

I. Chajda, G. Eigenthaler

POLYNOMIALLY REPRESENTABLE SEMIRINGS

Abstract. We characterize semirings which can be represented by an algebra of binary polynomials of the form $a \cdot x + y$ where the operations are compositions of functions. Furthermore, we classify, which algebras with two binary and two nullary operations (satisfying some natural identities) can be represented in this way, and how these algebras are related to semirings.

Several attempts have been done to represent a given algebra by means of functions of a special sort. The best known is the so-called Cayley Theorem which states that every group G can be represented as a group S_G of permutations of the support of G ; here the group operation in S_G is the usual composition of functions. In fact, the same representation exists for an arbitrary monoid. It was shown by S. L. Bloom, Z. Ésik and E. G. Manes that every Boolean algebra can be represented by certain binary functions, so-called guard functions, where the operations are function compositions, see [1] and [2]. A similar approach was used by the first author [3] for a representation of so-called q -algebras.

Using another sort of binary functions, it was shown that also distributive lattices (see [6]) or bounded lattices with an antitone involution (see [4]) can be represented by functions where the corresponding operations are expressed via function compositions. Later on, this approach was applied for so-called action algebras [7] and it was generalized for algebras having an arbitrary number of binary operations [5]. Other Cayley-like representations are contained in [11] (Ch. 3, Theorem 1.51) and in particular in [10], where one can find general methods for creating such representations and further references.

1991 *Mathematics Subject Classification*: 16Y60, 08A40.

Key words and phrases: semiring, simple semiring, binary polynomials, Cayley-like representation, absorption law.

This work is supported by the project CZ 03/2009 of the ÖAD.

The aim of this paper is to characterize semirings for which the representation by binary polynomials can be realized via a given assignment. Moreover, the study is extended for algebras with two binary and two nullary operations.

In what follows, we will consider algebras $\mathcal{A} = (A; +, \cdot, 0, 1)$ of type $(2, 2, 0, 0)$. We use the notational convention that the operation \cdot has a higher priority than $+$, i.e., we will omit brackets concerning \cdot and write e.g. $x \cdot y + z$ instead of $(x \cdot y) + z$. For $a \in A$ we define a binary polynomial function $f_a(x, y)$ on A by

$$f_a(x, y) = a \cdot x + y.$$

Denote by $F(A)$ the set $\{f_a(x, y); a \in A\}$. On $F(A)$ we introduce the following function compositions:

$$\begin{aligned} (f_a \oplus f_b)(x, y) &= f_a(x, f_b(x, y)), \\ (f_a \circ f_b)(x, y) &= f_a(f_b(x, y), y). \end{aligned}$$

The algebra

$$\mathcal{F}(\mathcal{A}) = (F(A); \oplus, \circ, f_0, f_1)$$

will be called the *function algebra assigned to \mathcal{A}* .

If we assume that $\mathcal{A} = (A; +, \cdot, 0, 1)$ satisfies the identities $1 \cdot x = x$, $0 \cdot x = 0$ and $0 + x = x$ then clearly $f_0(x, y) = y$ and $f_1(x, y) = x + y$.

The following definition is taken from [8].

DEFINITION 1. A *semiring* is an algebra $\mathcal{A} = (A; +, \cdot, 0, 1)$ such that

- (i) $+$ is associative and commutative,
- (ii) \cdot is associative,
- (iii) $+$ and \cdot satisfy the left- and right-distributive laws

$$\begin{aligned} x \cdot (y + z) &= x \cdot y + x \cdot z, \\ (x + y) \cdot z &= x \cdot z + y \cdot z, \end{aligned}$$

- (iv) $+$ and \cdot satisfy the identities $x + 0 = x$,

$$\begin{aligned} x \cdot 1 &= x = 1 \cdot x, \\ x \cdot 0 &= 0 = 0 \cdot x. \end{aligned}$$

A semiring \mathcal{A} is called *simple* (see [8] and [9]) if it satisfies the identity

$$x + 1 = 1.$$

In what follows, by φ will be denoted the mapping from A into $F(A)$ defined by

$$\varphi(a) = f_a.$$

At the first glance, φ is surjective.

Our aim is to show that a semiring \mathcal{A} is simple if and only if φ is an isomorphism from \mathcal{A} onto $\mathcal{F}(\mathcal{A})$. In fact, we will prove a more general result and get the semiring case as a corollary.

LEMMA 1. *Let $\mathcal{A} = (A; +, \cdot, 0, 1)$ be an algebra of type $(2, 2, 0, 0)$ satisfying $x \cdot 1 = x$ and $x + 0 = x$. Then φ is a bijection from A to $\mathcal{F}(A)$.*

Proof. For $a, b \in A$, $a \neq b$, we have

$$f_a(1, 0) = a \cdot 1 + 0 = a \neq b = b \cdot 1 + 0 = f_b(1, 0),$$

thus $f_a \neq f_b$, i.e., φ is injective. ■

LEMMA 2. *Let \mathcal{A} be an algebra of type $(2, 2, 0, 0)$, then φ is a homomorphism from \mathcal{A} to $\mathcal{F}(\mathcal{A})$ if and only if for all $a, b, x, y \in A$:*

- (1) $a \cdot x + (b \cdot x + y) = (a + b) \cdot x + y$ and
- (2) $a \cdot (b \cdot x + y) + y = (a \cdot b) \cdot x + y$.

Proof. φ is a homomorphism if and only if $f_a \oplus f_b = f_{a+b}$ and $f_a \circ f_b = f_{a \cdot b}$. The first equation is equivalent to (1), and the second one is equivalent to (2). ■

LEMMA 3. *Let \mathcal{A} be an algebra of type $(2, 2, 0, 0)$, suppose that $+$ and \cdot are associative and \mathcal{A} satisfies*

- (3) $(x + y) \cdot z = x \cdot z + y \cdot z$ and
- (4) $x \cdot (y + z) + z = x \cdot y + z$.

Then φ is a homomorphism. (Note that (3) is the right distributive law.)

Proof. We have

$$a \cdot x + (b \cdot x + y) = (a \cdot x + b \cdot x) + y = (a + b) \cdot x + y$$

and

$$a \cdot (b \cdot x + y) + y = a \cdot (b \cdot x) + y = (a \cdot b) \cdot x + y,$$

i.e., (1) and (2) hold. ■

Now we are ready to state our main result:

THEOREM 1. *Let $\mathcal{A} = (A; +, \cdot, 0, 1)$ be an algebra of type $(2, 2, 0, 0)$ satisfying $x \cdot 1 = x$ and $x + 0 = x$. Then the mapping $\varphi : A \rightarrow \mathcal{F}(A)$ is an isomorphism from \mathcal{A} onto $\mathcal{F}(\mathcal{A})$ if and only if $+$ and \cdot are associative and \mathcal{A} satisfies (3) and (4).*

Proof. The “if” part follows from Lemma 1 and 3. In order to show the “only if” part, we use Lemma 2.

For $x = 1$ in (1), we have

$$a + (b + y) = a \cdot 1 + (b \cdot 1 + y) = (a + b) \cdot 1 + y = (a + b) + y,$$

i.e., $+$ is associative.

For $y = 0$ in (1), we have

$$a \cdot x + b \cdot x = a \cdot x + (b \cdot x + 0) = (a + b) \cdot x + 0 = (a + b) \cdot x,$$

i.e., (3) holds.

For $y = 0$ in (2), we have

$$a \cdot (b \cdot x) = a \cdot (b \cdot x + 0) + 0 = (a \cdot b) \cdot x + 0 = (a \cdot b) \cdot x,$$

i.e., \cdot is associative.

For $x = 1$ in (2), we have

$$a \cdot (b + y) + y = a \cdot (b \cdot 1 + y) + y = (a \cdot b) \cdot 1 + y = (a \cdot b) + y,$$

i.e., (4) holds. ■

Lemma 4. *Let \mathcal{A} be an algebra of type $(2, 2, 0, 0)$.*

- (a) *Suppose that \mathcal{A} satisfies (4), $0 + x = x$, $x \cdot 0 = 0$ and $x \cdot 1 = x$, then \mathcal{A} satisfies $x + 1 = 1$.*
- (b) *If $+$ is associative, \mathcal{A} satisfies the right distributive law (3), the left distributive law $x \cdot (y + z) = x \cdot y + x \cdot z$, $1 \cdot x = x$ and $x + 1 = 1$, then \mathcal{A} satisfies (4).*

Proof. (a) Taking $y = 0$ in (4), we get

$$x \cdot z + z = x \cdot (0 + z) + z = x \cdot 0 + z = 0 + z = z.$$

Taking $z = 1$ yields $x \cdot 1 + 1 = 1$, i.e., $x + 1 = 1$.

(b) We have

$$\begin{aligned} x \cdot (y + z) + z &= (x \cdot y + x \cdot z) + 1 \cdot z = x \cdot y + (x \cdot z + 1 \cdot z) \\ &= x \cdot y + (x + 1) \cdot z = x \cdot y + 1 \cdot z = x \cdot y + z, \end{aligned}$$

i.e., (4). ■

From Theorem 1 and Lemma 4 we get the

COROLLARY. *Let \mathcal{A} be a semiring. Then φ is an isomorphism from \mathcal{A} onto $\mathcal{F}(\mathcal{A})$ if and only if \mathcal{A} is simple (i.e., \mathcal{A} satisfies $x + 1 = 1$).*

Due to Lemma 4, the question arises if the identity (4) together with associativity of $+$ and the identities $0 + x = x$, $x \cdot 0 = 0$ and $x \cdot 1 = x$ implies left-distributivity. The following example shows that it is not the case.

EXAMPLE. Consider a three-element set $A = \{0, a, 1\}$ and the algebra $\mathcal{A} = (A; +, \cdot, 0, 1)$ where the operations $+$ and \cdot are determined by the tables:

$+$	0	a	1	\cdot	0	a	1
0	0	a	1	0	0	a	0
a	a	a	1	a	0	a	a
1	1	1	1	1	0	a	1

It is an easy exercise to verify that \mathcal{A} satisfies all the identities of Theorem 1 and, furthermore, $x + y = y + x$, $x + x = x$, $x \cdot x = x$, $x + 1 = 1$, $1 \cdot x = x$, $x \cdot 0 = 0$. However, \mathcal{A} does not satisfy left-distributivity since e.g.

$$0 \cdot (1 + a) = 0 \cdot 1 = 0 \neq a = 0 + a = 0 \cdot 1 + 0 \cdot a.$$

Acknowledgment. Our special thanks go to the referee whose numerous remarks and suggestions heavily improved the paper.

References

- [1] S. L. Bloom, Z. Ésik, *Cayley iff Stone*, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 43 (1991), 159–161.
- [2] S. L. Bloom, Z. Ésik, E. G. Manes, *A Cayley theorem for Boolean algebras*, Amer. Math. Monthly 97 (1990), 831–833.
- [3] I. Chajda, *A representation of the algebra of quasiordered logic by binary functions*, Demonstratio Math. 27 (1994), 601–607.
- [4] I. Chajda, G. Eigenthaler, *A polynomial representation of bounded lattices with an antitone involution*, Contributions to General Algebra 19, Verlag Johannes Heyn, Klagenfurt (2010), 23–24.
- [5] I. Chajda, H. Länger, *A Cayley theorem for algebras with binary and nullary operations*, Acta Sci. Math. (Szeged) 75 (2009), 55–58.
- [6] I. Chajda, H. Länger, *A Cayley theorem for distributive lattices*, Algebra Universalis 60 (2009), 365–367.
- [7] I. Chajda, H. Länger, *Action algebras*, Italian J. Pure Appl. Math. 26 (2009), 71–78.
- [8] J. S. Golan, *Semirings and their Applications*, Kluwer Acad. Publ., Dordrecht/Boston /London (1999), 381 pp., ISBN 0-7923-5786-8.
- [9] K. Kearnes, *Semilattice modes I: the associated semiring*, Algebra Universalis 34 (1995), 220–272.
- [10] A. Knoebel, *Cayley-like representations are for all algebras, not merely groups*, Algebra Universalis 46 (2001), 487–497.
- [11] H. Lausch, W. Nöbauer, *Algebra of Polynomials*, North-Holland Publ. Comp., Amsterdam/London (1973), 322 pp., ISBN 0-7204-2455-0.

Ivan Chajda

DEPARTMENT OF ALGEBRA AND GEOMETRY
PALACKÝ UNIVERSITY OLOMOUC

Trida 17. Listopadu 12
771 46 OLOMOUC, CZECH REPUBLIC
E-mail: ivan.chajda@upol.cz

Günther Eigenthaler

INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY
VIENNA UNIVERSITY OF TECHNOLOGY
Wiedner Hauptstraße 8–10/104
1040 VIENNA, AUSTRIA
E-mail: g.eigenthaler@tuwien.ac.at

Received September 27, 2010; revised version March 30, 2011.