

Worakrit Supaporn

CENTRALIZER CLONES ARE PRESERVED
BY CATEGORY EQUIVALENCES

Abstract. In this paper it will be proved that if a clone C is category equivalent to a centralizer clone then C is a centralizer clone.

1. Notations and preliminaries

Let A be a finite set and let n be a positive integer. The set of all n -ary operations on A is denoted by $O_A^{(n)}$ and $O_A := \bigcup_{n \geq 1} O_A^{(n)}$. The set of all n -ary relations on A is denoted by $Rel_A^{(n)}$ and $Rel_A := \bigcup_{n \geq 1} Rel_A^{(n)}$. For $1 \leq i \leq n$, the n -ary i -th projection is defined as $e_i^{n,A}(a_1, \dots, a_n) = a_i$ for all $a_1, \dots, a_n \in A$. For $f \in O_A^{(n)}$ and $g_1, \dots, g_n \in O_A^{(m)}$, we define their composition to be the m -ary operation $f(g_1, \dots, g_n)$ defined by $f(g_1, \dots, g_n)(a_1, \dots, a_m) = f(g_1(a_1, \dots, a_m), \dots, g_n(a_1, \dots, a_m))$ for all $a_1, \dots, a_m \in A$.

A *clone* on A is a set of operations defined on A which contains all projections and is closed under composition. It is well-known that the intersection of an arbitrary set of clones on A is a clone on A . Thus for $F \subseteq O_A$, there is the least clone containing F , called the clone *generated* by F and it is denoted by $\langle F \rangle$.

Let $f \in O_A^{(n)}$ and $\rho \in Rel_A^{(h)}$. The operation f *preserves* ρ if $(f(a_1^1, \dots, a_1^n), \dots, f(a_h^1, \dots, a_h^n)) \in \rho$ whenever $(a_1^1, \dots, a_h^1), \dots, (a_1^n, \dots, a_h^n) \in \rho$.

Let $F \subseteq O_A$ and $R \subseteq Rel_A$. The set of all operations on A which preserve all relations in R is denoted by $Pol_A R$. We usually abbreviate $Pol_A R$ to $PolR$ if there is no danger of misunderstanding. The set of all relations on A which are preserved by all operations in F is denoted by $Inv_A F$. We usually abbreviate $Inv_A F$ to $InvF$ if there is no danger of misunderstanding.

2000 *Mathematics Subject Classification*: 08A40, 08A62, 08C05.

Key words and phrases: category equivalence of clones, centralizer clone, relation algebra.

The pair (Pol, Inv) forms a Galois-connection between sets O_A and Rel_A (see [5]).

On the set Rel_A one can define operations $\varsigma^A, \tau^A, \Delta^A, \circ^A, \delta_A^{\{1,2,3\}}$ and obtain algebra $\mathbf{Rel}_A = (Rel_A; \varsigma^A, \tau^A, \Delta^A, \circ^A, \delta_A^{\{1,2,3\}})$ of type $(1, 1, 1, 2, 0)$. Any subalgebra of this algebra is called a *relation algebra* (see [5]).

Let $V(\mathbf{A})$ be the variety generated by an algebra \mathbf{A} and let $T(\mathbf{A})$ be the clone generated by the set of all fundamental operations of \mathbf{A} . In [2] and [3] the authors defined category equivalences of clones and characterized category equivalences of clones by isomorphisms of some relation algebras.

DEFINITION 1.1. ([2]) A clone C on a set A is *category equivalent* to a clone C' on a set B if there are algebras \mathbf{A} and \mathbf{B} with universes A and B , respectively such that $C = T(\mathbf{A})$, $C' = T(\mathbf{B})$ and $V(\mathbf{A})$ and $V(\mathbf{B})$ are category equivalent.

THEOREM 1.2. ([3]) *Two clones C and C' on finite sets A and B , respectively are category equivalent if and only if the relation algebras $\mathbf{Inv}_A \mathbf{C}$ and $\mathbf{Inv}_B \mathbf{C}'$ are isomorphic.*

Now we recall some concepts on centralizer clones.

For each n -ary operation f on A , the *graph* of f is an $(n+1)$ -ary relation $f^\bullet := \{(a_1, \dots, a_n, y) \mid a_1, \dots, a_n, y \in A \text{ and } y = f(a_1, \dots, a_n)\}$. The concept of a graph can be naturally extended to a set F of operations by $F^\bullet := \{f^\bullet \mid f \in F\}$.

DEFINITION 1.3. A clone C on A is a *centralizer clone (primitive positive clone)* if there is a subset $F \subseteq O_A$ such that $C = Pol F^\bullet$.

For a survey on properties of centralizer clones see [4].

We are interested in properties of clones which are preserved under category equivalences, for instant we have:

THEOREM 1.4. ([2]) *Let $Pol_A \rho$ be a maximal clone on a finite set A ($|A| > 1$) and let C be a clone on a finite set B ($|B| > 1$). If C is category equivalent to $Pol_A \rho$, then C is a maximal clone in the same class as $Pol_A \rho$.*

In [1], the author has shown that there are only three classes of maximal clones such that each clone in these classes is a centralizer clone.

THEOREM 1.5. ([1]) *A maximal clone $Pol \rho$ on a finite set A ($|A| > 1$) is a centralizer clone if and only if ρ is a graph of unary constant function, or a graph of prime permutation, or a graph of linear operation.*

2. The main result

Theorem 1.4 and Theorem 1.5 imply that if a clone C is category equivalent to a maximal centralizer clone then C is a maximal centralizer clone. Therefore we claim that if a clone C is category equivalent to a centralizer clone then C is a centralizer clone. To prove this conjecture we need some properties of homomorphisms between relation algebras.

LEMMA 2.1. *Let $\mathbf{R}_A = (R_A; \varsigma^A, \tau^A, \Delta^A, \circ^A, \delta_A^{\{1;2,3\}})$ and $\mathbf{R}_B = (R_B; \varsigma^B, \tau^B, \Delta^B, \circ^B, \delta_B^{\{1;2,3\}})$ be relation algebras where $R_A \subseteq \text{Rel}_A$ and $R_B \subseteq \text{Rel}_B$ and let φ be a homomorphism from \mathbf{R}_A to \mathbf{R}_B . If $\rho \in R_A$ is the graph of an n -ary operation on A , then $\varphi(\rho)$ is the graph of an n -ary operation on B .*

Finally, we use Theorem 1.2 and Lemma 2.1 to prove the following theorem.

THEOREM 2.2. *Let C and C' be clones on finite sets A and B , respectively where C is a centralizer clone. If C' is category equivalent to C , then C' is a centralizer clone.*

Proof. Since C is a centralizer clone on A , there is a set F of operations on A such that $C = \text{Pol}F^\bullet$. Since C' is category equivalent to C and by Theorem 1.2, there is an isomorphism φ from a relation algebra **InvC** onto a relation algebra **InvC'**. Then

$$\text{Inv}C' = \varphi(\text{Inv}C) = \varphi(\text{Inv} \text{Pol}F^\bullet) = \varphi(\langle F^\bullet \rangle) = \langle \varphi(F^\bullet) \rangle = \text{Inv} \text{Pol} \varphi(F^\bullet).$$

We have

$$C' = \text{Pol} \text{Inv}C' = \text{Pol} \text{Inv} \text{Pol} \varphi(F^\bullet) = \text{Pol} \varphi(F^\bullet)$$

and

$$\varphi(F^\bullet) = \{\varphi(\rho) \mid \rho \in F^\bullet\}$$

is a set of graphs of operations on B . These imply that C' is a centralizer clone on B . ■

Acknowledgements. I would like to express my gratitude to the Centre of Excellence in Mathematics (Thailand) for kindly providing me. I also thank my supervisor professor Klaus Denecke for all valuable comments and suggestions.

References

- [1] D. Mašulović, *Primitive positive maximal clone*, Novi Sad J. Math. 28(2) (1998), 155–162.
- [2] K. Denecke, O. Lüders, *Category equivalences of clones*, Algebra Universalis 34 (1995), 608–618.

- [3] K. Denecke, O. Lüders, *Categorical equivalence of varieties and invariant relations*, Algebra Universalis 46 (2001), 105–118.
- [4] M. Hermann, *On Boolean primitive positive clones*, Discrete Math. 308 (2008), 3151–3162.
- [5] R. Pöschel, L. A. Kalushnin, *Funktionen- und Relationenalgebren*, Verlag der Wissenschaften, Berlin, 1979.

MATHEMATICS INSTITUTE
POTSDAM UNIVERSITY
AM NEUEN PALAIS
14415 POTSDAM, GERMANY
E-mail: supaporn@uni-potsdam.de

Received September 11, 2010; revised version November 28, 2010.