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POLYNOMIALLY REPRESENTABLE SEMIRINGS

Abstract. We characterize semirings which can be represented by an algebra of
binary polynomials of the form a·x+y where the operations are compositions of functions.
Furthermore, we classify, which algebras with two binary and two nullary operations
(satisfying some natural identities) can be represented in this way, and how these algebras
are related to semirings.

Several attempts have been done to represent a given algebra by means
of functions of a special sort. The best known is the so-called Cayley The-
orem which states that every group G can be represented as a group SG

of permutations of the support of G; here the group operation in SG is the
usual composition of functions. In fact, the same representation exists for
an arbitrary monoid. It was shown by S. L. Bloom, Z. Ésik and E. G. Manes
that every Boolean algebra can be represented by certain binary functions,
so-called guard functions, where the operations are function compositions,
see [1] and [2]. A similar approach was used by the first author [3] for a
representation of so-called q-algebras.

Using another sort of binary functions, it was shown that also distribu-
tive lattices (see [6]) or bounded lattices with an antitone involution (see
[4]) can be represented by functions where the corresponding operations are
expressed via function compositions. Later on, this approach was applied
for so-called action algebras [7] and it was generalized for algebras having an
arbitrary number of binary operations [5]. Other Cayley-like representations
are contained in [11] (Ch. 3, Theorem 1.51) and in particular in [10], where
one can find general methods for creating such representations and further
references.
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The aim of this paper is to characterize semirings for which the rep-
resentation by binary polynomials can be realized via a given assignment.
Moreover, the study is extended for algebras with two binary and two nullary
operations.

In what follows, we will consider algebras A = (A; +, ·, 0, 1) of type
(2, 2, 0, 0). We use the notational convention that the operation · has a
higher priority than +, i.e., we will omit brackets concerning · and write e.g.
x · y + z instead of (x · y) + z. For a ∈ A we define a binary polynomial
function fa(x, y) on A by

fa(x, y) = a · x+ y.

Denote by F (A) the set {fa(x, y); a ∈ A}. On F (A) we introduce the
following function compositions:

(fa ⊕ fb)(x, y) = fa(x, fb(x, y)),

(fa ◦ fb)(x, y) = fa(fb(x, y), y).

The algebra
F(A) = (F (A);⊕, ◦, f0, f1)

will be called the function algebra assigned to A.

If we assume that A = (A; +, ·, 0, 1) satisfies the identities 1·x = x, 0·x =
0 and 0 + x = x then clearly f0(x, y) = y and f1(x, y) = x+ y.

The following definition is taken from [8].

Definition 1. A semiring is an algebra A = (A; +, ·, 0, 1) such that

(i) + is associative and commutative,
(ii) · is associative,
(iii) + and · satisfy the left- and right-distributive laws

x · (y + z) = x · y + x · z,

(x+ y) · z = x · z + y · z,

(iv) + and · satisfy the idenities x+ 0 = x,

x · 1 = x = 1 · x,

x · 0 = 0 = 0 · x.

A semiring A is called simple (see [8] and [9]) if it satisfies the identity

x+ 1 = 1.

In what follows, by ϕ will be denoted the mapping from A into F (A)
definded by

ϕ(a) = fa.

At the first glance, ϕ is surjective.
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Our aim is to show that a semiring A is simple if and only if ϕ is an
isomorphism from A onto F(A). In fact, we will prove a more general result
and get the semiring case as a corollary.

Lemma 1. Let A = (A; +, ·, 0, 1) be an algebra of type (2, 2, 0, 0) satisfying

x · 1 = x and x+ 0 = x. Then ϕ is a bijection from A to F (A).

Proof. For a, b,∈ A, a 6= b, we have

fa(1, 0) = a · 1 + 0 = a 6= b = b · 1 + 0 = fb(1, 0),

thus fa 6= fb, i.e., ϕ is injective.

Lemma 2. Let A be an algebra of type (2, 2, 0, 0), then ϕ is a homomorphism

from A to F(A) if and only if for all a, b, x, y,∈ A :

(1) a · x+ (b · x+ y) = (a+ b) · x+ y and

(2) a · (b · x+ y) + y = (a · b) · x+ y.

Proof. ϕ is a homomorphism if and only if fa⊕fb = fa+b and fa ◦fb = fa·b.
The first equation is equivalent to (1), and the second one is equivalent
to (2).

Lemma 3. Let A be an algebra of type (2, 2, 0, 0), suppose that + and · are

associative and A satisfies

(3) (x+ y) · z = x · z + y · z and

(4) x · (y + z) + z = x · y + z.

Then ϕ is a homomorphism. (Note that (3) is the right distributive law.)

Proof. We have

a · x+ (b · x+ y) = (a · x+ b · x) + y = (a+ b) · x+ y

and
a · (b · x+ y) + y = a · (b · x) + y = (a · b) · x+ y,

i.e., (1) and (2) hold.

Now we are ready to state our main result:

Theorem 1. Let A= (A; +, ·, 0, 1) be an algebra of type (2, 2, 0, 0) satisfying

x ·1 = x and x+0 = x. Then the mapping ϕ : A → F (A) is an isomorphism

from A onto F(A) if and only if + and · are associative and A satisfies (3)
and (4).

Proof. The “if” part follows from Lemma 1 and 3. In order to show the
“only if” part, we use Lemma 2.
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For x = 1 in (1), we have

a+ (b+ y) = a · 1 + (b · 1 + y) = (a+ b) · 1 + y = (a+ b) + y,

i.e., + is associative.
For y = 0 in (1), we have

a · x+ b · x = a · x+ (b · x+ 0) = (a+ b) · x+ 0 = (a+ b) · x,

i.e., (3) holds.
For y = 0 in (2), we have

a · (b · x) = a · (b · x+ 0) + 0 = (a · b) · x+ 0 = (a · b) · x,

i.e., · is associative.
For x = 1 in (2), we have

a · (b+ y) + y = a · (b · 1 + y) + y = (a · b) · 1 + y = (a · b) + y,

i.e., (4) holds.

Lemma 4. Let A be an algebra of type (2, 2, 0, 0).

(a) Suppose that A satisfies (4), 0 + x = x, x · 0 = 0 and x · 1 = x, then A
satisfies x+ 1 = 1.

(b) If + is associative, A satisfies the right distributive law (3), the left

distributive law x · (y + z) = x · y + x · z, 1 · x = x and x+ 1 = 1, then

A satisfies (4).

Proof. (a) Taking y = 0 in (4), we get

x · z + z = x · (0 + z) + z = x · 0 + z = 0 + z = z.

Taking z = 1 yields x · 1 + 1 = 1, i.e., x+ 1 = 1.

(b) We have

x · (y + z) + z = (x · y + x · z) + 1 · z = x · y + (x · z + 1 · z)

= x · y + (x+ 1) · z = x · y + 1 · z = x · y + z,

i.e., (4).

From Theorem 1 and Lemma 4 we get the

Corollary. Let A be a semiring. Then ϕ is an isomorphism from A onto

F(A) if and only if A is simple (i.e., A satisfies x+ 1 = 1).

Due to Lemma 4, the question arises if the identity (4) together with
associativity of + and the identities 0+x = x, x ·0 = 0 and x ·1 = x implies
left-distributivity. The following example shows that it is not the case.
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Example. Consider a three-element set A = {0, a, 1} and the algebra A =
(A; +, ·, 0, 1) where the operations + and · are determinded by the tables:

+ 0 a 1

0 0 a 1

a a a 1

1 1 1 1

· 0 a 1

0 0 a 0

a 0 a a

1 0 a 1

It is an easy exercise to verify that A satisfies all the identities of Theorem
1 and, furthermore, x+ y = y+ x, x+ x = x, x · x = x, x+1 = 1, 1 · x = x,
x · 0 = 0. However, A does not satisfy left-distributivity since e.g.

0 · (1 + a) = 0 · 1 = 0 6= a = 0 + a = 0 · 1 + 0 · a.

Acknowledgment. Our special thanks go to the referee whose numer-
ous remarks and suggestions heavily improved the paper.
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