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WEAK HOMOMORPHISMS
BETWEEN FUNCTORIAL ALGEBRAS

Abstract. In universal algebra, homomorphisms are usually considered between alge-
bras of the same similarity type. Different from that, the notion of a weak homomorphism,
as introduced by E. Marczewski in 1961, does not depend on a signature, but only on the
clones of term operations generated by the examined algebras. We generalize this idea by
defining weak homomorphisms between F'- and Fh-algebras, where Fi and F» denote not
necessarily equal endofunctors of the category of sets. The aim is to show that, in many
respects, weak homomorphisms behave very similarly to proper homomorphisms—without
restricting the scope of considerations by the necessity of a common type. For instance,
concerning a set F of Set-endofunctors that weakly preserve kernels, the class of all alge-
bras of types from F equipped with the class of all weak homomorphisms between these
algebras forms a category which admits a canonical factorization structure for morphisms.
Furthermore, we treat two product constructions from which the notion of a weak homo-
morphism naturally arises.

Introduction

In universal-algebraic considerations, the elements of an investigated col-
lection of algebras are usually required to have a fixed common signature
and so the notion of a homomorphism is defined only for those situations.
However, this kind of restriction is rather unnecessary in a lot of investiga-
tions in which, as in the theory of completeness, the term operations of an
examined algebra play the essential role.

As introduced by E. Marczewski in [9], a mapping ¢ : A — B is said to
be a weak homomorphism from a non-indexed universal algebra A = (A, F')
to another one B = (B, G) if, for each n-ary fundamental operation f € F
(n € N), there exists an n-ary term operation g of B such that

(P(f(ah R an)) = g((p(al)a ERE) (p(an))
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holds for all (aq,...,a,) € A™ and vice versa, for every n-ary fundamental
operation g € G (n € N), there is an n-ary term operation f of A satisfying
the same condition. Those weak homomorphisms, in particular weak endo-
and automorphisms, were investigated under various aspects, especially by
K. Glazek. (For more details we refer to [3|-[7].)

Furthermore, there is a well-known and very fruitful category-theoretic
generalization of universal algebra: Concerning a Set-endofunctor F', an
F-algebra is an ordered pair A = (A, «) consisting of some set A and a map
a: F(A) — A. A lot of results from universal algebra have already been
proven to be still valid in this much more abstract situation. (More infor-
mation can be found in |2|, for instance.) In the present paper, we want
to contribute to this development by introducing the notion of a weak ho-
momorphism between differently typed functorial algebras. In the case of
universal algebras, our definition will coincide with E. Marczewski’s concept.
Moreover, in many respects, weak homomorphisms behave like usual homo-
morphisms: For example, it turns out that kernels of weak homomorphisms
are congruence relations and that weakly homomorphic images and preim-
ages of subalgebras are subalgebras, too. In this work, we will show that,
concerning a set F of Set-endofunctors which weakly preserve kernels, the
category Set” consisting of all algebras of types from F as objects and the
weak homomorphisms between them as morphisms admits a canonical fac-
torization structure for morphisms, which is quite interesting for the investi-
gation of certain reflexive subcategories of Set” . Finally, we will present two
suggesting ways to construct special products of functorial algebras whereby
the canonical projections become weak homomorphisms.

The sum of these results substantiates that the introduced concept of
weak homomorphisms between differently typed functorial algebras is, in
fact, a useful and promising idea.

1. Basic notions and notations

We assume that the reader is familiar with the basics of category theory.
The category we will deal with is Set, the category of sets. In this section,
we want to address some notational issues and sum up just a few essential
properties of functorial algebras, which will be used in further considerations.

NoTAaTIONS 1.1. Let X and Y be arbitrary sets, S C X, T C Y and
¢ : X = Y. The graph of ¢ is given by ¢* := {(z,p(x)) | * € X}, the
kernel of ¢ by kerp := {(z1,22) € X x X | ¢(x1) = ¢(x2)}, the image of
S under ¢ by ¢[S] := {¢(s) | s € S} and the preimage of T under ¢ by
¢ HT) :={x € X | p(x) € T}. Furthermore, we define 15 : S — X : s s,
$: X = o[X] x> p(z) and plg = po¥ 1S > Y.
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The following lemma is well-known to be equivalent to the Axiom of

Choice.

LEMMA 1.2. (|8]) Let F : Set — Set be a functor and ¢ : X — Y a
surjective map. Then Fo : F(X) — F(Y) is surjective, too.

In this work, we want to assume the Axiom of Choice or, equivalently,
the validity of 1.2. However, as a concluding remark, we will discuss how to
replace the assumption of the Axiom of Choice by requiring some additional
property of the functors under consideration.

Throughout the present paper, F, F1, ..., Fy will denote arbitrary endo-
functors of the category of sets, i.e. functors from Set to itself.

DEFINITION 1.3. ([2]) A (functorial) algebra of type F or an F-algebra is
an ordered pair A = (A, «) consisting of a set A and a map « : F(4) — A,
where A is called the carrier and « the structure map of A.

DEFINITION 1.4. ([2]) Let A= (A, «) and B = (B, ) be algebras of type
F and consider a map ¢ : A — B. We say that ¢ is a homomorphism from
A toBor p: A— Bis a homomorphism, respectively, if poa = o Fyp
holds, i.e. the diagram

F(A) —%~ F(B)

al P

A—7% . B

comimutes.

In the rest of this section, we will repeat some well-known results whose
proofs are not difficult and can be found in [2]|. In particular, whereas the
statements (i) and (ii) of the following proposition imply that, given a Set-
endofunctor F', the class of all F-algebras equipped with the class of all
homomorphisms between these structures forms a category, which we want
to denote by Set, from (iii) we can deduce that the isomorphisms in Set!”
are precisely the bijective homomorphisms.

ProposSITION 1.5. ([2|]) Let A = (A, o), B =
be algebras of type F', ¢ : A — B and ¥ : B —
statements hold:

(B,B) and C = (C,~)
C. Then the following

(i) ida : A — A is a homomorphism.
(ii)) If o : A — B and ¢ : B — C are homomorphisms, then oo : A — C
s a homomorphism, too.
(iii) If ¢ : A — B is a bijective homomorphism, then p=' : B — A is a
homomorphism.
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(iv) Ifop: A — C and ¢ : A — B are homomorphisms and ¢ is surjective,
then i is a homomorphism from B into C.

(v) Ifvop: A— C and ) : B — C are homomorphisms and v is injective,
then o is a homomorphism from A into B.

Note that 1.2 is needed to prove 1.5(iv).

DEFINITION 1.6. ([2]) Let A = (A, @) be an algebra of type F. Then we
define

Subp(A):={SCA|3oe SIS . 1foo=a0F(f)).

A subset S C A is called closed in A if S € Subp(A), i.e. if there exists
a structure map o : F(S) — S such that the canonical injection Lé is a
homomorphism from § = (5, o) to A. In this case, S is said to be a subalgebra

of A.

DEFINITION 1.7. ([2]) Let (A;)icr be a family of F-algebras, where A; =
(A;, ;) for i € 1. The direct product of the family (A;)icr is defined to be
the F-algebra
HjerAj := (Wjer4;,v),

where v : F(IljerA;) — IerA; is the unique map such that for each ¢ €
I the projection 7; : IjcrA; — A; is a homomorphism from (IIjerA;, )
into A;. Furthermore, for a set I and F-algebras A, B, C we define A! :=
IerAj with A; := A for each i € I and B x C := Il;¢;D; with J := {0, 1},
Dy =B, D, :=C.

Since we will introduce weak homomorphisms between functorial algebras
of different types as mappings equipped with suitable structures on their
epi-mono-factorization in Set, the next statement is essential for all further
considerations.

PrRoOPOSITION 1.8. ([2|) Let A= (A, ) and B = (B, ) be F-algebras and
v : A— B a homomorphism. Consider a factorization ¢ = ¥ om of ¢ into
a surjective map m : A — @Q and an injective map ¢ : Q — B for some set
Q. Then there is a unique structure map v : F(Q) — Q which makes w a

homomorphism from A to Q = (Q,~). Additionally, ¢ is a homomorphism
from Q to B.

For later use, we want to recall the following result, too.

ProrosITION 1.9. (|2]) Consider algebras A = (A,«) and B = (B, 3) of
type F' and a homomorphism ¢ : A — B. Then the following statements
hold:

(i) For each U € Subp(A), we have p|U] € Subp(B).
(ii) For each U € Subp(B), we have ¢~ '[U] € Subgp(A).
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Whereas the first statement of 1.9 is a simple consequence of 1.8, the
second one can be proven by describing preimages as pullbacks.

2. Algebraic equivalence

In this section, the second most important concept of the present work,
namely the notion of algebraically equivalent algebras, is introduced and will
be related to some structural properties. But in the first instance, we will
investigate two existence problems concerning usual homomorphisms. Since
some constructions will necessitate that the concerned functors transform
kernels into weak kernels, we start with the following definition.

DEFINITION 2.1. Let F' be an endofunctor of Set. F weakly preserves
kernels if F' transforms kernels into weak kernels, i.e. for every map ¢ : A —
B the following condition is fulfilled: Whenever P is a set with mappings
1,9 : P — F(A) such that Fip oty = Fp o), then there exists a (not
necessarily unique) map o : P — F'(ker ) satisfying ¢; = F'm; o o for each
i € {1,2}, where 7y, 7 : ker ¢ — A denote the canonical projections.

EXAMPLES 2.2.
(i) Let Q = (Q,ar) be an algebraic type, i.e. a set Q equipped with a
function ar : 2 — N. Define the functor Iy : Set — Set by

Fo(X) == | J{w} x x)
weN

for every set X and Fop : Fo(X) — Fo(Y) with

(FQ()O)(W7 (xla cee 7xar(w))) = (OJ, (Cp(l'l), ceey So(xar(w))))
for every map ¢ : X — Y. Then Fy weakly preserves kernels.

(ii) The power set functor P : Set — Set does not preserve kernels.
However, P weakly preserves kernels.

Weak preservation of kernels is of certain interest for our purposes: Given
an algebra A = (A, a) of type F' and a map ¢ : A — B, we would like to
know whether there exists a suitable structure map g : F(B) — B such that
¢ is a homomorphism from A to B = (B, ). In case F' weakly preserves
kernels, it is possible to describe this problem in terms of subalgebras of
direct products. This will be the content of 2.4. In order to verify 2.4, we
want to make use of the following lemma.

LEMMA 2.3. Let (Ai)ier be a family of F-algebras, where A; = (A;, o)
and m; : Iljer A; — A; denotes the canonical projection for i € 1. Moreover,
let S CIljerAj and o : F(S) = S. Then the following are equivalent:

(i) (S,0) is a subalgebra of ILjcA;.



806 F. M. Schneider

(ii) For eachi € I, the restricted projection mi|g : S — A; is a homomorphism

from (S,0) to A;.

The proof of 2.3 is a standard application of the universal product property
in Set.

LEMMA 2.4. Let A= (A, «) be an algebra of type F and ¢ : A — B. Then
the following statements hold:

(i) If there exists a map B : F(B) — B such that ¢ is a homomorphism
from A to B = (B, ), then ker ¢ is closed in A x A.

(ii) Let F weakly preserve kernels. If ker ¢ is closed in A x A, then there
exists a map 5 : F(B) — B such that ¢ is a homomorphism from A to
B=(B,p).

Proof. Let m,m : ker¢op — A and 7§, 75 : ker(Fy) — F(A) denote the
canonical projections.

(i) If 5 : F(B) — B is a map such that ¢ is a homomorphism from A to
B = (B, 3), then a straightforward application of the fact that (ker ¢, w1, m2)
is a pullback of ¢ with itself in Set yields the existence of a (unique) map
v : F(ker ¢) — ker ¢ satisfying m oy = @ o Frp and mp 0y = a o Fmy. By
2.3, ker ¢ is closed in A x A.

(ii) Conversely, consider some v : F'(ker ¢) — ker ¢ such that (ker ¢y, )
is a subalgebra of A x A. Since F weakly preserves kernels and it holds
Fyon} = Fy oy, there is a mapping 7 : ker(Fy) — F(ker ¢) such that
] = Fmor and m5 = Fmpo7. As, for each pair (a1,a2) € ker(Fyp), it
follows

=(poaoni)(a,az) = (poao FmrorT)(al,az)
= (pomoyoT)(ar,a2) = (pomoyor)(a,az)
= (poao Fro7)(a1,a2) = (poaoms)(ar,a2) = (¢ oa)(az),

we have ker(F'¢) C ker(¢ o ) and hence there exists a map 8 : F(B) — B

satisfying (B(ry)ra))® = {((Fe)(a), p(a(a))) | a € F(A)}. Consequently,
we have poa = o Fyp. m

(¢ o a)(ar)

The next lemma almost immediately follows from the fact that, for an
injective map ¢ : A — B, the map ¢ : A — ¢[A] is a bijection.
LEMMA 2.5. Let B = (B,3) be an algebra of type F and ¢ : A — B

injective. There exists a structure map « : F(A) — A such that ¢ is a
homomorphism from A= (A, «) to B if and only if ¢[A] is closed in B.

There is no adequate generalization of universal-algebraic term functions
relating to arbitrary F-algebras. However, from [10] we know that two uni-
versal algebras with a common carrier are term equivalent, i.e. they generate
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the same term functions, if and only if their infinitary invariants coincide.
This characterization is captured by the following definition.

DEFINITION 2.6. Let A; = (A, 1) be an Fj-algebra and Az = (4, ) an
Fs-algebra on a common carrier A. Then we call Ay and Ay algebraically
equivalent and write A, F1="2 A, if, for each set I, it holds

Subp, (Af) = Subg, (A%).

As one might expect, the notion of algebraically equivalent structures is
compatible with homomorphic images and substructures.

LEMMA 2.7. Let A1 = (A, 1) and By = (B, 1) be algebras of type Fi,
Ay = (A, a2) and By = (B, 32) algebras of type Fy. If there exists a surjective
map ¢ : A — B which is a homomorphism from Ay to By as well as from

As to Ba, then it holds
.AlFl EFQ.AQ — BlFl EF2BQ.
Proof. Let I denote an arbitrary set. Due to the Axiom of Choice, the map
SOI : AT — BT (ai)ier = (w(ai))ier

is surjective, and a simple computation shows that ¢! is a homomorphism
from Al to B as well as from A} to BL. Consider some R € Subp, (BY).
According to 1.9(ii), (¢!)7![R] is closed in Al. Assuming that A;"1=F2 Ay,
(") ~YR] is closed in AL, too. As a consequence of the surjectivity of ¢!
and 1.9(i), we have R = ¢![(¢!)"!R]] € Subg,(BL). Therefore, it holds
Subp, (Bf) C Subg, (BL). By symmetry, we obtain Subg,(B) C Subg, (B),
and hence B;F1=25,. n

LEMMA 2.8. Let Ay = (A,a1) and By = (B, 1) be Fi-algebras, Ay =
(A, a2) and By = (B,p2) Fy-algebras. If there exists an injective map
@ : A — B which is a homomorphism from A to By as well as from Ag to
B, then it holds

BlFIEFzBQ — .AlFlEFQAQ.

The proof of 2.8 proceeds analogously to that of 2.7. Of course, whereas
the former of the previous two lemmata necessitates the assumption of the
Axiom of Choice, the latter does not.

3. Weak homomorphisms

Now, everything is prepared to define and investigate weak homomor-
phisms between functorial algebras. Once more, we need to have a closer
look at the universal algebraic situation, in particular, to reformulate E.
Marczewski’s definition of a weak homomorphism. Let A = (A4, (fu)wen)
and B = (B, (9w )weq) be two universal algebras (not necessarily of the
same similarity type) and ¢ : A — B. Then it is straightforward to verify
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that ¢ is a weak homomorphism from 4 to B in the sense of E. Marczewski if
and only if there exist families (f}),co and (g7 ).eq of finitary operations
on p[A] such that

(a) ¢ is a homomorphism from A to (¢[A], (f})weq),

(b) Lg[A} is a homomorphism from (¢[A], (¢}, )weqr) to B,

(c) (wlA], (f3)wea) and (p[A], (g} )wreqr) are term equivalent.

This characterization enables us to generalize the notion of a weak homo-
morphism to the level of arbitrary functorial algebras, where we have to use
usual homomorphisms and algebraic equivalence. In the following definition,
(i) corresponds to (c), whereas (ii) is equivalent to the conjunction of (a) and
(b) for the universal-algebraic case.

DEFINITION 3.1. Let A = (A,a) be an Fij-algebra and B = (B, ) an
F»-algebra and consider a map ¢ : A — B. We say that ¢ is a weak homo-
morphism from A to B or ¢ : A — B is a weak homomorphism, respectively,
if, on the carrier @ := @[A], there exist an Fj-algebra Q1 = (Q,~1) and an
Fs-algebra Q2 = (@, y2) such that the following conditions are satisfied:

(i) It holds @;F1=2Q,.

(ii) ¢ : A — Qp and LS : Q2 — B are homomorphisms, i.e. the diagram

Fi(4) "% R () 2@ 2 y(B)

N S
N Ve
l N 3 5
A

—— =t

commutes.

REMARKS 3.2.

() Since in Set different epi-mono-factorizations of the same morphism
are isomorphic, in this definition we can replace the canonical factorization
p = Lg[A] o ¢ by any factorization ¢ = 1) o m of ¢ into a surjective map
m:A— @ and an injective map v : Q — B for some set Q.

(ii) In the case of universal algebras, this definition of a weak homomor-
phism coincides with the definition given by E. Marczewski.

(iii) According to 1.8, any homomorphism from an F-algebra A into an F'-
algebra B is a weak homomorphism from A to B. In particular, id4 : A — A
is a weak homomorphism for any F-algebra A = (A, a).

PROPOSITION 3.3. Let A = (A,«a) be an Fy-algebra, B = (B, ) an F»-
algebra, B* = (B, *) an F3-algebra and ¢ : A — B. Assume that ¢ : A — B
is a weak homomorphism. Then the following statements hold:
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(i) For each U € Sub(A), we have ¢[U] € Sub(B).
(ii) For each U € Sub(B), we have ¢~ 1{U] € Sub(A).
(iii) The kernel of ¢ is a congruence relation on A, i.e. ker is the kernel
of a proper homomorphism with domain A.
(iv) If o is bijective, then ™' is a weak homomorphism from B to A.
(v) If BE2=I3B* then ¢ : A — B* is a weak homomorphism.

Proof. Let Q; = (Q,~v1) be an Fj-algebra and Qs = (Q,2) an Fh-algebra
on Q := @[A] such that Q;F1=Qy and ¢ : A — Qj, Lg 1 Qy — B are
homomorphisms.

(i) Let U € Sub(A). From 1.9(i), we can infer that $[U] is closed in
Q1. Therefore, Q;"1=Q, implies that ¢[U] is closed in Qs. A second
application of 1.9(i) shows ¢[U] = Lg [o[U]] € Sub(B).

(ii) Analogously to (i), this statement is deduced from 1.9(ii).

(iii) This follows from ker ¢ = ker(Lg o) =kerp.

(iv) If ¢ is bijective, then we have ¢ = ¢, Lg = idp. By 1.5(iii),
idg : B — Qg and ¢! : Q; — A are homomorphisms. With regard to
3.2(i), o1 = ¢! oidp is a suitable factorization.

(v) From Q € Subpg,(B) and Bf2=3B* it follows Q € Subg,(B*). Hence,
there is an algebra Q3 = (Q,~3) of type F3 such that Lg : Q3 — B*is a
homomorphism. According to 2.8, Bf2=38* implies Q2f2= Q3. Thus, we
have Q;"1=Q3 and, therefore, ¢ : A — B* is a weak homomorphism. =

Furthermore, we might expect that the composite of two weak homo-
morphisms is a weak homomorphism. According the following theorem, it
suffices to require that a certain one of the involved functors weakly preserves
kernels.

THEOREM 3.4. Let A be an Fi-algebra, B an Fy-algebra and C an F3-
algebra. Assume that Fy weakly preserves kernels. Whenever o1 : A — B
and po : B — C are weak homomorphisms, then @20 @1 : A — C is a weak
homomorphism, too.

Proof. In accordance with our assumptions and with regard to 3.2(i), we
consider factorizations @1 = 11 0 71, Y9 = o 0 Ty of Y1, Yo into surjective
maps 1 : A = @Q1, mo : B — (2 and injective maps 1 : Q1 — B, Y2 : Q2 —
C, for some sets (1, Q2, as well as an Fj-algebra Q11 = (Q1,711), Fa-algebras

Q2 = (Q1,712), Q22 = (Q2,722), and an F3-algebra Qz3 = (Q2, F3,723)
such that:

(1) It holds Q1171=2Qy5 and Q2= Qy3.
(2) 71 : A — Qu1, Y1 : Q2 — B, ma : B — Qg and vy : Qa3 — C are

homomorphisms.
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By 1.5(ii), mo0ty : Q12 — Qa9 is a homomorphism, too. Let moo1h1 = 1h30m3
be a factorization of my o 71 into a surjective map w3 : 1 — @3 and an
injective map 93 : Q3 — Qg. Evidently, the diagram

\/\/
\/

commutes. By 1.8, there is an Fg—algebra Q32 = (Q@3,732) such that

31 Q1o — Qg9 and 3 : Q39 — Qoo are homomorphisms. By 2.4(i), we
obtain ker 73 € Subp,(Q12 x Q12) and, because of Q1171=2Q15, kerms €
Subp, (Q11 X Q11). Since Fy weakly preserves kernels, by 2.4(ii), there is an
Fy-algebra Q31 = (Q3,731) such that 73 : Q11 — Q31 is a homomorphism.
As a consequence of 2.7, Q1111=Q, implies Q3;1=2Q3,. Analogously,
by 2.5, it follows 13[Q3] € Subp,(Qa2) and, on account of Qaof2=3Qy3,
P3[Q3] € Subp,(Qa23), too. An application of 2.5 provides the existence of
an Fs-algebra Q33 = (Q3,733) such that ¢3 : Q33 — Qa3 is a homomorphism.
By 2.8, QQQFQEF3 Q23 implies Q32F25F3 Qgg. Thus, we have Q31FI EF3 Qgg.
Finally, it remains to be remarked that 73 o7 : A — Q31 is a surjective
homomorphism and 3 o 3 : Q33 — B is an injective homomorphism. By
3.2(1), w2 0 ¢1 is a weak homomorphism from A to B. =

One of the main consequences of the previous theorem, in connection
with 3.2(iii), is the following: For a set F of Set-endofunctors which weakly
preserve kernels, the class of all algebras of types from F endowed with the
class of all homomorphisms between these structures forms a category which,
in the sequel, will be denoted by Set”. According to 3.3(iv) and the fact
that isomorphisms in Set” need to be bijective, the isomorphisms in Set”
are exactly the bijective weak homomorphisms. We are going to investigate
some further structural properties of Set” which correspond to well-known
results for Set? and, in fact, show that the chosen definition is a useful
generalization. The next theorem arises from 1.5(iv), (v).

THEOREM 3.5. Let A= (A,a) be an Fi-algebra, B = (B, ) an Fy-algebra
and C = (C,~) an Fs3-algebra. Furthermore, let ¢ : A — B and ¢ : B — C
be maps such that ¥ o ¢ is a weak homomorphism from A to C. Then the
following statements hold:

(i) Assume that Fy weakly preserves kernels. If ¢ : A — B is a surjective
weak homomorphism, then ¥ : B — C is a weak homomorphism.
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(ii) If ¢ : B — C is an injective weak homomorphism, then ¢ : A — B is a
weak homomorphism, too.

Proof. (i) If ¢ : A — B is a surjective weak homomorphism, then there exists
an Fy-algebra B* = (B, 3*) such that B*f1=F23 and ¢ is a homomorphism
from A into B*. Let Q := ¢[B] = ¢[p[A4]]. Since pop : A — C is a weak ho-
momorphism, there exist algebras Q1 = (@, 1) of type F; and Q3 = (Q,73)

of type F3 such that 0, 1=FQ4 and Yvop: A= O, Lg : Q3 — C are
homomorphisms. According to 1.5(iv), Y : B* — Q is a homomorphism.
By 2.4(i), it follows kert) € Subg, (B* x B*) and, because of B*F1=Fp,
ker i) € Subp, (B x B), too. As Fy weakly preserves kernels, by 2.4(ii) there
exists an Fy-algebra Qo = (Q,~2) such that ¥ : B = Qy becomes a homo-
morphism. On account of 2.7, B*" =28 implies Q;1=Q,. Therefore, we
have Qo™= 0Q3. Consequently, 1) : B — C is a weak homomorphism.

(ii) Analogously to the proof of (i), statement (ii) is derived from 1.5(v),
2.5 and 2.8. =

From the previous theorem one can easily deduce the two corollaries given
below. The analogous results for morphisms in the categories Set and Set
can be found in [8] and 2|, respectively.

COROLLARY 3.6. Let A be an Fy-algebra, B an Fy-algebra, C an F3-algebra,
m: A= B and ¢ : A — C weak homomorphisms. Assume that Fy weakly
preserves kernels and mw is surjective. Then there exists a weak homomor-
phism ) : B — C with the property 1 om = ¢ if and only if kerm C ker . In
this case, ¥ s uniquely determined.

COROLLARY 3.7. Consider an Fi-algebra A, an Fs-algebra B, an F3-
algebra C, an Fy-algebra D as well as weak homomorphisms © : A — B,
p: A—=C,p:B—Dandp:C — D. Assume that Fy weakly preserves
kernels, w is surjective and v is injective. If it holds pom = o, then there
exists a unique weak homomorphism o : B — C with the property o omw = .
In addition, o satisfies ¢ o = p.

Let F be a set of Set-endofunctors which weakly preserve kernels, let EZ
denote the class of all surjective weak homomorphisms between objects of
Set” and M7 the class of all injective weak homomorphisms between objects
of Set”. Taking 3.7 into account, we observe that (EX, M7) is a factoriza-
tion structure for morphisms in Set” (see [1]), which means that

(1) each of EZ and M7 is closed under composition with isomorphisms in
Set”,

(2) each morphism ¢ : A — B in Set” has a factorization ¢ = ¢ o 7 with
m € EX and ¢ € M7 (cf. 3.1, 3.3(v)), and



812 F. M. Schneider

(3) whenever m : A - B, ¢ : A = C,p: B - Dand ¢ : C — D are
morphisms in Set” with 7 € EX, ¢ € M7 and por = 1) o, then there
exists a unique morphism o : B — C in Set” such that the diagram

A—"=B

7
/
of 3
¥

C——DD
P
commutes, i.e. it holds 0 om = ¢ as well as Y oo = p.

4. Products of differently typed algebras

Concerning a set F of endofunctors of Set which weakly preserve kernels,
we would like to find general conditions for F under which Set” has certain
limits. However, this is still an open problem. In this section, we want to
discuss two very suggesting constructions for a product of differently typed
algebras where the canonical projections become weak homomorphisms. Un-
fortunately, the constructed objects fail to have the universal product prop-
erty.

REMARKS 4.1.

(i) Let (F})ier be a family of Set-endofunctors. For every set X, we define
(Wier Fi)(X) == erFi(X) and (ZierFi)(X) = ZierFi(X) = Uer{it x
F;(X), and for every map ¢ : X — Y, we define

(Wier Fi)(#) = (Wier F3)(X) = (Wier F)(Y) = 2 = ((Fip)(2(8))ier,
(CierFi) () : (BierFi)(X) = (Zier F3)(Y) « (i, 2) = (i, (Fig)(2))-
Then the assignments Il;c;F; and ;7 F; constitute endofunctors of Set.
(ii) (|6]) Let F' be an endofunctor of Set. If there is a nonempty set X

with F(X) = 0, then F is trivial, i.e. for each set Y and each map f it holds
F(Y)=0and (Ff)*=0.

At first we will treat a construction concerning the functor IL;c; F;.

DEFINITION 4.2. Let (F;);er be a family of Set-endofunctors and (A;)er
a family of algebras such that, for each i € I, A; = (A;, ;) is an Fj-algebra.
For each i € I, consider the canonical projection m; 4, : (IlxerFy)(A4;) —
F;(A;) and the structure map 0; := ;o7 4, : (HgerFi)(Ai) — A;i. Referring
to 1.7, we define an algebra of type g Fi by ®j€1 Aj :=Tler(Ay,65).

THEOREM 4.3. Let (F;)icr be a family of Set-endofunctors and (A;)ier a
family of algebras such that, for each i € I, A; = (Ai, ;) is an F;-algebra.
We assume that
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(i) if UperFy is trivial, then F; is trivial for each i € I,

(ii) of (IgerFy)(0) =0, then F;(0) =0 for alli € I.
For each i € I, the projection m; : IljerA; — A; is a weak homomorphism
from @;cp Aj to A;.
Proof. We adopt the notations of 4.2. Let ¢ € I. By definition, 7; is a
homomorphism from @, A; to (A;,6;). According to 3.3(v), it suffices to
prove A;Fi=trerFh (A, 5)).

Let L be an arbitrary set, S C AiL . Consider the restricted projections
(7Tl|5 S = Ai)lEL and the projection 7AT/1'7S : (erIFk)(S) — FZ(S) For
each [ € L, it holds Fj(mls) o s = T4, © (HkerFy)(mls), as for all a €
(Iger F)(S), we observe

(Fi(m|s))(Ti,s(a)) = (Fi(mls))(a(i))
= 7,4, (Fr(m|s)(a(k)))rer)
= T4, (Mger Fi) (mi|s) (@)
With these preliminary considerations, we are going to to show
S € Subp,(AF) <= S € Subn,, 5 ((4;,6)").

=" If 0 : F;(S) — S is a structure mapping so that (S, o) is a subal-
gebra of AP, then we define p := 0 0 7; 5 : (e Fi)(S) — S. Immediately,
for each | € L, we infer
m|sop=m|soooms
= a; 0 Fi(m|s) oTi 5
= a; o T4, © (ke Fy) (mls)
= 0; o (e F)(mls),
wherefore, by 2.3, (S, p) is a subalgebra of (A;,d;)".
“«<=": Conversely, if there exists a structure mapping p : (Ixe;Fx)(S) — S
such that (S, p) is a subalgebra of (A;,d;)”, then define o : F;(S) — S by
o® = {(mis(s),p(s)) | s € (IerF)(S)}. On account of (i), (ii) and 4.1(ii),
i s is surjective. Moreover, for all (a1,a2) € kerm; g and | € L, we obtain
(ms o p)(ar) = (6; © (MyerFi)(mls))(ar)
= (a0 4, 0 (Hker Fi)(mls))(a1)
= (0 0 Fy(mj[s) o mi,5)(a1)
= (ai o Fi(mj|s) o mi,5)(az)
= (a; o 75,4, © (HyerFr)(ms)) (az)
= (0; o (per Fr)(mls))(az)
= (ms o p)(az).
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Thus, we conclude ker7; ¢ C ker p and, hence, o is well-defined. For each
l € L, we deduce

mlsooomg =ml|gop=0d;o (IlkerFi)(mls)
= ;o T a; © (Ilrer Fi)(mls)
= a; 0 Fi(m|s) o7 5.

According to the surjectivity of 7; g, it follows 7|00 = a0 Fj(m|s). By 2.3,
(S,0) is a subalgebra of AL.

The proof of 4.3 is illustrated by the diagram

(Hger Fy)(nS)
(e Fi ) (S) —— > (Hger Fr) (As)
/
/ l%i,s %i,Ail
/ Fi(TrlS)
p1 Fy(9) Fi(A;) |6
\
\ :O’ O‘il
N Y wls

The second construction we want to present here requires that the consid-

ered functors are naturally transformable to the identity functor. Of course,
this assumption is motivated by the universal algebraic case, as we will see
in 4.7(i).
DEFINITION 4.4. ([8]) Let C, D be categories and F,G : C — D functors.
A natural transformation T from F to G associates to every C-object X
a D-morphism 7x : F(X) — G(X) such that the following condition is
satisfied: For every C-morphism ¢ : X — Y, it holds Gp o tx = 7y o Fp,
i.e. the diagram

F(X) 2> G(X)

commutes.

DEFINITION 4.5. Let (F});e;r be a family of Set-endofunctors, (A;)icr
a family of algebras and 7 = (7;)cs a family of natural transformations such
that, for each i € I, A; = (A;,;) is an Fj-algebra, and 7; is a natural
transformation from F; to the identity functor Id : Set — Set. Consider
the canonical injections (¢ 4, : Fj(A;) = (ZperFr)(A:))ijer. Foreachi € I,
there exists a unique map &; : (XgerFy)(Ai) — A; satisfying a; = J; 0 4; 4,
and 7 4, = ;015 4, for all j € I'\ {i}. Referring to 1.7, we define an algebra
of type SgerFi, by Djes Aj := Wjer(4;, ;).
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THEOREM 4.6. Let (F})icr be a family of Set-endofunctors, (A;)icr a
family of algebras and T = (1;)ier a family of natural transformations such
that, for each i € I, A; = (Ai, ;) is an Fj-algebra, and 1; is a natural
transformation from F; to the identity functor 1d : Set — Set. Then, for
each i € I, the projection m; : ILjc;A; — A; is a weak homomorphism from
®;€I .Aj to A;.

Proof. We adopt the notations of 4.5. Let ¢ € I. By definition, 7; is a
homomorphism from B¢, A; to (A;,6;). With regard to 3.3(v), it suffices
to prove A;Fi="kerfi (A, 5;).

Let L be an arbitrary set and S C AiL . Furthermore, consider the
restricted projections (m|s : S — A;)ier and the canonical injections
(tj,s « Fj(S) = (ZkerFr)(S))jer. Forall j € I, 1 € L, it is easy to infer
(XkerFr)(mls) o tjs = tja, o Fj(m|s). Similarly to the proof of 4.3, it only
remains to verify

S € Subg, (AF) <= S € Subs,_, 5, ((Ai,6:)5).

“=" Let o : F;(S) — S be a structure map such that (S,0) is a sub-
algebra of AL. Consider the unique map p : (ZgerF))(S) — S satisfying
o=pousand 755 = pou;g forall j € I\ {i}. For each [ € L, we have

mlsopotig=mlsoo=a;oFi(m|s)
= biovia; © Fi(m|s) = 0i o (Srer Fi)(mils) © tis
and, for all j € I\ {i},

m|sopotjs=mlsoTjs=Tja, o Fj(mls)
= 0; 05,4, 0 Fj(m|s) = 6; o (BrerFi)(m|s) o tjs.
Therefore, it holds m|sop = §;0(XkerFi)(m|s). By 2.3, (S, p) is a subalgebra
of (A;,8;)F.
“«<=": Conversely, if there exists a structure map p : (EperF)(S) — S

such that (S,p) is a subalgebra of (A4;,0;)%, then we define o :=
potis: Fi(S)—S. Foreach | € L, it follows

m|soo =m|sopoiis =00 (ZkerFr)(mls) o tis
= 62 o Li,Az‘ O Fi(ﬂ'l|5) = Oy OFZ'(WZ’S)-

According to 2.9, (S, ) is a subalgebra of (A;)". =

The Theorems 4.3 and 4.6 are instances of situations from which the
notion of a weak homomorphism arises. The following examples illustrate
that, in general, ®,c;A; and @;e ; A; are not categorical products of the
algebras (A;);er. In fact, these structures fail to satisfy the corresponding
universal property.
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EXAMPLES 4.7. Let Q; = (Q;,ar;) (i € I) be a family of algebraic types as
in 2.2(i). Suppose that, for each i € I, we have €; # 0 and ar;[€;] C N>;.
Consider the functors F; := Fo (i € I) from 2.2(i) and let (A;)ier be a
family of algebras such that, for each i € I, A; = (A;, o;) is an Fj-algebra.

(i) According to 4.3, for each ¢ € I, the projection m; is a weak homo-
morphism from );c; A; to A;.

(i) Let 0; : Q; — N>q (i € I) be a family of maps such that o;(w) €
{1,...,ar;(w)} for all w € ; and i € I. Then, for each i € I, a natural
transformation 7; from F; to Id can be defined as follows: For any set X,
put

Ti,X - FQZ(X) = Xt (w, (1, 7xari(w))) = Toy(w)-

Theorem 4.6 states that, for each i € I, m; is a weak homomorphism from
®;€I Aj to A;.

(iii) Assume that |I| > 2, F; = Id and A; = (A, «) for all ¢ € I, where A is
aset with |A| > 2 and o : A — A a map with |a[A]| > 2. In accordance with
4.2, we get the Id!-algebra RjerAj = (AT ) with 7 : (AT)T — Al defined
by v(a)(i) := a(a(i)(i)) for all a € (A’)!, i € I. Furthermore, the diagonal
map 6 : A — Al given by d(a)(i) := a for all a € A, i € I, is the unique map
satisfying m;00 = idy4 for each i € I. By 3.2(iii), id4 is a weak homomorphism
from (4, @) to itself. However, since §[A] = {a € AT |Vi,j € I :a(i) = a(5)}
is not closed in @..;A;, § is not a weak homomorphism from (A4, ) to
®jel Aj.

(iv) Suppose that |[I| > 2, F; = Id, 7, x = idx and A; = (4, «) for
all i € I, where A is a set with |[A] > 2 and a : A — A a constant map
with a(a) = o for all a € A. With regard to 4.5, one can compute the
(I x Id)-algebra Pl Aj = (AT ~) with v : I x AT — Al defined by

2(i,a)(j) = {O‘*. i£i=,

a(j) otherwise

Jjel

for all a € A%, 4,5 € I. Asin (iii), 5[A] is not closed in
not a weak homomorphism from A to @77 A;.

JTEI Aj. Thus, 0 is

Concluding remarks

This work provides basic tools for further research concerning weak ho-
momorphisms and some related category theoretic aspects. For instance,
from [1] we know that factorization structures as (EZ, M7) are very useful
tools for the investigation of certain reflexive subcategories. With this in
mind, future considerations could address the classification of E* -reflexive
subcategories of Set” (see [1]). Another interesting question is whether and
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under which conditions it is possible to generalize the given results by replac-
ing Set by an arbitrary category C with a suitable factorization structure
for morphisms and considering those C-endofunctors which are compatible
with this factorization structure in some sense.

Several times in this paper, we needed to assume the Axiom of Choice.
This was to be expected, since the definition of a weak homomorphism is
formulated in terms of infinite direct products of algebras. However, it is
possible to replace the assumption of the Axiom of Choice by requiring an
additional property of the functors under consideration. An endofunctor F
of Set strongly preserves epimorphisms if the following condition is fulfilled:
Whenever ¢ : A — B is a surjective map, I an arbitrary set and R C B,
then the map F is surjective, where v is defined by

v (@) THR = Ria— ¢(a).
If we assume that the investigated functors strongly preserve epimorphisms,
we do not need the Axiom of Choice to prove the obtained results. But then
the Axiom of Choice is significant for the cardinality of this restricted class

of functors. Indeed, it is not difficult to show that the Axiom of Choice is
equivalent to each of the following two statements:

(a) Every Set-endofunctor strongly preserves epimorphisms.
(b) The identity functor Id : Set — Set strongly preserves epimorphisms.

So, for practical reasons, we decided to assume the Axiom of Choice in this
work. But as we have seen, this is not the only way to deal with the outlined
problem.
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