤ |=
p.s.

PF2.

(v) If the pseudoformula has the form ∃xi(PF ) and if we inductively as-
sume that A≤ |=

p.s.

PF is already defined, then A≤ |=
p.s.

∃xi(PF ) :⇔

∃xi(A
≤ |=

p.s.
PF).

The symbol |=
p.s.

defines a relation between the sets Alg
≤
fin(τ) and

PF (τ,(2))(ΩV≤). From this relation we get a Galois-connection (PSM,PSF )
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where
PSM : P(PF (τ,(2))(ΩV≤)) → P(Alg≤fin(τ)) and

PSF : P(Alg≤fin(τ)) → P(PF (τ,(2))(ΩV≤))

are defined by

PSM(PF) := {A≤ ∈ Alg
≤
fin(τ) | ∀PF ∈ PF (A≤ |=

p.s.

PF )} and

PSF (K) := {PF ∈ PF(τ,(2))(ΩV≤) | ∀A
≤ ∈ K (A≤ |=

p.s.

PF )}

for PF ⊆ PF (τ,(2))(ΩV≤) and K ⊆ Alg
≤
fin(τ), respectively.

The fixed points under the closure operators PSMPSF and PSFPSM ,
respectively are called pseudo-model classes and pseudo-theories of type
(τ, (2)). They form two complete lattices which are dually isomorphic to
each other. It is routine work to prove that every pseudo-model class of
type (τ, (2)) is an ordered pseudovariety of type τ . For the opposite direc-
tion we may apply Theorem 3.3 from [6] which is formulated for admissi-
ble pseudovarieties of algebraic systems A = (A; (fA

i )i∈I , (γ
A
j )j∈J) of type

(τ, τ ′). Moreover, it is assumed that there are only finitely many funda-
mental relations, i.e. J is finite and that the pseudovariety V is admissible,
meaning that γAj 6= ∅ for every j ∈ J and every A ∈ V. Then W ⊆ V is a
sub-pseudovariety of V if and only if there exists a set PF of pseudoformu-
las of the form (i) from Definition 2.1 and of the form γj(π1, . . . , πnj

) with
a relation symbol γj and implicit operations π1, . . . , πnj

over V such that
W = PSMPSF (W ). The satisfaction of γj(π1, . . . , πnj

) in an algebraic

system A := (A; (fA
i )i∈I , (γ

A
j )j∈J) is defined by

A |=
p.s.

γj(π1, . . . , πnj
) :⇔ γAj ((π1)A, . . . , (πnj

)A) is true in A.

This generalizes (ii) from Definition 2.2. Using this result we have the fol-
lowing Birkhoff-type-characterization of ordered pseudovarieties.

Theorem 2.3. A class K ⊆ Alg
≤
fin(τ) is an ordered pseudovariety of type

τ if and only if K = PSMPSF (K).

We remark that in Definition 2.1 and in Definition 2.2 the ordered pseu-
dovariety can be replaced by a class V of algebraic systems of type (τ, τ ′)
which is closed under taking of homomorphisms, subsystems, and finite di-
rect products of algebraic systems (see [1]). Definition 2.1(ii) can be replaced
by

(ii′) If π1, . . . , πnj
are n-ary implicit operations on V , and if γj is an nj-ary

relation symbol, then γj(π1, . . . , πnj
) is an n-ary pseudoformula of type

(τ, τ ′) on V .
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Definition 2.2(ii) will be replaced by

(ii′) If PF has the form γj(π1, . . . , πnj
) for the nj-ary relational symbol γj

and implicit operations π1, . . . , πnj
, then

A |=
p.s.

γj(π1, . . . , πnj
) :⇔ γAj ((π1)A, . . . , (πnj

)A) is true in A.

If τ ′ is a finite type of relations and γAj 6= ∅ for all j ∈ J , Theorem 3.3 from
[6] can be applied also in this case. Let Algsysfin(τ, τ

′) be the class of all
finite algebraic systems of type (τ, τ ′).

Theorem 2.4. A class K ⊆ Algsys
≤
fin(τ, τ

′) of finite algebraic systems

with a finite set of relations and such that γAj 6= ∅ for all j ∈ J and all

A ∈ Algsys
≤
fin(τ, τ

′) is closed under homomorphisms, subsystems and finite

direct products of algebraic systems if and only if K = PSMPSF (K).

3. Hyper-pseudoformulas

Hypersubstitutions of type τ are introduced in [10] with the aim to de-
fine hyperidentities, i.e. identities which are defined for algebras of the cor-
responding type in the stronger sense that they are valid after substituting
the occurring operation symbols by terms (see [4] and [7]). Let (fi)i∈I be
an indexed set of operation symbols and let (γj)j∈J be an indexed set of
relation symbols where ni ∈ N \ {0} is the arity of fi and nj ∈ N \ {0} is
the arity of γj . Then the set Wτ (Xn) of all n-ary terms of type τ is defined
using an n-element set Xn = {x1, . . . , xn} of individual variables in the usual
way saying that each xi ∈ Xn is an n-ary term and if t1, . . . , tni

are n-ary
terms of type τ and fi is an ni-ary operation symbol, then fi(t1, . . . , tni

) is
an n-ary term of type τ . Then the set of all n-ary formulas F(τ,τ ′)(Wτ (Xn))
of type (τ, τ ′) is defined in a similar way as we defined pseudoformulas in
Definition 2.1, with the difference that in (i) we take terms t1, t2 and ob-
tain an identity t1 ≈ t2 and in (ii) we define n-ary formulas γj(t1, . . . , tnj

)
using n-ary terms t1, . . . , tnj

and an nj-ary relation symbol γj . The result
is the set F(τ,τ ′)(Wτ (Xn)) of all n-ary formulas of type (τ, τ ′) and the set
F(τ,τ ′)(Wτ (X)) :=

⋃
n≥1

F(τ,τ ′)(Wτ (Xn)) of all formulas of type (τ, τ ′). Let

p1 : Wτ (X)2 → Wτ (X) be the first projection defined on Wτ (X)2. In [12]
hypersubstitutions for algebraic systems were defined in the following way:

Definition 3.1. Any mapping σ : {fi|i ∈ I} ∪ {γj |j ∈ J} → Wτ (X) ∪
F(τ,τ ′)(Wτ (X)) which maps operation symbols to terms preserving arities
and relation symbols to formulas preserving arities is called a hypersubsti-
tution for algebraic systems of type (τ, τ ′). Let Hyprel(τ, τ ′) be the set of
all hypersubstitutions for algebraic systems of type (τ, τ ′).
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Let Hyprel(τ, τ ′) be the collection of all hypersubstitutions for algebraic
systems of type (τ, τ ′). We defined the extension σ̂ : Wτ (X) ∪ F(τ,τ ′)(Wτ (X))
→ Wτ (X) ∪ F(τ,τ ′)(Wτ (X)) and proved that the set Hyprel(τ, τ ′) together
with a binary operation ◦r defined by σ1 ◦r σ2 := σ̂1 ◦ σ2, and the hy-
persubstitution σid mapping fi to the term fi(x1, . . . , xni

), i ∈ I and the
relation symbols γl to the formula γl(x1, . . . , xnl

), l ∈ J forms the monoid
(Hyprel(τ, τ ′), ◦r, σid).

Let V≤ be an ordered pseudovariety of type τ . As for pseudovarieties
on the set ΩnV≤ one can define a topology such that ΩnV≤ equipped with

operations f
ΩnV≤

i , i ∈ I, defined by

f
ΩnV≤

i (π1, . . . , πni
)A(a1, . . . , an)

:= fA≤

i ((π1)A≤(a1, . . . , an), . . . , (πnj
)A≤(a1, . . . , an))

for all a1, . . . , an ∈ A becomes a Hausdorff topological algebra which is
compact and totally disconnected. This algebra can be regarded as an or-
dered algebra if we add the partial order △ΩnV≤

. Then for every π ∈ ΩnV≤

there exists a sequence ((tAk )A∈V )k≥1 where tk are terms of type τ such that
π = lim

k→∞
(tAk )A∈V . Let Hyp(τ) be the set of all usual hypersubstitutions,

and let ◦h denote the product of usual hypersubstitutions. Then for every
hypersubstitution σH ∈ Hyp(τ) as in [11] a mapping σ̄H : ΩnV≤ → ΩnV≤

can be defined by σ̄H(π) := lim
k→∞

(σ̂H [tk]
A)A∈V . This mapping will be used

to define hypersubstitutions for pseudoformulas of type (τ, (2)).

Definition 3.2. Let V≤ be an ordered pseudovariety of type τ and
A≤ ∈ V≤. Let σ ∈ Hyprel(τ, (2)). Then we define a mapping σ∗ :
PF (τ,(2))(ΩV≤) → PF (τ,(2))(ΩV≤) inductively as follows:

(i) σ∗[π1 ≈ π2] := σ̄H(π1) ≈ σ̄H(π2),
(ii) σ∗[γ(π1, π2)] := γ(σ̄H(π1), σ̄H(π2)),
(iii) σ∗[¬(PF )] := ¬(σ∗[PF ]),
(iv) σ∗[PF1 ∨ PF2] := σ∗[PF1] ∨ σ∗[PF2],
(v) σ∗[∃xi(PF )] := ∃xi(σ

∗[PF ]).

This definition can be generalized to classes of finite algebraic systems
closed under homomorphic images, subsystems and finite direct products of
algebraic systems.

Definition 3.3. Let V≤ be an ordered pseudovariety of type τ and
A≤ ∈ V≤. A pseudoformula PF in V≤ is said to be satisfied as a hyper-
pseudoformula in A≤ if σ̄H(π) exists for all implicit operations occurring in
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PF and if A≤ |=
p.s.

σ∗[PF ] for all σ ∈ Hyprel(τ, (2)). In this case we write

A≤ |=
h.p.s.

PF .

This hypersatifaction relation |=
h.p.s.

defines a second Galois-connection

(HPSM,HPSF ) with

HPSM : P(PF (τ,(2))(ΩV≤)) → P(Alg≤fin(τ)) and

HPSF : P(Alg≤fin(τ)) → P(PF (τ,(2))(ΩV≤))

defined by

HPSM(PF) := {A≤ ∈ Alg
≤
fin(τ) | ∀PF ∈ PF (A≤ |=

h.p.s.

PF )} and

HPSF (K) := {PF ∈ PF (τ,(2))(ΩV≤) | ∀ A≤ ∈ K (A≤ |=
h.p.s.

PF )},

respectively for PF ⊆ PF (τ,(2))(ΩV≤) and K ⊆ Alg
≤
fin(τ). If instead of

all hypersubstitutions, we use hypersubstitutions from a submonoid M ⊆
Hyprel(τ, (2)) we obtain a relation |=

Mh.p.s.

and a similar Galois-connection

(HMPSM,HMPSF ).

For the extension of hypersubstitutions from Hyprel(τ, (2)) to pseudo-
formulas we have:

Lemma 3.4. Let σ1, σ2 ∈ Hyprel(τ, (2)). Then (σ1 ◦r σ2)
∗ = σ∗

1 ◦ σ
∗
2.

Proof. We will give a proof by induction following the inductive definition
of a pseudoformula PF of type (τ, (2)).

(i) If PF is a pseudoidentity π ≈ ρ, then by Definition 3.2(i),

(σ1 ◦r σ2)
∗[π ≈ ρ] = (σ1 ◦r σ2)H(π) ≈ (σ1 ◦r σ2)H(ρ)

= ((σ1)H ◦h (σ2)H)(π) ≈ ((σ1)H ◦h (σ2)H)(ρ) by Lemma 3.4 in [12]

= ((σ1)H ◦ (σ2)H)(π) ≈ ((σ1)H ◦ (σ2)H)(ρ) by Lemma 2.7 in [11]

= σ∗
1 [(σ2)H(π)] ≈ σ∗

1[(σ2)H(ρ)]

= σ1
∗[(σ2)H(π) ≈ (σ2)H(ρ)]

= σ1
∗[σ2

∗[π ≈ ρ]] = (σ1
∗ ◦ σ2

∗)[π ≈ ρ].
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(ii) If PF has the form γ(π, ρ), then

(σ1 ◦r σ2)
∗[γ(π, ρ)] = γ((σ1 ◦r σ2)H(π), (σ1 ◦r σ2)H(ρ))

= γ(((σ1)H ◦h (σ2)H)(π), ((σ1)H ◦h (σ2)H)(ρ))

= γ(((σ1)H ◦ (σ2)H)(π), ((σ1)H ◦ (σ2)H)(ρ))

= γ((σ1)H((σ2)H(π)]), (σ1)H((σ2)H(ρ)))

= σ1
∗[γ((σ2)H(π), (σ2)H(ρ))]

= σ1
∗[σ2

∗[γ(π, ρ)]] = (σ1
∗ ◦ σ2

∗)[γ(π, ρ)].

(iii) If the pseudoformula has the form ¬(PF ) for a pseudoformula PF and
assume that (σ1 ◦r σ2)

∗[PF ] = (σ1
∗ ◦ σ2

∗)[PF ]. Then

(σ1 ◦r σ2)
∗[¬(PF )] = ¬(σ1 ◦r σ2)

∗[PF ] by Definition 3.2(iii)

= ¬((σ1
∗ ◦ σ2

∗)[PF ])

= ¬(σ1
∗[σ2

∗[PF ]]

= σ1
∗[¬(σ2

∗[PF ])] by Definition 3.2(iii)

= σ1
∗[σ2

∗[¬(PF )]] by Definition 3.2(iii)

= (σ1
∗ ◦ σ2

∗)[¬(PF )].

In cases (iv) and (v) we proceed in a similar way.

In a similar way for the identity element σid ∈ Hyprel(τ, (2)) we can
show that σ∗

id[PF ] = PF for all pseudoformulas PF ∈ PF (τ,(2))(ΩV≤).

4. M-solid ordered pseudovarieties

In this section we define M -solid ordered pseudovarieties as pseudova-
rieties of finite ordered algebras, which are closed under taking of so-called
derived ordered algebras, and prove a characterization theorem for those clo-
sures. M -solid ordered pseudovarieties were used in [9] to give an Eilenberg-
type characterization of M -solid positive varieties of tree languages. Let
M ⊆ Hyprel(τ, (2)) be a monoid of hypersubstitutions for algebraic sys-
tems.

For a set PF ⊆ PF (τ,(2))(ΩV≤) of pseudoformulas of type (τ, (2)) we
define an operator

χPF
M : P(PF (τ,(2))(ΩV≤)) → P(PF (τ,(2))(ΩV≤))

by

χPF
M (PF) := {σ∗[PF ] | σ ∈ M and PF ∈ PF}.

Clearly, χPF
M (PF) :=

⋃
PF∈PF χPF

M ({PF}), i.e. χPF
M is completely additive.
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Lemma 4.1. For every submonoid M ⊆ Hyprel(τ, (2)) the operator χPF
M

has the properties of a completely additive closure operator.

Proof. Because of σ∗
id[PF ] = PF for every pseudoformula PF ∈ PF , the

operator χPF
M is extensive. We noticed already that χPF

M is completely ad-
ditive. This implies monotonicity, i.e. PF1 ⊆ PF2 implies χPF

M (PF1) ⊆
χPF
M (PF2). Extensivity gives χPF

M (PF) ⊆ χPF
M (χPF

M (PF)). Conversely,
let PF1 ∈ χPF

M (χPF
M (PF)). Then there are σ1, σ2 ∈ M ⊆ Hyprel(τ, (2))

and PF2 ∈ PF such that PF1 = σ∗
1 [σ

∗
2[PF2]]. By Lemma 3.4, there

is a hypersubstitution in M ⊆ Hyprel(τ, (2)), namely σ1 ◦r σ2 such that
PF1 = (σ1 ◦r σ2)

∗[PF2] = σ∗
1[σ

∗
2[PF2]]. Therefore, PF1 ∈ χPF

M (PF) and
then χPF

M (χPF
M (PF)) ⊆ χPF

M (PF). Altogether, we have equality.

For an ordered algebra A≤ = (A; (fA
i )i∈I ,≤A) and σ ∈ Hyprel(τ, (2))

we define σ(A≤) := (A; (σH(fi)
A)i∈I ,≤A). The following observation shows

that we obtain again an ordered algebra. By induction on the complexity
of the term σH(fi) we show that σH(fi)

A preserves the partial order ≤A.
Let σH(fi) = xj , 1 ≤ j ≤ ni, and assume that a1 ≤A b1, . . . , ani

≤A bni
.

Then xAj (a1, . . . , ani
) = e

ni,A
j (a1, . . . , ani

) = aj ≤A bj = e
ni,A
j (b1, . . . , bni

) =

xAj (b1, . . . , bni
). Assume now that σH(fi) = fl(t1, . . . , tnl

) and

that the term operations tA1 , . . . , t
A
nl

preserve ≤A. Then we get

fl(t1, . . . , tnl
)A(a1, . . . , anl

) = fA
l (tA1 (a1, . . . , anl

), . . . , tAnl
(a1, . . . , anl

)) ≤A

= fA
l (tA1 (b1, . . . , bnl

), . . . , tAnl
(b1, . . . , bnl

)) = fl(t1, . . . , tnl
)A(b1, . . . , bnl

) since

by hypothesis tAk (a1, . . . , anl
) ≤A tAk (b1, . . . , bnl

) for 1 ≤ k ≤ nl, and since fA
l

preserves the partial order ≤A . Let M ⊆ Hyprel(τ, (2)) be any submoniod.

Then we define:

Definition 4.2. An ordered pseudovariety V≤ is said to be M -solid if
σ(A≤) ∈ V≤ for all σ ∈ M and all A≤ ∈ V≤. For M = Relhyp(τ, (2)) we
call an M -solid ordered pseudovariety solid.

Remarks. In [13] we defined for an algebraic system A =
(A; (fA

i )i∈I , (γ
A
j )i∈I) and for any σ ∈ HyprelA(τ, τ

′) the derived alge-

braic system σ(A) by σ(A) := (A; (σF (fi)
A)i∈I , (σR(γj)

A)j∈J). Here σ ∈
HyprelA(τ, τ

′) is defined as a pair (σF , σR) where σF : {fA
i | i ∈ I} → T (A)

maps fundamental operations to term operations preserving arities and σR
maps fundamental relations to elements of the relational algebra generated
by {γAj | j ∈ J}. If the component σR is the identity mapping on {γAj | j ∈ J}
we obtain a submonoid of HyprelA(τ, τ

′).

For K ⊆ Alg
≤
fin(τ) and σ ∈ Hyprel(τ, (2)) we define a mapping χOA :

P(Alg≤fin(τ)) → P(Alg≤fin(τ)) by χOA(K) := {σ(A≤) | σ ∈ Hyprel(τ, (2)),



Hyper-pseudoformulas and M-solid ordered pseudovarieties 733

A≤ ∈ K}. Clearly, χOA(K) =
⋃

A≤∈K χOA(A≤), i.e. the operator χOA

is completely additive. For a submonoid M ⊆ Hyprel(τ, (2)) we obtain a
corresponding operator χOA

M (K) defined by χOA
M (K) := {σ(A≤) | σ ∈ M,

A≤ ∈ K}. Then we get

Lemma 4.3. For any submonoid M ⊆ Hyprel(τ, (2)) the operator χOA
M has

the properties of a completely additive closure operator.

Proof. Monotonicity of the operator χOA
M follows from additivity. Let

σid be the identity element of the monoid M. Then σid(A
≤) =

(A; ((σid)H(fi)
A)i∈I ,≤A) = (A; (fA

i )i∈I ,≤A). As a consequence, the oper-
ator χOA

M is completely additive. The inclusion χOA
M (K) ⊆ χOA

M (χOA
M (K))

follows from extensivity. If A≤ ∈ χOA
M (χOA

M (K)), then there are σ1, σ2 ∈

M ⊆ Hyprel(τ, (2)) and there is a finite ordered algebra A′≤ ∈ K such

that A≤ = σ1(σ2(A
′≤)) = (A; ((σ̂2)H((σ1)H(fi)

A)i∈I ,≤A) = (A; ((σ2 ◦r
σ1)H(fi)

A)i∈I ,≤A). Since by Lemma 3.4 in [12] (σ1◦rσ2)H = (σ1)H ◦h (σ2)H
and since (σ1 ◦r σ2)H = (σ1)H ◦h (σ2)H we obtain a hypersubstitution

σ1 ◦r σ2 ∈ M ⊆ Hyprel(τ, (2)) with A≤ = (σ1 ◦r σ2)(A
′≤). This finishes

the proof.

For the ordered pseudovariety V≤ the pseudo-satisfaction relation |=
p.s.

re-

lates finite ordered algebras A≤ with sets of pseudoformulas of type (τ, (2))
and defines a Galois-connection (PSM,PSF ) with

PSM : P(PF (τ,(2))(ΩV≤) → P(Alg≤fin(τ)) and

PSF : P(Alg≤fin(τ)) → P(PF (τ,(2))ΩV≤).

A second Galois-connection can be defined by using the M -hyper-pseudo-
satisfaction relation |=

h.p.s.

. This gives (HMPSM,HMPSF ) for any sub-

monoid M ⊆ Hyprel(τ, (2)) with

HMPSM : P(PF (τ,(2))(ΩV≤)) → P(Alg≤fin(τ)) and

HMPSF : P(Alg≤fin(τ)) → P(PF (τ,(2))(ΩV≤)).

Moreover, we defined two additive closure operators χOA
M and χPF

M . Four
more closure operators are defined by the products PSMPSF, PSFPSM,

HMPSMHMPSF, and HMPSFHMPSM . The fixed points under these
closure operators form complete lattices. We will now prove that the closure
operators, χOA

M and χPF
M form a so-called conjugate pair (see [7]). Then we

can apply the general theory of conjugate pairs of additive closure operators
which describes the relationships between the 6 complete lattices. We need
the following lemmas.
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Lemma 4.4. Let V≤ be an M -solid ordered pseudovariety of type τ , let

σ ∈ M ⊆ Hyprel(τ, (2)) and let π ∈ ΩnV≤ for some n ∈ N+. Then

(σH(π))A≤ = πσ(A≤).

Proof. Let V be the class of all finite algebras A = (A; (fA
i )i∈I) where A≤

belongs to V≤ and let V ′ be the pseudovariety generated by V . It is well-
known that for every implicit operation π on V ′ and for every finite algebra
A ∈ V ′ there is a term At such that π is the sequence ((At)

A)A∈V ′ . (see
e.g. Lemma 5.1.1 in [2]). Using this result and the definition of an implicit
operation (Definition 1.2) we have πA = (At)

A for every A ∈ V ′ and therefore
for every algebra A ∈ V ⊆ V ′. Since the term operations of A = (A; (fA

i )i∈I)
and of A≤ = (A; (fA

i )i∈I ,≤A) agree, this holds also for ordered algebras
from V≤. This gives for σ(A) the equation πσ(A) = (σ(A)t)

σ(A) with a term

σ(A)t ∈ Wτ (Xn). Applying the theory of conjugate pairs of additive closure

operators for terms (see [7]) one has (σ(A)t)
σ(A) = (σ̂[σ(A)t])

A. Then by

Proposition 5.2.3 from [2] we get (σ̂H [σ(A)t])
A = (σH(π))A.

Lemma 4.5. Let A≤ = (A; (fA
i )i∈I ,≤A) be a finite ordered algebra of type

τ and V≤ be an ordered pseudovariety of type τ, A≤ ∈ V≤. Then for each

PF ∈ PF (τ,(2))(ΩV≤) and each σ ∈ Hyprel(τ, (2)) we have

A≤ |=
p.s.

σ∗[PF ] ⇔ σ(A≤) |=
p.s.

PF.

Proof. We will give a proof by induction on the definition of a pseudofor-
mula.

(i) If PF has the form π ≈ ρ, then A≤ |=
p.s.

σ∗[π ≈ ρ]

⇔ A≤ |=
p.s.

σH(π) ≈ σH(ρ) by Definition 3.2(i)

⇔ (σH(π))A≤ = (σH(ρ))A≤ by Definition 2.2(i)

⇔ πσ(A≤) = ρσ(A≤) by Lemma 4.4

⇔ σ(A≤) |=
p.s.

π ≈ ρ by Definition 2.2(i).

(ii) If PF has the form γ(π, ρ), then A≤ |=
p.s.

σ∗[γ(π, ρ)]

⇔ A≤ |=
p.s.

γ(σH(π), σH(ρ)) by Definition 3.2(ii)

⇔ ((σH(π))A≤ , (σH(ρ))A≤) ∈ γA
≤

by Definition 2.2(ii)

⇔ πσ(A≤) ≤A ρσ(A≤) by Lemma 4.4

⇔ σ(A≤) |=
p.s.

γ(π, ρ) by Definition 2.2(ii).
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(iii) If PF has the form ¬(PF ), and if we assume that
A≤ |=

p.s.

σ∗[PF ] ⇔ σ(A≤) |=
p.s.

PF , then A≤ |=
p.s.

σ∗[¬(PF )]

⇔ A≤ |=
p.s.

¬(σ∗[PF ]) by Definition 3.2(iii)

⇔ ¬(A≤ |=
p.s.

σ∗[PF ]) by Definition 2.2(iii)

⇔ ¬(σ(A≤) |=
p.s.

PF ) by our presumption

⇔ σ(A≤) |=
p.s.

¬(PF ) by Definition 2.2(iii).

(iv) If PF has the form PF1 ∨ PF2, and if we assume that
A≤ |=

p.s.

σ∗[PFj ] ⇔ σ(A≤) |=
p.s.

PFj , j = 1, 2, then A≤ |=
p.s.

σ∗[PF1 ∨PF2]

⇔ A≤ |=
p.s.

(σ∗[PF1] ∨ σ∗[PF2]) by Definition 3.2(iv)

⇔ A≤ |=
p.s.

σ∗[PF1] ∨A≤ |=
p.s.

σ∗[PF2] by Definition 2.2(iv)

⇔ σ(A≤) |=
p.s.

PF1 ∨ σ(A≤) |=
p.s.

PF2 by our presumption

⇔ σ(A≤) |=
p.s.

PF1 ∨ PF2 by Definition 2.2(iv).

(v) If PF has the form ∃xi(PF ) and if we assume that
A≤ |=

p.s.

σ∗[PF ] ⇔ σ(A≤) |=
p.s.

PF , then A≤ |=
p.s.

σ∗[∃xi(PF )]

⇔ A≤ |=
p.s.

∃xi(σ
∗[PF ]) by Definition 3.2(v)

⇔ ∃xi(A
≤ |=

p.s.

σ∗[PF ]) by Definition 2.2(v)

⇔ ∃xi(σ(A
≤) |=

p.s.

PF ) by our presumption

⇔ σ(A≤) |=
p.s.

∃xi(PF ) by Definition 2.2(v).

Now all conditions to apply the general theory of conjugate pairs of ad-
ditive closure operators are satisfied, and we can characterize M -solid or-
dered pseudovarieties. To do this we apply the characterization theorem
from [7]. Definition 4.2 means that an ordered pseudovariety is M -solid iff
χOA
M [V≤] = V≤.

Theorem 4.6. Let K ⊆ Alg
≤
fin(τ) be a class of finite ordered algebras of

type τ such that K = PSM(PF) for some set PF of pseudoformulas of



736 K. Denecke, D. Phusanga

type (τ, (2)), i.e. K is an ordered pseudovariety. Then the following are

equivalent:

(i) K = HMPSMHMPSF (K),
(ii) χOA

M [K] = K,

(iii) PSF (K) = HMPSF (K),
(iv) χPF

M (PSF (K)) = PSF (K).

Dually the following propositions (i′), (ii′), (iii′) and (iv′) are also pairwise

equivalent:

(i′) PF = HMPSFHMPSM(PF),
(ii′) χPF

M [PF ] = PF ,
(iii′) PSM(PF) = HMPSM(PF),
(iv′) χOA

M [PSM(PF)] = PSM(PF).

The equivalence (ii)⇔(iii) means that K is M -solid iff every pseudo-
formula is satisfied as a hyper-pseudoformula. Theorem 4.6 describes the
relationships between the complete lattices defined by the fixed points of the
closure operators mentioned before Lemma 4.4. From the theory of conju-
gate pairs of additive closure operators we obtain also the following theorem
(see [7]):

Theorem 4.7. For all K ⊆ Alg
≤
fin(τ) and all PF ⊆ PFτ,(2)(ΩV≤) the

following properties hold:

(i) HMPSF (K) = PSF (χOA
M [K]),

(ii) HMPSF (K) ⊆ PSF (K),

(iii) χPF
M [HMPSF (K)] = HMPSF (K),

(iv) χOA
M [PSM(HMPSF (K))] = PSM(HMPSF (K)),

(v) HMPSF (HMPSM(PF)) = PSF (PSM(χPF
M (PF))), and dually

(i′) HMPSM(PF) = PSM(χPF
M [PF ]),

(ii′) HMPSM(PF) ⊆ PSM(PF),

(iii′) χOA
M [HMPSM(PF)] = HMPSM(PF),

(iv′) χPF
M [PSF (HMPSM(PF))] = PSF (HMPSM(PF)),

(v′) HMPSM(HMPSF (K)) = PSM(PSF (χOA
M [K])).

As a consequence of Theorem 4.6 and Theorem 4.7 we obtain:

Corollary 4.8. For every K ⊆ Alg
≤
fin(τ) with K = PSM(PF) for

some set PF of pseudoformulas of type (τ, (2)), K is an M -solid ordered

pseudovariety iff K = PSM(χPF
M [PF ]).
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Proof. “⇒”: Assume that K is M -solid. Then χOA
M [K] = K and

then χOA
M [PSM(PF)] = K. From Theorem 4.6 (iii′) there follows

K = χOA
M [HMPSM(PF)] and from Theorem 4.7 (iii′) we get K =

HMPSM(PF). Now (i′) from Theorem 4.7 gives K = PSM(χPF
M [PF ]).

“⇐”: Assume that K = PSM(χPF
M [PF ]). Then by Theorem 4.7 (i′)

we have that K = PSM(PF) = HMPSM(PF). By Theorem 4.6, this
is equivalent to χOA

M [K] = χOA
M [PSM(PF ] = PSM(PF) = K and K is

M -solid.

Corollary 4.8 means that for checking whether an ordered pseudovari-
ety which is given as the pseudo-model class of a set of pseudoformulas, is
M -solid, it is enough to check whether these pseudoformulas are satisfied as
M -hyper-pseudoformulas.

Our results show that also in the case of hyper-pseudoformulas and M -
solid ordered pseudovarieties the theory of conjugate pairs of additive closure
operators may be applied to get a characterization of those classes of finite
algebraic systems.
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