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ON THE COSET STRUCTURE

OF A SKEW LATTICE

Abstract. The class of skew lattices can be seen as an algebraic category. It models
an algebraic theory in the category of sets where the Green’s relation D is a congruence
describing an adjunction to the category of lattices. In this paper we will discuss the rele-
vance of this approach, revisit some known decompositions and relate the order structure
of a skew lattice with its coset structure that describes the internal coset decomposition
of the respective skew lattice.

Introduction

Skew lattices have been studied for the past thirty years as a noncom-
mutative variation of the variety of lattices with motivations in semigroup
theory, in linear algebra as well as in universal algebra. The study of non-
commutative lattices began in 1949 by Pascual Jordan [14] who in 1961
presented a wide review on the subject [15]. It is later approached by Slavík
[26] and Cornish [4] who refer to a special variety of noncommutative lat-
tices, namely skew lattices. A more general version of these skew lattices is
due to Jonathan Leech, was first announced in [20] and consists of the left
version of Slavík’s algebras. The Green’s relation D defined in a skew lattice
S is a congruence and has revealed its important role in the study of these
algebras, permitting us a further approach to the coset structure of a skew
lattice [23].

The first section of this paper is dedicated to the approach to skew lat-
tices as algebraic theories discussing several characterizations related to the
choice of the possible absorption laws. From it we derive the algebraic cat-
egory of skew lattices, unveiling several results about these algebras due to
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the nature of the category they constitute. Decomposition theorems, first
presented by Leech in [21] and [23] are discussed in the third section. Here
we will give special attention to the important role of the natural congruence
that in a skew lattice coincides with Green’s relation D. It will determine
an adjunction relating skew lattices and lattices, and will provide the possi-
bility for the approach developed in the last section. It is known as Leech’s

first decomposition. An alternative decomposition, also mentioned in [23]
as the complement of the first decomposition, regards maximal connected
subalgebras instead of maximal rectangular subalgebras. It opens the ques-
tion of weather it is possible to approach it in a similar way. Leech’s second

decomposition ends the section, referring to a certain “horizontal duality” re-
garding right/left versions of these algebras, referenced in [19] and common
to semigroup theory. It is distinct from the “vertical duality”, the duality
referring to the ∧ and ∨ operations, extensively studied in lattice theory.
The last section focus on the coset structure of skew lattices, the structural
approach provided by the natural congruence D giving us many advantages
on the further study of skew lattices.

The coset structure, introduced for the first time in [23], is revisited here
with a categorical approach that follows through all the paper. As this
paper aims to present a review on skew lattices as algebraic categories and
several of their main properties through the language of category theory
and universal algebra, the reader should be familiar with the basics of these
theories. We suggest further readings in category theory, [2] and [24]; in
universal algebra [11], in lattice theory [1] and in semigroup theory [12].
As for notation we will use capital letters A,B,C, . . . to represent sets,
bold capital letters A,B,C,. . . to represent algebras, latin letters A,B,C, . . .
to represent algebraic theories and gothic letters A,B, C, . . . to represent
categories. Letters L, R and D will represent the Green’s relations.

1. The algebraic theory of skew lattices

Algebraic theories have been studied under category theory generaliz-
ing many of the results brought to us by universal algebra. In this sec-
tion we will approach skew lattices as algebraic categories describing the
theory of skew lattices, and derive some results from it. Readers familiar
with these matters may skip the preliminaries on algebraic categories men-
tioned here. For a more detailed study on algebraic theories in general please
read [2].

A general approach to algebraic structures such as groups or lattices
is to characterize these structures by axiomatizations which involve only
equations and operations that must be defined everywhere. The nullary
operations are regarded as constants. The signature

∑

is a family of k-ary
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operations {
∑

k }k∈N where the elements of
∑

0 are the constants and the
terms of

∑

are expressions constructed inductively by the following rules:

variables x, y, z, . . . are terms;
if 〈t1, . . . , tk〉 is a k-tuple of terms and f ∈

∑

k then f〈t1, . . . , tk〉 is a
term.

An algebraic theory A = (
∑

, ξ) is given by a signature
∑

and a set ξ of
axioms which are equations between terms1) .

Equivalent algebraic theories are algebraic theories that have the same
signature and axioms that one can deduct from the other. The algebraic

theory of skew lattices , denoted here by S
T , is given by the same signature as

the signature for the algebraic category of lattices {∧,∨}, and the following
axioms:

S1. x ∧ (y ∧ z) = (x ∧ y) ∧ z
S2. x ∨ (y ∨ z) = (x ∨ y) ∨ z
S3. (y ∧ x) ∨ x = x
S4. x ∧ (x ∨ y) = x
S5. (y ∨ x) ∧ x = x
S6. x ∨ (x ∧ y) = x.

S1 and S2 express associativity which brings independence of order to the
operations while the absorption laws S3 to S6 describe the way how both
operations relate to each other. Idempotency follows from these axioms:
x ∧ x = x ∧ (x ∨ (x ∧ y)) = x = ((y ∨ x) ∧ x) ∨ x = x ∨ x and, similarly,
x ∨ x = x [21]. Hence, S1 to S6 are enough to define the theory of skew
lattices S

T . None of these axioms express the existence of a constant and
both of the operations are defined everywhere. The next results show us
the important role of the choice of the absorption laws. If we chose all the
absorption laws we would get commutativity and, therefore, lattices.

Lattices are skew lattices that satisfy the commutativity axiom for both
operations [21], that is,

S7. x ∧ y ≈ y ∧ x
S8. x ∨ y ≈ y ∨ x.

The center of a skew lattice S is defined by the set Z(S) = {x ∈ X :
x ∧ y ≈ y ∧ x and x ∨ y ≈ y ∨ x}.

In [17] Leech defines the algebraic theory of skew* lattices with the same
signature as the algebraic theory of skew lattices, axioms S1 and S2 and the
following others:

S9. (x ∧ y) ∨ x ≈ x

1)Algebraic theories are also called equational theories or Lawvere theories.
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S10. x ∧ (y ∨ x) ≈ x
S11. (x ∨ y) ∧ x ≈ x
S12. x ∨ (y ∧ x) ≈ x.

If we have chosen all the absorption laws we would get commutativity
and, therefore, lattices.

Proposition 1. [17] The algebraic theory of skew lattices enriched with the

axioms S9, S10, S11 and S12 is equivalent to the algebraic theory of lattices.

The duality principle for skew lattices follows from the well known duality
principle for lattices and was referred by Jordan in [15] and later by Slavík
in [26]. According to Slavík, the dual term to a term t is defined by the
following two rules:

1. For all variables x, D(x) = x;
2. If t1 and t2 are terms, D(t1♣t2) = D(t1)♣

′D(t2) with ♣ 6= ♣′ and ♣,♣′ ∈
{∧,∨}.

For an arbitrary formula φ, its dual formula D(φ) is obtained from φ in
such a way that each term occurring in φ is replaced by its dual term. The
dual theory D(T ) of an algebraic theory T is the set of all D(φ) where φ
is an element of T . A theory is said to be self dual iff D(T ) = T . That is
the case of the algebraic theory of skew lattices S

T as well as the algebraic
theory of lattices L

T .

Theorem 2. [26] Let Γ be a self dual algebraic theory. Then a formula

φ is a consequence of the theory S
T iff the formula D(φ) is a consequence

of ST .

This concept of duality was later developed by Leech in [21] and [17],
where he defined three dual algebras for a skew lattice (S,∨,∧): the horizon-

tal dual , (S,∨,∧)h ≈ (S,∨h,∧h) where x∨h y ≈ y∨x and x∧h y ≈ y∧x; the
vertical dual , (S,∨,∧)v ≈ (S,∨v,∧v) where x∨v y ≈ x∧y and x∧v y ≈ x∨y;
and the double dual , (S,∨,∧)d ≈ (S,∨d,∧d), given as (S,∨,∧)hv. Skew* lat-
tices referenced in [17] refer to the horizontal dual. Most of the varieties of
skew lattices are closed under one if not all three dualizations.

A skew lattice is said to be symmetric if it satisfies

x ∧ y ≈ y ∧ x iff x ∨ y ≈ y ∨ x.

The defining axioms for the theory of symmetric skew lattices are S1 to
S6 plus the following:

S13. x ∧ y ∧ (x ∨ y ∨ x) ≈ (x ∨ y ∨ x) ∧ y ∧ x
S14. x ∨ y ∨ (x ∧ y ∧ x) ≈ (x ∧ y ∧ x) ∨ y ∨ x.
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Skew lattices that satisfy S13 are called lower symmetric skew lattices

and skew lattices that satisfy S14 are called upper symmetric skew lattices .
The theory of right-handed skew lattices is given by adding to the alge-

braic theory of skew lattices the following two axioms

S15. x ∧ y ∧ x ≈ y ∧ x
S16. x ∨ y ∨ x ≈ x ∨ y.

The theory of left-handed skew lattices is defined dually by the following
axioms

S17. x ∧ y ∧ x ≈ x ∧ y
S18. x ∨ y ∨ x ≈ y ∨ x.

Right-handed skew lattices satisfy S9 and S10 while left-handed skew
lattices satisfy S11 and S12. Moreover,

Proposition 3. [21] The theory of skew lattices that are simultaneously

right-handed and left-handed is equivalent to the theory of lattices.

In fact, these one-sided versions of a skew lattice introduce another notion
of duality distinct from the duality stated in Theorem 2. It will be further
discussed in the end of the next section.

As it happens in the theory of lattices, (the generalization of) the prop-
erty of distributivity is going to have an important role in the study of the
theory of skew lattices. In the next paragraphs we are dedicating some of
our attention to it.

The defining axioms for the theory of distributive skew lattices , as estab-
lished by Leech in [21], are S1 to S6 plus the following:

S19. x ∧ (y ∨ z) ∧ x ≈ (x ∧ y ∧ x) ∨ (x ∧ z ∧ x)
S20. x ∨ (y ∧ z) ∨ x ≈ (x ∨ y ∨ x) ∧ (x ∨ z ∨ x).

Spinks named these algebras a middle distributive skew lattices and con-
firmed the independency of the axioms S19 and S20 in [28] presenting a
nine-element counter-example obtained by the program SEM, a system for
enumerating finite models. Moreover, he showed that the middle distribu-
tivity identities are equivalent in the presence of symmetry. Later in [7],
Cvetko-Vah gave a non computational proof of this same equivalence, stat-
ing that:

Proposition 4. [7] For any skew lattice S, the identities S13 and S19
imply S20; and the identities S14 and S20 imply S19.

In order to explore a bit more the different concepts of distributivity
available in the literature, consider the following axioms:

S21. x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)
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S22. (x ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z)
S23. x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)
S24. (x ∧ y) ∨ z ≈ (x ∨ z) ∧ (y ∨ z).

Observe that in a right handed skew lattice, distributivity reduces to
satisfying S22 and S23 while, in a left handed skew lattice this same prop-
erty reduces to satisfying S21 and S24. Skew lattices satisfying S21 and S22
are called ∧-distributive while skew lattices satisfying S23 and S24 are called
∨-distributive. Bidistributivity is determined by the axioms S1 to S6 and S21
to S24. Skew lattices satisfying S21 and S22 are named ∧-distributive skew

lattices while skew lattices satisfying S21 and S22 are named ∧-distributive

skew lattices . Note that either of the middle distributivity identities together
with the axioms S15 to S18 imply the axioms of bidistributivity. Distribu-
tivity in skew lattices was further studied in [18], [5] and [16].

Proposition 5. [16] The algebraic theory of left-handed ∧-distributive

skew lattices is equivalent to the theory with the same signature defined by

the axioms S1 to S6, S17 and S21. Analogously, the axioms S1 to S6, S15
and S22 characterize the algebraic theory of right-handed ∧-distributive skew

lattices. Dually, the axioms S1 to S6, S18 and S23 determine the algebraic

theory of left-handed ∨-distributive skew lattices and the axioms S1 to S6, S16
and S24 determine the algebraic theory of right-handed ∨-distributive skew

lattices.

Proposition 6. The algebraic theory of left-handed distributive skew lat-

tices is equivalent to the theory with the same signature defined by the axioms

S1 to S4, S9, S10, S21 and S24. Analogously, the axioms S1, S2, S5, S6, S11,
S12, S22 and S23 constitute an algebraic theory equivalent to the theory of

right-handed distributive skew lattices.

Proof. Let us show that from the axioms S1 to S6, S17, S18, S19 and S20
we can deduct the axioms S1 to S4, S9, S10, S21 and S24.

S21 and S24 are directly derived from S17, S18, S19 and S20: x ∧ (y ∨ z)
≈ x ∧ (y ∨ z) ∧ x ≈ (x ∧ y ∧ x) ∨ (x ∧ z ∧ x) ≈ (x ∧ y) ∨ (x ∧ z) and
(y ∧ z) ∨ x ≈ x ∨ (y ∧ z) ∨ x ≈ (x ∨ y ∨ x) ∧ (x ∨ z ∨ x) ≈ (y ∨ x) ∧ (z ∨ x).

S9 is derivable from S17 and S3, respectively: (x∧y)∨x ≈ (x∧y∧x)∨x
≈ x. Similarly, S10 is derivable from S18 and S4, respectively: x ∧ (y ∨ x) ≈
x ∧ (x ∨ y ∨ x) ≈ x.

Conversely, assume the axioms S1 to S4, S9, S10, S21 and S24.

S9 and S4, respectively, are enough to deduct S17: x ∧ y ∧ x ≈ x ∧ y ∧
((x ∧ y) ∨ x) ≈ x ∧ y. Analogously, S10 and S3 are enough to deduct S18.

S17 and S21, respectively, are enough to deduct S19: x ∧ (y ∨ z) ∧ x ≈
x∧ (y∨z) ≈ (x∧y)∨ (x∧z) ≈ (x∧y∧x)∨ (x∧z∧x). Analogously, S18 and



On the coset structure of a skew lattice 679

S22 are enough to deduct S20. S5 is derived from idempotency, S24 and S3,
respectively: (y ∨ x) ∧ x ≈ (y ∨ x) ∧ (x ∨ x) ≈ (y ∧ x) ∨ x ≈ x. Analogously,
idempotency, S21 and S4 are enough to deduct S6.

Another relevant property, extensively studied in skew lattices is normal-

ity. Consider the following axioms:

S25. x ∧ y ∧ z ∧ w ≈ x ∧ z ∧ y ∧ w
S26. x ∨ y ∨ z ∨ w ≈ x ∨ z ∨ y ∨ w.

A skew lattice S is said to be normal if it satisfies S25. Dually, skew
lattices that satisfy S26 are named conormal . The center of a skew lattice
is always a normal skew lattice [18]. Moreover, all sub lattices of a skew
lattice are normal skew lattices. Normal skew lattices were studied in [18]
and are sometimes cited as local lattices [23] or as mid commutative skew

lattices [18].

A skew Boolean algebra is an algebra S = (S;∨,∧, \, 0) of type <
2, 2, 2, 0 > such that (S;∨,∧, 0) is a distributive, normal, symmetric skew
lattice with 0, and \ is a binary operation on S satisfying (x∧y∧x)∨(x\y) = x
and (x ∧ y ∧ x) ∧ (x\y) = 0. These algebras, together with skew lattices in
unitary rings (discussed in [21]) are the most studied examples of skew lat-
tices for over the past 20 years. Skew Boolean algebras form a variety of
algebras [22].

When Pascual Jordan introduced skew lattices in [14], he chose the ax-
ioms S1, S2, S9 and S10 that brought him to a weaker version of the algebra
that here we present as skew lattice, still holding idempotency [15]. Slavík
in [26] used S1 to S4, S9, and S10, and Cornish followed this work using the
∧-bidistributivity axioms S21 and S24 (cf. [4] , Theor 3.4) in order to de-
fine Boolean skew algebra, a Boolean version of skew lattice. These brought
him to the left-handed version of the skew Boolean algebra that later Leech
would state in [22]. Leech’s skew lattices, firstly presented in [21], are the
ones we study through this paper.

The later approach to algebraic theories is rather syntactic by nature, so
we’ll step towards a representation-free notion of algebraic theories using the
language of category theory, based on the earlier notion of algebraic theory of
a skew lattice. We can define the algebraic category of skew lattices , denoted
by S as follows:

as objects we take contexts , that is, sequences of variables [x1, x2, . . . , xn],
for n ≥ 0;
A morphism from [x1, x2, . . . , xm] to [x1, x2, . . . , xn] is an n-tuple 〈t1, t2,
. . . , tn〉, where each tk is a term of the theory whose variables are among
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x1, . . . , xm. Every such term is built inductively. The equality of two
such morphisms 〈t1, . . . , tn〉 and 〈u1, . . . , un〉 holds exactly when the
axioms S1 to S6 imply tk = uk for each k = 1, . . . , n. In other words,
morphisms are equivalence classes of terms, where two terms are equiv-
alent when the theory proves them to be equal.
The composition of morphisms 〈t1, . . . , tm〉 : [x1, . . . , xk] → [x1, . . . , xm]
and 〈u1, . . . , un〉 : [x1, . . . , xm]→ [x1, . . . , xn] is the morphism 〈v1, . . . , vn〉
whose i-th component is obtained by simultaneously substituting in ui
the terms t1, . . . , tm for the variables x1, . . . , xm : vi = ui[t1, . . . , tm/
x1, . . . , xm], for 1 ≤ i ≤ n.
The identity morphism on [x1, . . . , xn] is 〈x1, . . . , xn〉.

The object [x1, . . . , xn+m] is the product of [x1, . . . , xn] and [x1, . . . , xm]
so that all finite products exist. Furthermore, every object is a product
of finitely many instances of the object [x1]. Models of algebraic theories
are just finite product preserving functors [2]. A finite product preserving
functor is then determined, up to natural isomorphism, by its action on the
context [x1] and the terms representing the basic operations ∨ and ∧. This
suggests that the category of the models of the algebraic theory S

T in Set
is equivalent to the algebraic category of the skew lattices S provided both
categories have the same notion of morphisms. In some sense algebraic cat-
egories are the category theory approach to the well know universal algebra
concept of algebraic variety, a generalization of this finitary notion. On what
follows we will also use the notation L to represent the algebraic category of

lattices that is well known and has a similar construction.
All algebraic categories are regular categories [2]. Moreover, this alge-

braic category approach to skew lattices provide us with general results valid
in this context as follows:

Theorem 7. (Morphism Factorization Theorem) In the algebraic category

of skew lattices, every morphism f : A → B factors as a composition of a

regular epimorphism q and a monomorphism m. Moreover, the factorization

is unique up to isomorphism.

This and other results following from the fact that skew lattices can be
seen as algebraic categories reveal the importance of this approach.

2. The decomposition theorems

Green’s relations L, R and D have proved to have an important role
in the further development of skew lattice theory. In the following section
we approach D from a categorical perspective and emphasize its important
role in the study of these algebras. This discussion will follow an argument
showing the relevance of the congruence D due to the fact that it determines
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such a partition of the skew lattice that each of its blocks is its maximal
“anticommutative” subalgebra.

Recall the well known forgetful functor U between the algebraic category
of abelian groups Gab and the algebraic category of groups G that forgets the
axiom of commutativity and brings all abelian groups to the wider algebraic
category of groups. We can also define a functor A, the abelianization func-

tor , that will associate with any group G an abelian group, G/[G,G] while
morphisms are not affected by commutators. This example of adjoint func-
tors A ⊣ U gives us an intuitive idea of how we can approach the problem
of relating the algebraic categories L and S.

For the reader familiar with categorical treatment of algebraic theories
the following result is more of an observation than a real theorem. Even
though it is not original, it is quite relevant within the context of this paper,
and shall be stated as a theorem.

Theorem 8. Let A and A
′ be algebraic structures such that ξA′ = ξA ∪ E,

where ξA is the set of axioms of the algebraic structure A. Then the forgetful

functor U : A′ −→ A has a left adjoint: the functor F : A −→ A
′ that assigns

to each algebra A in A the quotient algebra A/ ∼, where ∼ is the congruence

determined by the set of axioms E.

Proof. Consider an algebraic theory A and another algebraic theory A
′ that

is built with the signature of A plus some new identities E, i.e.

ξA′ = ξA ∪ E,

where ξA is the set of axioms of the algebraic structure A. The adjoint
functor theorem makes it quite clear that the forgetful functor U : A′ −→ A

has a left adjoint, but we will describe this in detail. Let A be an algebra in
A. As the lattice of all congruences in A, (ConA,∩,∪) is a complete lattice
for the inclusion relation, consider ∼ to be the least congruence containing
all equations of A′. Now consider the functor A : A −→ A

′ that assigns to
each algebra A in A the quotient A/ ∼ in A

′ and to each morphism in A

the same morphism in A
′.

As morphisms are not about satisfying equations but preserving opera-
tions, the image of the morphisms in A are not affected by the congruence
∼ and remain morphisms. Observe that if A is an algebra of A then the
quotient A/ ∼ is the smallest image of A that respects all the axioms of A′

due to the fact that ∼ is the smallest congruence containing all equations
of A′.

ηA : A → AU(A) is the unit of the left adjunction A ⊣ U and the
commutativity of the following diagram shows that ηA has the universal
property: Let A ∈ A, B ∈ A

′ and g : A → A(B). Then, there exists a
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unique f : A/ ∼→ B such that g = A(f) ◦ ηA.

A A(A/ ∼)

A(B)

A/ ∼

B

∃!f

ηA

A(f)g

When we consider the algebraic theory of a skew lattice and the algebraic

theory of a lattice, the one identity that enriches the second structure is
again commutativity. Consider the forgetful functor U : L → S and the
“abelianizor” functor A : S → L that, in this context, assigns to each skew
lattice S its correspondent commutative version, that is, its correspondent
lattice S/ ∼, where ∼ is determined by the commutativity axiom. In the
following we will show that, in this case, the congruence ∼ determined by
the axiom x ∧ y = y ∧ x is the Green’s relation D. Let us start by stating
some preliminaries.

A band is a semigroup of idempotents. A semilattice is a commutative
band. When S is a commutative semigroup, the set E(S) of all idempotents
in S is a semilattice under the semigroup multiplication. When S is not
commutative, E(S) need not be closed under multiplication. Skew lattices
can be seen as double bands, (S,∧) and (S,∨), with an extra property,
absorption, that relates the two operations ∧ and ∨ in the sense that

x ∨ y = x iff x ∧ y = y and x ∨ y = y iff x ∧ y = x.

Influenced on the natural partial order and the Green’s relations defined
for bands in [12], we define in a skew lattice S:

the natural partial order by x ≥ y iff x ∧ y = y = y ∧ x, or dually,
x ∨ y = x = y ∨ x;
the natural preorder by x � y iff x∨ y ∨x = x or, dually, y ∧x∧ y = y;
the natural equivalence by x ≡ y iff x � y and y � x.

The Green’s relations simplified for bands by Howie in [12], can be defined
in a band S by:

xRy iff xy = y and yx = x
xLy iff xy = x and yx = y
xDy iff xyx = x and yxy = y.

D is a congruence relation on any band S L and R need not be. Moreover,
D = R ◦ L = L ◦ R = R∨ L and R∧ L = R∩ L := H.
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In a skew lattice, Leech [19] defines the Green’s relations as follows:

R = R∧ = L∨

L = L∧ = R∨

D = D∧ = D∨.

All of these relations are congruences on any skew lattice S. Right-handed
skew lattices are the skew lattices for which R = D while left-handed skew
lattices are determined by L = D [19].

As all elements ≤-related are �-related, the natural preorder � is ad-

missible with respect to the natural partial order ≤. The fact that the D
equivalence can be expressed by the preorder allows us to draw diagrams
like the one in the Figure 1, that are capable to represent skew lattices: a
and b are D related as expressed by the dashed segments and all others are
related by the natural partial order as expressed by full segments.

ba c d

21

0

Fig. 1. The diagram of a skew lattice.

Theorem 9. [21] The center of a skew lattice S is the subalgebra formed by

the union of all its singleton D-classes. In particular, S is a lattice if either

∨ or ∧ is commutative.

Given nonempty sets, L and R, their product L × R is a skew lattice
under the operations (x, y) ∨ (x′, y′) = (x′, y) and (x, y) ∧ (x′, y′) = (x, y′).
A rectangular skew lattice is an isomorphic copy of this skew lattice. All D-
equivalence classes are rectangular, both in bands and in skew lattices. When
working with bands in [25], McLean referred to these rectangular algebras
as anticommutative idempotent semigroups, that is, bands for which no two
distinct elements commute. According to Proposition 13 no two elements in
each D-class are order related as well.

Moreover, he characterized these by the identity abc = ac and proved
that, in a band S there exists a homomorphism φ of S onto a semilattice
T such that the inverse image of any element of T is a band and φ is the
weakest in the sense that any other commutative homomorphic image of S

is also a homomorphic image of T. In other words, the congruence classes of
D form maximal rectangular subbands of S and the quotient algebra S/D
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is the maximal semilattice image of S. Thus, we can look at a band as a
semilattice diagram with each node filled in by a rectangular band.

Furthermore, influenced by the Clifford-McLean Theorem for bands1) ,
Leech stated in [21] the following result known as Leech’s first decomposition
theorem:

Theorem 10. [21] Let S be a skew lattice. Then, D is a congruence in S,

S/D is the maximal lattice image of S and all congruence classes of D are

maximal rectangular skew lattices in S. The maximal rectangular subalgebras

of a skew lattice form a partition with the induced quotient algebra being the

maximal lattice image of the given skew lattice.

The natural equivalence D is the “key” to look at this First Decomposition

Theorem through the general result stated in Theorem 8. In the blocks of
S/D we collapse such maximal sets where no two elements commute. By
Theorem 9 the commutativity of one of the operations in a skew lattice
gives us the commutativity of the other operation. Considering the new
equation to be the commutativity of one of them, S is the algebraic category
corresponding to A and L is the algebraic category corresponding to A

′. The
functor F : S → L is left adjoint to U : L → S. Hence, by the uniqueness
of the adjunction, the congruences ∼ and D coincide, up to isomorphism.
Moreover, D is the smallest congruence for which the quotient S/D satisfies
the property of commutativity.

In the following we present a characterization for the natural order by
an identity, derive a characterization for right(left)-handed skew lattices and
show that all D classes are composed of unrelated elements (with respect to
the order relation).

Lemma 11. Let S be a skew lattice and x, y ∈ S. Then x ≥ y iff y = x∧y∧x
or, dually, x = y ∨ x ∨ y.

Proof. Let x, y ∈ S. If x ≥ y then x ∧ y ∧ x = x ∧ x = x.

Conversely, y = x ∧ y ∧ x ≥ x.

Proposition 12. Let S be a skew lattice. S is right-handed iff for all

x, y ∈ S, y ∧ x ≤ x and x ≤ x ∨ y. Analogously, S is left-handed iff for all

x, y ∈ S, x ∧ y ≤ x and x ≤ y ∨ x.

Proof. Let x, y ∈ S. By Lemma 11, y ∧ x = x ∧ y ∧ x is equivalent to
y ∧ x ≤ x as well as x ∨ y = x ∨ y ∨ x is equivalent to x ≤ x ∨ y. The
left-handed case is analogous.

1)Result obtained independently by A. H. Clifford in [3] thus known as Clifford-
McLean theorem for bands.
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Proposition 13. [21] Let S be a skew lattice and x, y ∈ S. Then x ≥ y
and xDy implies y = x.

Proposition 13 unveils that, in a skew lattice, all D-classes constitute
antichains. Hence, the whole order structure of a skew lattice is unveiled by
the coset bijections.

Can one describe a skew lattice through its partial order? In the case
of lattices its known that x ≤ y ⇔ x ∧ y = x determines the isomorphism
between the order structure and the algebraic structure. In the context of
skew lattices Lemma 11 expresses a similar equivalence but its not able to
fully describe the operations. Unlike what happens for lattices, a skew lattice
is not determined by its (partial) order structure. For instance, the case of
the diagrams on the figure 2 shows a Hasse diagram corresponding to two
different skew lattices. Recall that, in the case of lattices, the Hasse diagram
determines the order structure of the lattice.

a b

1

0

a b

1

0

S1 S2

Fig. 2. Two skew lattices with the same order structure.

All posets determine categories. Posets are equivalent to one another if
and only if they are isomorphic. According to Proposition 13, that is the
case of the poset category of a skew lattice S and the poset category of the
lattice that is determined by the correspondent quotient S/D. In [21], Leech
defines the natural graph of a skew lattice S as the undirected graph (S,E)
given by the natural partial order of S, where S is the set of vertices and
{x, y } forms an edge in E whenever x > y or y > x. The natural graph
of a skew lattice S is a part of the Hasse diagram of the skew lattice and
equivalent to the poset category of S.

A skew lattice is connected when its natural graph is connected, that is,
when for every pair of vertices (x, y), the graph contains a path from x to
y. A component of S is any connected component of its graph. Already
here we can see the intersection with the D-congruence: S/D is a lattice and
therefore its Hasse diagram is a connected graph, thus each component of S
has a nonempty intersection with each equivalence class of S. The following
result stated in [21] is the complement to Theorem 10:
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Theorem 14. [23] The components of a skew lattice S are its maximal

connected subalgebras. Moreover, the partition of S into components is a

congruence partition for which the induced quotient algebra is the maximal

rectangular image of S.

Regarding the statement of Theorem 8, its unavoidable to open the ques-
tion wether or not the congruence in Theorem 14 is determined by an axiom,
so that this result is a particular case.

Skew lattices are (double) regular bands, that is, both operations satisfy
the identity xyxzx = xyzx. This property is referred by Leech in [21] as
biregularity. In [13], Kimura studies the structure of regular bands presenting
in this context a factorization theorem stating that, when S is a regular band,
there exist a left regular band L and a right regular band R both of which
have the same structure semilattice C such that S is isomorphic to the spined
product of L and R with respect to C. By spined product is meant:

R ⊲⊳ L = { (x, y) : x ∈ R, y ∈ L, p(x) = q(y) }

when p : L → C and q : R → C are natural homomorphisms. This was later
called fibered product and is equivalent to the categorical concept of equalizer

of L and R with respect to C. This result is dependent of regularity, which
is natural to skew lattices, and also has an analogue in that context known
as Leech’s Second Decomposition Theorem [21].

Theorem 15. [21] The relations L and R are both congruences on any

skew lattice S. Moreover,

(i) S/L is the maximal right-handed image of S.

(ii) S/R is the maximal left-handed image of S.

(iii) The induced epimorphisms S → S/L and S → S/R together yield an

isomorphism of S with the fibered product S/L ×S/D S/R.

In other words, every skew lattice factors as the fibered product of a
right-handed skew lattice with a left-handed skew lattice over S/D, with
both factors being unique up to isomorphism. In the language of category
theory, while considering models of the algebraic theory of skew lattices in
the category of sets, this fibered product is the limit of a diagram consisting
of two morphisms f : S/L → S/D and g : S/R → S/D with a common
codomain SD, the equalizer of S/L and S/R over SD. This is described in
the following proposition:

Proposition 16. [21] The following diagram is a pullback on the algebraic

category of skew lattices.
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S

S/L

S/R

S/D

As any skew lattice S is embedded in the product S/R × S/L, joint
properties of S/R and S/L are often passed on to S, and conversely. In
particular,

Theorem 17. [5] If S is a skew lattice, S/R and S/L belong to a variety

if and only if S does.

Theorem 17 is expressing a duality analogous to the one observed in
semigroups and distinct to the one stated in Theorem 2. It is rather useful
as it can be observed in several proofs in [5] and [9].

Proposition 18. [7] A skew lattice S satisfies any identity or equational

implication satisfied by both its left factor S/R and its right factor S/L.

An example for which Proposition 18 isn’t sufficient is proving that ◦
always equals ∇. In fact, this is untrue for a skew lattice S but true for both
its left factor S/R and its right factor S/L. Most of disjunctions of identities
fall into this class of examples.

3. The coset category

The study of the coset structure of skew lattices began with Leech in
[23]. It derives from the first decomposition theorem stated in Theorem
10 and gives an introspective into the role of the partition that D-classes
determine on each other providing important additional information. Cosets
are irrelevant in both the context of semigroup theory or lattice theory being
something very specific to skew lattices. However, the coset structure reveals
a new perspective that does not have a counterpart either in the theory of
lattices or in the theory of bands. Several varieties of skew lattices were
characterized using laws involving only cosets in [9]. In this section we
revisit the category that describes this internal structure theory, the coset

category, and we establish a relation between the coset structure and the
poset structure of a skew lattice.

Consider a skew lattice S consisting of exactly two D-classes A > B.
Given b ∈ B the subset A ∧ b ∧ A = { a ∧ b ∧ a | a ∈ A } is said to be a
coset of A in B. Similarly, a coset of B in A is any subset B ∨ a ∨ B =
{ b ∨ a ∨ b | b ∈ B } of A, for a fixed a ∈ A. Given a ∈ A, the image of a in
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B the set

a ∧B ∧ a = { a ∧ b ∧ a | b ∈ B } = {b ∈ B | b ≤ a}.

Dually, given b ∈ B the set b ∨ A ∨ b = { a ∈ A : b ≤ a } is the image of b
in A.

Proposition 19. [9] Let S be a skew lattice with comparable D-classes

X > Y and let y, y′ ∈ Y . The following are equivalent:

(i) X ∧ y ∧X = X ∧ y′ ∧X,

(ii) for all x ∈ X, x ∧ y ∧ x = x ∧ y′ ∧ x,
(iii) there exists x ∈ X such that x ∧ y ∧ x = x ∧ y′ ∧ x.

The dual result also holds.

We call a skew lattice S primitive if it’s composed by just two comparable
D-classes, skew chain when S/D is a chain, diamond when it’s composed by
two incomparable D-classes, A,B, a join class J and a meet class M .

Due to absorption and regularity, the following result holds unveiling the
coset structure of skew lattices through the description of a double partition
that cosets induced on each other.

Theorem 20. [23] Let S be a skew lattice with comparable D-classes A >
B. Then,

(i) B is partitioned by the cosets of A in B; dually A is partitioned by the

cosets of B in A.

(ii) The image of any element a ∈ A in B is a transversal of the cosets of

A in B; dual remarks hold for any b ∈ B and the cosets of B in A.

(iii) Given cosets B ∨ a ∨B in A and A ∧ b ∧A in B a natural bijection of

cosets, named coset bijection is given by: x ∈ B ∨ a∨B corresponds to

y ∈ A ∧ b ∧A if and only if x ≥ y.
(iv) The operations ∧ and ∨ on A ∪ B are determined jointly by the coset

bijections and the rectangular structure of each D-class.

According to Theorem 20, in a skew lattice S with comparable D-classes
A > B where a ∈ A and b ∈ B, a coset bijection ϕa,b from B ∨ a ∨ B to
A∧b∧A maps an element x ∈ B∨a∨B in A to an element y ∈ A∧b∧A in B.
If x ∈ A then x∧b∧x is the only element of A∧b∧A below x: if x∧b∧x < x
and x∧ b∧ x, y ∈ A ∧ b∧A, Theorem 20 implies that x∧ b∧ x = y. Dually,
the inverse of this coset bijection sends an element y ∈ B to an element
y∨a∨ y ∈ A. When we consider a skew lattice S with comparable D-classes
A > B > C, a nonempty composition of coset bijections from B ∨ a ∨B to
B ∧ c∧B maps an element x ∈ A to (x∧ b∧ x) ∧ c ∧ (x∧ b∧ x) that equals
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x ∧ c ∧ x by Proposition 21 in case the composition of these coset bijections
is still a coset bijection.

Proposition 21. [10] Let A > B > C denote three distinct but comparable

equivalence classes of a skew lattice S. Then,

(i) For any c ∈ C, the A-coset A∧c∧A is contained in the B-coset B∧c∧B.

Likewise, for any a ∈ A, the C-coset C∨a∨C is contained in the B-coset

B ∨ a ∨B;

(ii) Given a > b > c with a ∈ A, b ∈ B and c ∈ C, if ϕ is the coset bijection

from A to B taking a to b, ψ is the coset bijection from B to C taking b
to c and finally χ is the coset bijection from A to C taking a to c, then

ψ ◦ ϕ ⊆ χ.

The second part of this result follows from the inclusion
(

A ∧ b ∧A
⋂

C ∨ b ∨ C
)

∧ c ∧ (A ∧ b ∧A
⋂

C ∨ b ∨ C)

⊆ A ∧ b ∧A ∧ c ∧A ∧ b ∧A = A ∧ c ∧A

showing us that the composite partial bijection ψ ◦ϕ, if nonempty, is a part
of a coset bijection from a C-coset of A to an A-coset of C.

Normality for bands is characterized by the identity uxyv = uyxv. This
is equivalent to eSe being a semilattice for all e ∈ S, or else to B covering A
whenever A ≥ B are comparable D classes in S. By B covering A we mean

∀a ∈ A ∃!b ∈ B such that a ≥ b.
Recall that a skew lattice is normal if (S,∧) is a normal band. Normal

skew lattices form a subvariety of skew lattices. Any maximal normal band
in a ring R is a normal skew lattice under ∇ and the usual multiplication
[10]. Hence the relevance of this property. This reveals the coset structure
of normal skew lattices. Moreover, coset bijections are closed under com-
position with the composition of adjacent coset bijections being nonempty,
making sure that compositions of coset bijections are coset bijections.

A skew lattice is categorical if nonempty compositions of coset bijections
are coset bijections. Categorical skew lattices form a variety [23]. The study
of distributive skew chains has been a relevant motivation to the studies on
the categorical skew lattices in [16]. Skew lattices in rings as well as normal
skew lattices are examples of algebras in this variety [23]. The example
represented by the diagram in the Figure 3 shows a skew lattice that need
not be categorical.

The name comes directly from the definition as categorical skew lattices

are the ones for whom coset bijections form a category under certain condi-
tions. A categorical skew lattice is named strictly categorical if compositions
of coset bijections are never empty. Already in 1993, Leech defines categor-
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dc e f

ba

g h

Fig. 3. A non categorical skew lattice

ical skew lattices within his geometric perspective on skew lattices [23]. For
any strictly categorical skew lattice S, define the category C by the following:

the objects of C are the D-classes of S;
for comparable classes A > B, C(A,B) are all the coset bijections from
the B-cosets in A to the A-cosets in B. Otherwise, C(A,B) consists of
the empty bijection;
C(A,A) consists of the identity bijection on A;
morphism composition is the usual composition of partial bijection.

The category is modified in case S is just categorical by adding the re-
quirement that, for each pair A ≥ B, C(A,B) contains the empty bijection.

We call C the coset category. By the nature of coset bijections, C and its
dual category Cop coincide.

Leech pointed out to the author that Theorem 20 together with Propo-
sition 13 show us that the union of this family of bijections (where each
bijection is seen as a set of ordered pairs) is equivalent to the order structure
of A ∪B as it is shown in the following:

Theorem 22. Let S be a categorical skew lattice and A ≥ B comparable

D-classes. Then,

∪C(A,B) = ∪{ϕa,b : a ∈ A, b ∈ B } =≥A×B ,

where ϕa,b is the coset bijection between B ∨ a ∨B and A ∧ b ∧A.

Proof. Just observe that all D-classes are anti-chains and therefore coset
bijections describe all the order structure of the skew lattice.

This last result reveals the important role of the coset structure in the
study of skew lattices as it describes the order structure and provides us also
the information on the structural effect of the congruence D. We conjecture
an isomorphism between the coset category and the algebraic category for
categorical skew lattices, though this is still an open problem.

Moreover, the study of the coset category is yet to be done on a cate-
gorical perspective. Indeed, this is an unusual category that arises from the
particular morphisms that it comprehends. Recent developments have been
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made in the study of the coset structure of a skew lattice with the charac-
terization of several subvarieties of these algebras using coset identities in
[8] and in [9] or the study of distributivity and cancellation in [5] and [16].
The further the work on the coset structure of a skew lattice develops the
more relevant is the challenge to study the coset category and strengthen
the foundations of this new approach.
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