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WEAK HOMOMORPHISMS

BETWEEN FUNCTORIAL ALGEBRAS

Abstract. In universal algebra, homomorphisms are usually considered between alge-
bras of the same similarity type. Different from that, the notion of a weak homomorphism,
as introduced by E. Marczewski in 1961, does not depend on a signature, but only on the
clones of term operations generated by the examined algebras. We generalize this idea by
defining weak homomorphisms between F1- and F2-algebras, where F1 and F2 denote not
necessarily equal endofunctors of the category of sets. The aim is to show that, in many
respects, weak homomorphisms behave very similarly to proper homomorphisms–without
restricting the scope of considerations by the necessity of a common type. For instance,
concerning a set F of Set-endofunctors that weakly preserve kernels, the class of all alge-
bras of types from F equipped with the class of all weak homomorphisms between these
algebras forms a category which admits a canonical factorization structure for morphisms.
Furthermore, we treat two product constructions from which the notion of a weak homo-
morphism naturally arises.

Introduction

In universal-algebraic considerations, the elements of an investigated col-
lection of algebras are usually required to have a fixed common signature
and so the notion of a homomorphism is defined only for those situations.
However, this kind of restriction is rather unnecessary in a lot of investiga-
tions in which, as in the theory of completeness, the term operations of an
examined algebra play the essential role.

As introduced by E. Marczewski in [9], a mapping ϕ : A → B is said to
be a weak homomorphism from a non-indexed universal algebra A = (A,F )
to another one B = (B,G) if, for each n-ary fundamental operation f ∈ F

(n ∈ N), there exists an n-ary term operation g of B such that

ϕ(f(a1, . . . , an)) = g(ϕ(a1), . . . , ϕ(an))
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holds for all (a1, . . . , an) ∈ An and vice versa, for every n-ary fundamental
operation g ∈ G (n ∈ N), there is an n-ary term operation f of A satisfying
the same condition. Those weak homomorphisms, in particular weak endo-
and automorphisms, were investigated under various aspects, especially by
K. Głazek. (For more details we refer to [3]–[7].)

Furthermore, there is a well-known and very fruitful category-theoretic
generalization of universal algebra: Concerning a Set-endofunctor F , an
F -algebra is an ordered pair A = (A,α) consisting of some set A and a map
α : F (A) → A. A lot of results from universal algebra have already been
proven to be still valid in this much more abstract situation. (More infor-
mation can be found in [2], for instance.) In the present paper, we want
to contribute to this development by introducing the notion of a weak ho-
momorphism between differently typed functorial algebras. In the case of
universal algebras, our definition will coincide with E. Marczewski’s concept.
Moreover, in many respects, weak homomorphisms behave like usual homo-
morphisms: For example, it turns out that kernels of weak homomorphisms
are congruence relations and that weakly homomorphic images and preim-
ages of subalgebras are subalgebras, too. In this work, we will show that,
concerning a set F of Set-endofunctors which weakly preserve kernels, the
category Set

F consisting of all algebras of types from F as objects and the
weak homomorphisms between them as morphisms admits a canonical fac-
torization structure for morphisms, which is quite interesting for the investi-
gation of certain reflexive subcategories of SetF . Finally, we will present two
suggesting ways to construct special products of functorial algebras whereby
the canonical projections become weak homomorphisms.

The sum of these results substantiates that the introduced concept of
weak homomorphisms between differently typed functorial algebras is, in
fact, a useful and promising idea.

1. Basic notions and notations

We assume that the reader is familiar with the basics of category theory.
The category we will deal with is Set, the category of sets. In this section,
we want to address some notational issues and sum up just a few essential
properties of functorial algebras, which will be used in further considerations.

Notations 1.1. Let X and Y be arbitrary sets, S ⊆ X, T ⊆ Y and
ϕ : X → Y . The graph of ϕ is given by ϕ• := {(x, ϕ(x)) | x ∈ X}, the
kernel of ϕ by kerϕ := {(x1, x2) ∈ X × X | ϕ(x1) = ϕ(x2)}, the image of
S under ϕ by ϕ[S] := {ϕ(s) | s ∈ S} and the preimage of T under ϕ by
ϕ−1[T ] := {x ∈ X | ϕ(x) ∈ T}. Furthermore, we define ιXS : S → X : s 7→ s,
ϕ̇ : X → ϕ[X] : x 7→ ϕ(x) and ϕ|S := ϕ ◦ ιXS : S → Y .
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The following lemma is well-known to be equivalent to the Axiom of
Choice.

Lemma 1.2. ([8]) Let F : Set → Set be a functor and ϕ : X → Y a
surjective map. Then Fϕ : F (X) → F (Y ) is surjective, too.

In this work, we want to assume the Axiom of Choice or, equivalently,
the validity of 1.2. However, as a concluding remark, we will discuss how to
replace the assumption of the Axiom of Choice by requiring some additional
property of the functors under consideration.

Throughout the present paper, F, F1, . . . , F4 will denote arbitrary endo-
functors of the category of sets, i.e. functors from Set to itself.

Definition 1.3. ([2]) A (functorial) algebra of type F or an F -algebra is
an ordered pair A = (A,α) consisting of a set A and a map α : F (A) → A,
where A is called the carrier and α the structure map of A.

Definition 1.4. ([2]) Let A = (A,α) and B = (B, β) be algebras of type
F and consider a map ϕ : A → B. We say that ϕ is a homomorphism from
A to B or ϕ : A → B is a homomorphism, respectively, if ϕ ◦ α = β ◦ Fϕ
holds, i.e. the diagram

F (A)

α

��

Fϕ
// F (B)

β

��
A

ϕ
// B

commutes.

In the rest of this section, we will repeat some well-known results whose
proofs are not difficult and can be found in [2]. In particular, whereas the
statements (i) and (ii) of the following proposition imply that, given a Set-
endofunctor F , the class of all F -algebras equipped with the class of all
homomorphisms between these structures forms a category, which we want
to denote by Set

F , from (iii) we can deduce that the isomorphisms in Set
F

are precisely the bijective homomorphisms.

Proposition 1.5. ([2]) Let A = (A,α), B = (B, β) and C = (C, γ)
be algebras of type F , ϕ : A → B and ψ : B → C. Then the following
statements hold:

(i) idA : A → A is a homomorphism.
(ii) If ϕ : A → B and ψ : B → C are homomorphisms, then ψ ◦ ϕ : A → C

is a homomorphism, too.
(iii) If ϕ : A → B is a bijective homomorphism, then ϕ−1 : B → A is a

homomorphism.
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(iv) If ψ◦ϕ : A → C and ϕ : A → B are homomorphisms and ϕ is surjective,
then ψ is a homomorphism from B into C.

(v) If ψ ◦ϕ : A → C and ψ : B → C are homomorphisms and ψ is injective,
then ϕ is a homomorphism from A into B.

Note that 1.2 is needed to prove 1.5(iv).

Definition 1.6. ([2]) Let A = (A,α) be an algebra of type F . Then we
define

SubF (A) := {S ⊆ A | ∃σ ∈ SF (S) : ιAS ◦ σ = α ◦ F (ιAS )}.

A subset S ⊆ A is called closed in A if S ∈ SubF (A), i.e. if there exists
a structure map σ : F (S) → S such that the canonical injection ιAS is a
homomorphism from S = (S, σ) to A. In this case, S is said to be a subalgebra
of A.

Definition 1.7. ([2]) Let (Ai)i∈I be a family of F -algebras, where Ai =
(Ai, αi) for i ∈ I. The direct product of the family (Ai)i∈I is defined to be
the F -algebra

Πj∈IAj := (Πj∈IAj , γ),

where γ : F (Πj∈IAj) → Πj∈IAj is the unique map such that for each i ∈
I the projection πi : Πj∈IAj → Ai is a homomorphism from (Πj∈IAj , γ)
into Ai. Furthermore, for a set I and F -algebras A, B, C we define AI :=
Πj∈IAj with Ai := A for each i ∈ I and B × C := Πj∈JDj with J := {0, 1},
D0 := B, D1 := C.

Since we will introduce weak homomorphisms between functorial algebras
of different types as mappings equipped with suitable structures on their
epi-mono-factorization in Set, the next statement is essential for all further
considerations.

Proposition 1.8. ([2]) Let A = (A,α) and B = (B, β) be F -algebras and
ϕ : A → B a homomorphism. Consider a factorization ϕ = ψ ◦ π of ϕ into
a surjective map π : A → Q and an injective map ψ : Q → B for some set
Q. Then there is a unique structure map γ : F (Q) → Q which makes π a
homomorphism from A to Q = (Q, γ). Additionally, ψ is a homomorphism
from Q to B.

For later use, we want to recall the following result, too.

Proposition 1.9. ([2]) Consider algebras A = (A,α) and B = (B, β) of
type F and a homomorphism ϕ : A → B. Then the following statements
hold:

(i) For each U ∈ SubF (A), we have ϕ[U ] ∈ SubF (B).
(ii) For each U ∈ SubF (B), we have ϕ−1[U ] ∈ SubF (A).
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Whereas the first statement of 1.9 is a simple consequence of 1.8, the
second one can be proven by describing preimages as pullbacks.

2. Algebraic equivalence

In this section, the second most important concept of the present work,
namely the notion of algebraically equivalent algebras , is introduced and will
be related to some structural properties. But in the first instance, we will
investigate two existence problems concerning usual homomorphisms. Since
some constructions will necessitate that the concerned functors transform
kernels into weak kernels, we start with the following definition.

Definition 2.1. Let F be an endofunctor of Set. F weakly preserves
kernels if F transforms kernels into weak kernels, i.e. for every map ϕ : A→
B the following condition is fulfilled: Whenever P is a set with mappings
ψ1, ψ2 : P → F (A) such that Fϕ ◦ ψ1 = Fϕ ◦ ψ2, then there exists a (not
necessarily unique) map σ : P → F (kerϕ) satisfying ψi = Fπi ◦ σ for each
i ∈ {1, 2}, where π1, π2 : kerϕ→ A denote the canonical projections.

Examples 2.2.

(i) Let Ω = (Ω, ar) be an algebraic type, i.e. a set Ω equipped with a
function ar : Ω → N. Define the functor FΩ : Set → Set by

FΩ(X) :=
⋃

ω∈Ω

{ω} ×Xar(ω)

for every set X and FΩϕ : FΩ(X) → FΩ(Y ) with

(FΩϕ)(ω, (x1, . . . , xar(ω))) := (ω, (ϕ(x1), . . . , ϕ(xar(ω))))

for every map ϕ : X → Y . Then FΩ weakly preserves kernels.

(ii) The power set functor P : Set → Set does not preserve kernels.
However, P weakly preserves kernels.

Weak preservation of kernels is of certain interest for our purposes: Given
an algebra A = (A,α) of type F and a map ϕ : A → B, we would like to
know whether there exists a suitable structure map β : F (B) → B such that
ϕ is a homomorphism from A to B = (B, β). In case F weakly preserves
kernels, it is possible to describe this problem in terms of subalgebras of
direct products. This will be the content of 2.4. In order to verify 2.4, we
want to make use of the following lemma.

Lemma 2.3. Let (Ai)i∈I be a family of F -algebras, where Ai = (Ai, αi)
and πi : Πj∈IAj → Ai denotes the canonical projection for i ∈ I. Moreover,
let S ⊆ Πj∈IAj and σ : F (S) → S. Then the following are equivalent:

(i) (S, σ) is a subalgebra of Πj∈IAj.
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(ii) For each i ∈ I, the restricted projection πi|S : S → Ai is a homomorphism
from (S, σ) to Ai.

The proof of 2.3 is a standard application of the universal product property
in Set.

Lemma 2.4. Let A = (A,α) be an algebra of type F and ϕ : A→ B. Then
the following statements hold:

(i) If there exists a map β : F (B) → B such that ϕ is a homomorphism
from A to B = (B, β), then kerϕ is closed in A×A.

(ii) Let F weakly preserve kernels. If kerϕ is closed in A × A, then there
exists a map β : F (B) → B such that ϕ is a homomorphism from A to
B = (B, β).

Proof. Let π1, π2 : kerϕ → A and π∗1, π
∗
2 : ker(Fϕ) → F (A) denote the

canonical projections.
(i) If β : F (B) → B is a map such that ϕ is a homomorphism from A to

B = (B, β), then a straightforward application of the fact that (kerϕ, π1, π2)
is a pullback of ϕ with itself in Set yields the existence of a (unique) map
γ : F (kerϕ) → kerϕ satisfying π1 ◦ γ = α ◦ Fπ1 and π2 ◦ γ = α ◦ Fπ2. By
2.3, kerϕ is closed in A×A.

(ii) Conversely, consider some γ : F (kerϕ) → kerϕ such that (kerϕ, γ)
is a subalgebra of A × A. Since F weakly preserves kernels and it holds
Fϕ ◦ π∗1 = Fϕ ◦ π∗2, there is a mapping τ : ker(Fϕ) → F (kerϕ) such that
π∗1 = Fπ1 ◦ τ and π∗2 = Fπ2 ◦ τ . As, for each pair (a1, a2) ∈ ker(Fϕ), it
follows

(ϕ ◦ α)(a1) = (ϕ ◦ α ◦ π∗1)(a1, a2) = (ϕ ◦ α ◦ Fπ1 ◦ τ)(a1, a2)

= (ϕ ◦ π1 ◦ γ ◦ τ)(a1, a2) = (ϕ ◦ π2 ◦ γ ◦ τ)(a1, a2)

= (ϕ ◦ α ◦ Fπ2 ◦ τ)(a1, a2) = (ϕ ◦ α ◦ π∗2)(a1, a2) = (ϕ ◦ α)(a2),

we have ker(Fϕ) ⊆ ker(ϕ ◦ α) and hence there exists a map β : F (B) → B

satisfying (β|(Fϕ)[F (A)])
• = {((Fϕ)(a), ϕ(α(a))) | a ∈ F (A)}. Consequently,

we have ϕ ◦ α = β ◦ Fϕ.

The next lemma almost immediately follows from the fact that, for an
injective map ϕ : A→ B, the map ϕ̇ : A→ ϕ[A] is a bijection.

Lemma 2.5. Let B = (B, β) be an algebra of type F and ϕ : A → B

injective. There exists a structure map α : F (A) → A such that ϕ is a
homomorphism from A = (A,α) to B if and only if ϕ[A] is closed in B.

There is no adequate generalization of universal-algebraic term functions
relating to arbitrary F -algebras. However, from [10] we know that two uni-
versal algebras with a common carrier are term equivalent , i.e. they generate
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the same term functions, if and only if their infinitary invariants coincide.
This characterization is captured by the following definition.

Definition 2.6. Let A1 = (A,α1) be an F1-algebra and A2 = (A,α2) an
F2-algebra on a common carrier A. Then we call A1 and A2 algebraically
equivalent and write A1

F1≡F2A2 if, for each set I, it holds

SubF1
(AI

1) = SubF2
(AI

2).

As one might expect, the notion of algebraically equivalent structures is
compatible with homomorphic images and substructures.

Lemma 2.7. Let A1 = (A,α1) and B1 = (B, β1) be algebras of type F1,
A2 = (A,α2) and B2 = (B, β2) algebras of type F2. If there exists a surjective
map ϕ : A ։ B which is a homomorphism from A1 to B1 as well as from
A2 to B2, then it holds

A1
F1≡F2A2 =⇒ B1

F1≡F2B2.

Proof. Let I denote an arbitrary set. Due to the Axiom of Choice, the map

ϕI : AI → BI : (ai)i∈I 7→ (ϕ(ai))i∈I

is surjective, and a simple computation shows that ϕI is a homomorphism
from AI

1 to BI1 as well as from AI
2 to BI2 . Consider some R ∈ SubF1

(BI1).
According to 1.9(ii), (ϕI)−1[R] is closed in AI

1. Assuming that A1
F1≡F2A2,

(ϕI)−1[R] is closed in AI
2, too. As a consequence of the surjectivity of ϕI

and 1.9(i), we have R = ϕI [(ϕI)−1[R]] ∈ SubF2
(BI2). Therefore, it holds

SubF1
(BI1) ⊆ SubF2

(BI2). By symmetry, we obtain SubF2
(BI2) ⊆ SubF1

(BI1),
and hence B1

F1≡F2B2.

Lemma 2.8. Let A1 = (A,α1) and B1 = (B, β1) be F1-algebras, A2 =
(A,α2) and B2 = (B, β2) F2-algebras. If there exists an injective map
ϕ : A →֒ B which is a homomorphism from A1 to B1 as well as from A2 to
B2, then it holds

B1
F1≡F2B2 =⇒ A1

F1≡F2A2.

The proof of 2.8 proceeds analogously to that of 2.7. Of course, whereas
the former of the previous two lemmata necessitates the assumption of the
Axiom of Choice, the latter does not.

3. Weak homomorphisms

Now, everything is prepared to define and investigate weak homomor-
phisms between functorial algebras. Once more, we need to have a closer
look at the universal algebraic situation, in particular, to reformulate E.
Marczewski’s definition of a weak homomorphism. Let A = (A, (fω)ω∈Ω)
and B = (B, (gω′)ω′∈Ω′) be two universal algebras (not necessarily of the
same similarity type) and ϕ : A → B. Then it is straightforward to verify
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that ϕ is a weak homomorphism from A to B in the sense of E. Marczewski if
and only if there exist families (f∗ω)ω∈Ω and (g∗ω′)ω′∈Ω′ of finitary operations
on ϕ[A] such that

(a) ϕ̇ is a homomorphism from A to (ϕ[A], (f∗ω)ω∈Ω),
(b) ιB

ϕ[A] is a homomorphism from (ϕ[A], (g∗ω′)ω′∈Ω′) to B,

(c) (ϕ[A], (f∗ω)ω∈Ω) and (ϕ[A], (g∗ω′)ω′∈Ω′) are term equivalent.

This characterization enables us to generalize the notion of a weak homo-
morphism to the level of arbitrary functorial algebras, where we have to use
usual homomorphisms and algebraic equivalence. In the following definition,
(i) corresponds to (c), whereas (ii) is equivalent to the conjunction of (a) and
(b) for the universal-algebraic case.

Definition 3.1. Let A = (A,α) be an F1-algebra and B = (B, β) an
F2-algebra and consider a map ϕ : A → B. We say that ϕ is a weak homo-
morphism from A to B or ϕ : A → B is a weak homomorphism, respectively,
if, on the carrier Q := ϕ[A], there exist an F1-algebra Q1 = (Q, γ1) and an
F2-algebra Q2 = (Q, γ2) such that the following conditions are satisfied:

(i) It holds Q1
F1≡F2Q2.

(ii) ϕ̇ : A → Q1 and ιBQ : Q2 → B are homomorphisms, i.e. the diagram

F1(A)

α

��

F1(ϕ̇)
// F1(Q)

γ1

""E
E

E
E

E
F2(Q)

γ2

||y
y
y
y
y

F2(ιBQ)
// F2(B)

β

��
A

ϕ̇
//

ϕ

33Q
ιBQ

// B

commutes.

Remarks 3.2.

(i) Since in Set different epi-mono-factorizations of the same morphism
are isomorphic, in this definition we can replace the canonical factorization
ϕ = ιB

ϕ[A] ◦ ϕ̇ by any factorization ϕ = ψ ◦ π of ϕ into a surjective map

π : A→ Q and an injective map ψ : Q→ B for some set Q.
(ii) In the case of universal algebras, this definition of a weak homomor-

phism coincides with the definition given by E. Marczewski.
(iii) According to 1.8, any homomorphism from an F -algebra A into an F -

algebra B is a weak homomorphism from A to B. In particular, idA : A → A
is a weak homomorphism for any F -algebra A = (A,α).

Proposition 3.3. Let A = (A,α) be an F1-algebra, B = (B, β) an F2-
algebra, B∗ = (B, β∗) an F3-algebra and ϕ : A→ B. Assume that ϕ : A → B
is a weak homomorphism. Then the following statements hold:
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(i) For each U ∈ Sub(A), we have ϕ[U ] ∈ Sub(B).
(ii) For each U ∈ Sub(B), we have ϕ−1[U ] ∈ Sub(A).
(iii) The kernel of ϕ is a congruence relation on A, i.e. kerϕ is the kernel

of a proper homomorphism with domain A.
(iv) If ϕ is bijective, then ϕ−1 is a weak homomorphism from B to A.
(v) If BF2≡F3B∗, then ϕ : A → B∗ is a weak homomorphism.

Proof. Let Q1 = (Q, γ1) be an F1-algebra and Q2 = (Q, γ2) an F2-algebra
on Q := ϕ[A] such that Q1

F1≡F2Q2 and ϕ̇ : A → Q1, ι
B
Q : Q2 → B are

homomorphisms.

(i) Let U ∈ Sub(A). From 1.9(i), we can infer that ϕ̇[U ] is closed in
Q1. Therefore, Q1

F1≡F2Q2 implies that ϕ̇[U ] is closed in Q2. A second
application of 1.9(i) shows ϕ[U ] = ιBQ[ϕ̇[U ]] ∈ Sub(B).

(ii) Analogously to (i), this statement is deduced from 1.9(ii).

(iii) This follows from kerϕ = ker(ιBQ ◦ ϕ̇) = ker ϕ̇.

(iv) If ϕ is bijective, then we have ϕ = ϕ̇, ιBQ = idB. By 1.5(iii),

idB : B → Q2 and ϕ−1 : Q1 → A are homomorphisms. With regard to
3.2(i), ϕ−1 = ϕ−1 ◦ idB is a suitable factorization.

(v) From Q ∈ SubF2
(B) and BF2≡F3B∗, it follows Q ∈ SubF3

(B∗). Hence,
there is an algebra Q3 = (Q, γ3) of type F3 such that ιBQ : Q3 → B∗ is a

homomorphism. According to 2.8, BF2≡F3B∗ implies Q2
F2≡F3Q3. Thus, we

have Q1
F1≡F3Q3 and, therefore, ϕ : A → B∗ is a weak homomorphism.

Furthermore, we might expect that the composite of two weak homo-
morphisms is a weak homomorphism. According the following theorem, it
suffices to require that a certain one of the involved functors weakly preserves
kernels.

Theorem 3.4. Let A be an F1-algebra, B an F2-algebra and C an F3-
algebra. Assume that F1 weakly preserves kernels. Whenever ϕ1 : A → B
and ϕ2 : B → C are weak homomorphisms, then ϕ2 ◦ ϕ1 : A → C is a weak
homomorphism, too.

Proof. In accordance with our assumptions and with regard to 3.2(i), we
consider factorizations ϕ1 = ψ1 ◦ π1, ϕ2 = ψ2 ◦ π2 of ϕ1, ϕ2 into surjective
maps π1 : A→ Q1, π2 : B → Q2 and injective maps ψ1 : Q1 → B, ψ2 : Q2 →
C, for some setsQ1, Q2, as well as an F1-algebra Q11 = (Q1, γ11), F2-algebras
Q12 = (Q1, γ12), Q22 = (Q2, γ22), and an F3-algebra Q23 = (Q2, F3, γ23)
such that:

(1) It holds Q11
F1≡F2Q12 and Q22

F2≡F3Q23.
(2) π1 : A → Q11, ψ1 : Q12 → B, π2 : B → Q22 and ψ2 : Q23 → C are

homomorphisms.
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By 1.5(ii), π2◦ψ1 : Q12 → Q22 is a homomorphism, too. Let π2◦ψ1 = ψ3◦π3
be a factorization of π2 ◦ ψ1 into a surjective map π3 : Q1 → Q3 and an
injective map ψ3 : Q3 → Q2. Evidently, the diagram

A
ϕ1 //

π1
  A

AA
AA

AA
A B

ϕ2 //

π2
!!C

CC
CC

CC
C C

Q1

π3
  B

BB
BB

BB
B

ψ1

=={{{{{{{{
Q2

ψ2

>>}}}}}}}}

Q3

ψ3

>>||||||||

commutes. By 1.8, there is an F2-algebra Q32 = (Q3, γ32) such that
π3 : Q12 → Q32 and ψ3 : Q32 → Q22 are homomorphisms. By 2.4(i), we
obtain kerπ3 ∈ SubF2

(Q12 × Q12) and, because of Q11
F1≡F2Q12, kerπ3 ∈

SubF1
(Q11 ×Q11). Since F1 weakly preserves kernels, by 2.4(ii), there is an

F1-algebra Q31 = (Q3, γ31) such that π3 : Q11 → Q31 is a homomorphism.
As a consequence of 2.7, Q11

F1≡F2Q12 implies Q31
F1≡F2Q32. Analogously,

by 2.5, it follows ψ3[Q3] ∈ SubF2
(Q22) and, on account of Q22

F2≡F3Q23,
ψ3[Q3] ∈ SubF3

(Q23), too. An application of 2.5 provides the existence of
an F3-algebra Q33 = (Q3, γ33) such that ψ3 : Q33 → Q23 is a homomorphism.
By 2.8, Q22

F2≡F3Q23 implies Q32
F2≡F3Q33. Thus, we have Q31

F1≡F3Q33.
Finally, it remains to be remarked that π3 ◦ π1 : A → Q31 is a surjective
homomorphism and ψ2 ◦ ψ3 : Q33 → B is an injective homomorphism. By
3.2(i), ϕ2 ◦ ϕ1 is a weak homomorphism from A to B.

One of the main consequences of the previous theorem, in connection
with 3.2(iii), is the following: For a set F of Set-endofunctors which weakly
preserve kernels, the class of all algebras of types from F endowed with the
class of all homomorphisms between these structures forms a category which,
in the sequel, will be denoted by Set

F . According to 3.3(iv) and the fact
that isomorphisms in Set

F need to be bijective, the isomorphisms in Set
F

are exactly the bijective weak homomorphisms. We are going to investigate
some further structural properties of SetF which correspond to well-known
results for Set

F and, in fact, show that the chosen definition is a useful
generalization. The next theorem arises from 1.5(iv), (v).

Theorem 3.5. Let A = (A,α) be an F1-algebra, B = (B, β) an F2-algebra
and C = (C, γ) an F3-algebra. Furthermore, let ϕ : A → B and ψ : B → C

be maps such that ψ ◦ ϕ is a weak homomorphism from A to C. Then the
following statements hold:

(i) Assume that F2 weakly preserves kernels. If ϕ : A → B is a surjective
weak homomorphism, then ψ : B → C is a weak homomorphism.
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(ii) If ψ : B → C is an injective weak homomorphism, then ϕ : A → B is a
weak homomorphism, too.

Proof. (i) If ϕ : A → B is a surjective weak homomorphism, then there exists
an F1-algebra B∗ = (B, β∗) such that B∗F1≡F2B and ϕ is a homomorphism
from A into B∗. Let Q := ψ[B] = ψ[ϕ[A]]. Since ψ ◦ϕ : A → C is a weak ho-
momorphism, there exist algebras Q1 = (Q, γ1) of type F1 and Q3 = (Q, γ3)
of type F3 such that Q1

F1≡F3Q3 and ψ̇ ◦ ϕ : A → Q1, ι
C
Q : Q3 → C are

homomorphisms. According to 1.5(iv), ψ̇ : B∗ → Q1 is a homomorphism.
By 2.4(i), it follows ker ψ̇ ∈ SubF1

(B∗ × B∗) and, because of B∗F1≡F2B,
ker ψ̇ ∈ SubF2

(B × B), too. As F2 weakly preserves kernels, by 2.4(ii) there
exists an F2-algebra Q2 = (Q, γ2) such that ψ̇ : B → Q2 becomes a homo-
morphism. On account of 2.7, B∗F1≡F2B implies Q1

F1≡F2Q2. Therefore, we
have Q2

F2≡F3Q3. Consequently, ψ : B → C is a weak homomorphism.

(ii) Analogously to the proof of (i), statement (ii) is derived from 1.5(v),
2.5 and 2.8.

From the previous theorem one can easily deduce the two corollaries given
below. The analogous results for morphisms in the categories Set and Set

F

can be found in [8] and [2], respectively.

Corollary 3.6. Let A be an F1-algebra, B an F2-algebra, C an F3-algebra,
π : A → B and ϕ : A → C weak homomorphisms. Assume that F2 weakly
preserves kernels and π is surjective. Then there exists a weak homomor-
phism ψ : B → C with the property ψ ◦π = ϕ if and only if kerπ ⊆ kerϕ. In
this case, ψ is uniquely determined.

Corollary 3.7. Consider an F1-algebra A, an F2-algebra B, an F3-
algebra C, an F4-algebra D as well as weak homomorphisms π : A → B,
ϕ : A → C, ρ : B → D and ψ : C → D. Assume that F2 weakly preserves
kernels, π is surjective and ψ is injective. If it holds ρ◦π = ψ ◦ϕ, then there
exists a unique weak homomorphism σ : B → C with the property σ ◦ π = ϕ.
In addition, σ satisfies ψ ◦ σ = ρ.

Let F be a set of Set-endofunctors which weakly preserve kernels, let EF

denote the class of all surjective weak homomorphisms between objects of
Set

F and M
F the class of all injective weak homomorphisms between objects

of SetF . Taking 3.7 into account, we observe that (EF ,MF ) is a factoriza-
tion structure for morphisms in Set

F (see [1]), which means that

(1) each of EF and M
F is closed under composition with isomorphisms in

Set
F ,

(2) each morphism ϕ : A → B in Set
F has a factorization ϕ = ψ ◦ π with

π ∈ E
F and ψ ∈ M

F (cf. 3.1, 3.3(v)), and
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(3) whenever π : A → B, ϕ : A → C, ρ : B → D and ψ : C → D are
morphisms in Set

F with π ∈ E
F , ψ ∈ M

F and ρ ◦π = ψ ◦ϕ, then there
exists a unique morphism σ : B → C in Set

F such that the diagram

A

ϕ

��

π // B

ρ

��σ
~~~
~
~
~

C
ψ

// D

commutes, i.e. it holds σ ◦ π = ϕ as well as ψ ◦ σ = ρ.

4. Products of differently typed algebras

Concerning a set F of endofunctors of Set which weakly preserve kernels,
we would like to find general conditions for F under which Set

F has certain
limits. However, this is still an open problem. In this section, we want to
discuss two very suggesting constructions for a product of differently typed
algebras where the canonical projections become weak homomorphisms. Un-
fortunately, the constructed objects fail to have the universal product prop-
erty.

Remarks 4.1.

(i) Let (Fi)i∈I be a family of Set-endofunctors. For every setX, we define
(Πi∈IFi)(X) := Πi∈IFi(X) and (Σi∈IFi)(X) := Σi∈IFi(X) =

⋃
i∈I{i} ×

Fi(X), and for every map ϕ : X → Y , we define

(Πi∈IFi)(ϕ) : (Πi∈IFi)(X) → (Πi∈IFi)(Y ) : z 7→ ((Fiϕ)(z(i)))i∈I ,

(Σi∈IFi)(ϕ) : (Σi∈IFi)(X) → (Σi∈IFi)(Y ) : (i, z) 7→ (i, (Fiϕ)(z)).

Then the assignments Πi∈IFi and Σi∈IFi constitute endofunctors of Set.

(ii) ([6]) Let F be an endofunctor of Set. If there is a nonempty set X
with F (X) = ∅, then F is trivial , i.e. for each set Y and each map f it holds
F (Y ) = ∅ and (Ff)• = ∅.

At first we will treat a construction concerning the functor Πi∈IFi.

Definition 4.2. Let (Fi)i∈I be a family of Set-endofunctors and (Ai)i∈I
a family of algebras such that, for each i ∈ I, Ai = (Ai, αi) is an Fi-algebra.
For each i ∈ I, consider the canonical projection π̃i,Ai

: (Πk∈IFk)(Ai) →
Fi(Ai) and the structure map δi := αi◦π̃i,Ai

: (Πk∈IFk)(Ai) → Ai. Referring
to 1.7, we define an algebra of type Πk∈IFk by

⊗
j∈I Aj := Πj∈I(Aj , δj).

Theorem 4.3. Let (Fi)i∈I be a family of Set-endofunctors and (Ai)i∈I a
family of algebras such that, for each i ∈ I, Ai = (Ai, αi) is an Fi-algebra.
We assume that
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(i) if Πk∈IFk is trivial, then Fi is trivial for each i ∈ I,
(ii) if (Πk∈IFk)(∅) = ∅, then Fi(∅) = ∅ for all i ∈ I.

For each i ∈ I, the projection πi : Πj∈IAj → Ai is a weak homomorphism
from

⊗
j∈I Aj to Ai.

Proof. We adopt the notations of 4.2. Let i ∈ I. By definition, πi is a
homomorphism from

⊗
j∈I Aj to (Ai, δi). According to 3.3(v), it suffices to

prove Ai
Fi≡Πk∈IFk(Ai, δi).

Let L be an arbitrary set, S ⊆ ALi . Consider the restricted projections
(πl|S : S → Ai)l∈L and the projection π̃i,S : (Πk∈IFk)(S) → Fi(S). For
each l ∈ L, it holds Fi(πl|S) ◦ π̃i,S = π̃i,Ai

◦ (Πk∈IFk)(πl|S), as for all a ∈
(Πk∈IFk)(S), we observe

(Fi(πl|S))(π̃i,S(a)) = (Fi(πl|S))(a(i))

= π̃i,Ai
((Fk(πl|S)(a(k)))k∈I)

= π̃i,Ai
((Πk∈IFk)(πl|S)(a)).

With these preliminary considerations, we are going to to show

S ∈ SubFi
(AL

i ) ⇐⇒ S ∈ SubΠk∈IFk
((Ai, δi)

L).

“=⇒”: If σ : Fi(S) → S is a structure mapping so that (S, σ) is a subal-
gebra of AL

i , then we define ρ := σ ◦ π̃i,S : (Πk∈IFk)(S) → S. Immediately,
for each l ∈ L, we infer

πl|S ◦ ρ = πl|S ◦ σ ◦ π̃i,S

= αi ◦ Fi(πl|S) ◦ π̃i,S

= αi ◦ π̃i,Ai
◦ (Πk∈IFk)(πl|S)

= δi ◦ (Πk∈IFk)(πl|S),

wherefore, by 2.3, (S, ρ) is a subalgebra of (Ai, δi)
L.

“⇐=”: Conversely, if there exists a structure mapping ρ : (Πk∈IFk)(S) → S

such that (S, ρ) is a subalgebra of (Ai, δi)
L, then define σ : Fi(S) → S by

σ• := {(π̃i,S(s), ρ(s)) | s ∈ (Πk∈IFk)(S)}. On account of (i), (ii) and 4.1(ii),
π̃i,S is surjective. Moreover, for all (a1, a2) ∈ ker π̃i,S and l ∈ L, we obtain

(πl|S ◦ ρ)(a1) = (δi ◦ (Πk∈IFk)(πl|S))(a1)

= (αi ◦ π̃i,Ai
◦ (Πk∈IFk)(πl|S))(a1)

= (αi ◦ Fi(πj|S) ◦ π̃i,S)(a1)

= (αi ◦ Fi(πj|S) ◦ π̃i,S)(a2)

= (αi ◦ π̃i,Ai
◦ (Πk∈IFk)(πl|S))(a2)

= (δi ◦ (Πk∈IFk)(πl|S))(a2)

= (πl|S ◦ ρ)(a2).
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Thus, we conclude ker π̃i,S ⊆ ker ρ and, hence, σ is well-defined. For each
l ∈ L, we deduce

πl|S ◦ σ ◦ π̃i,S = πl|S ◦ ρ = δi ◦ (Πk∈IFk)(πl|S)

= αi ◦ π̃i,Ai
◦ (Πk∈IFk)(πl|S)

= αi ◦ Fi(πl|S) ◦ π̃i,S .

According to the surjectivity of π̃i,S , it follows πl|S◦σ = αi◦Fi(πl|S). By 2.3,
(S, σ) is a subalgebra of AL

i .

The proof of 4.3 is illustrated by the diagram

(Πk∈IFk)(S)

ρ

��

�


�
�
(
1
:

π̃i,S
��

(Πk∈IFk)(π
S
l
)

// (Πk∈IFk)(Ai)

π̃i,Ai

��
δi

��

Fi(S)

σ

��
�
�
�

Fi(π
S
l
)

// Fi(Ai)

αi

��
S

πS
l // Ai.

The second construction we want to present here requires that the consid-
ered functors are naturally transformable to the identity functor. Of course,
this assumption is motivated by the universal algebraic case, as we will see
in 4.7(ii).

Definition 4.4. ([8]) Let C, D be categories and F,G : C → D functors.
A natural transformation τ from F to G associates to every C-object X
a D-morphism τX : F (X) → G(X) such that the following condition is
satisfied: For every C-morphism ϕ : X → Y , it holds Gϕ ◦ τX = τY ◦ Fϕ,
i.e. the diagram

F (X)

Fϕ

��

τX // G(X)

Gϕ

��
F (Y )

τY // G(Y )

commutes.

Definition 4.5. Let (Fi)i∈I be a family of Set-endofunctors, (Ai)i∈I
a family of algebras and τ = (τi)i∈I a family of natural transformations such
that, for each i ∈ I, Ai = (Ai, αi) is an Fi-algebra, and τi is a natural
transformation from Fi to the identity functor Id : Set → Set. Consider
the canonical injections (ιj,Ai

: Fj(Ai) → (Σk∈IFk)(Ai))i,j∈I . For each i ∈ I,
there exists a unique map δi : (Σk∈IFk)(Ai) → Ai satisfying αi = δi ◦ ιi,Ai

and τj,Ai
= δi ◦ ιj,Ai

for all j ∈ I \ {i}. Referring to 1.7, we define an algebra
of type Σk∈IFk by

⊕τ
j∈I Aj := Πj∈I(Aj , δj).
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Theorem 4.6. Let (Fi)i∈I be a family of Set-endofunctors, (Ai)i∈I a
family of algebras and τ = (τi)i∈I a family of natural transformations such
that, for each i ∈ I, Ai = (Ai, αi) is an Fi-algebra, and τi is a natural
transformation from Fi to the identity functor Id : Set → Set. Then, for
each i ∈ I, the projection πi : Πj∈IAj → Ai is a weak homomorphism from⊕τ

j∈I Aj to Ai.

Proof. We adopt the notations of 4.5. Let i ∈ I. By definition, πi is a
homomorphism from

⊕
j∈I Aj to (Ai, δi). With regard to 3.3(v), it suffices

to prove Ai
Fi≡Σk∈IFk(Ai, δi).

Let L be an arbitrary set and S ⊆ ALi . Furthermore, consider the
restricted projections (πl|S : S → Ai)l∈L and the canonical injections
(ιj,S : Fj(S) → (Σk∈IFk)(S))j∈I . For all j ∈ I, l ∈ L, it is easy to infer
(Σk∈IFk)(πl|S) ◦ ιj,S = ιj,Ai

◦ Fj(πl|S). Similarly to the proof of 4.3, it only
remains to verify

S ∈ SubFi
(AL

i ) ⇐⇒ S ∈ SubΣk∈IFk
((Ai, δi)

L).

“=⇒”: Let σ : Fi(S) → S be a structure map such that (S, σ) is a sub-
algebra of AL

i . Consider the unique map ρ : (Σk∈IFk)(S) → S satisfying
σ = ρ ◦ ιi,S and τj,S = ρ ◦ ιj,S for all j ∈ I \ {i}. For each l ∈ L, we have

πl|S ◦ ρ ◦ ιi,S = πl|S ◦ σ = αi ◦ Fi(πl|S)

= δi ◦ ιi,Ai
◦ Fi(πl|S) = δi ◦ (Σk∈IFk)(πl|S) ◦ ιi,S

and, for all j ∈ I \ {i},

πl|S ◦ ρ ◦ ιj,S = πl|S ◦ τj,S = τj,Ai
◦ Fj(πl|S)

= δi ◦ ιj,Ai
◦ Fj(πl|S) = δi ◦ (Σk∈IFk)(πl|S) ◦ ιj,S .

Therefore, it holds πl|S◦ρ = δi◦(Σk∈IFk)(πl|S). By 2.3, (S, ρ) is a subalgebra
of (Ai, δi)

L.

“⇐=”: Conversely, if there exists a structure map ρ : (Σk∈IFk)(S) → S

such that (S, ρ) is a subalgebra of (Ai, δi)
L, then we define σ :=

ρ ◦ ιi,S : Fi(S) → S. For each l ∈ L, it follows

πl|S ◦ σ = πl|S ◦ ρ ◦ ιi,S = δi ◦ (Σk∈IFk)(πl|S) ◦ ιi,S

= δi ◦ ιi,Ai
◦ Fi(πl|S) = αi ◦ Fi(πl|S).

According to 2.9, (S, σ) is a subalgebra of (Ai)
L.

The Theorems 4.3 and 4.6 are instances of situations from which the
notion of a weak homomorphism arises. The following examples illustrate
that, in general,

⊗
j∈I Aj and

⊕τ
j∈I Aj are not categorical products of the

algebras (Ai)i∈I . In fact, these structures fail to satisfy the corresponding
universal property.
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Examples 4.7. Let Ωi = (Ωi, ari) (i ∈ I) be a family of algebraic types as
in 2.2(i). Suppose that, for each i ∈ I, we have Ωi 6= ∅ and ari[Ωi] ⊆ N≥1.
Consider the functors Fi := FΩi

(i ∈ I) from 2.2(i) and let (Ai)i∈I be a
family of algebras such that, for each i ∈ I, Ai = (Ai, αi) is an Fi-algebra.

(i) According to 4.3, for each i ∈ I, the projection πi is a weak homo-
morphism from

⊗
j∈I Aj to Ai.

(ii) Let σi : Ωi → N≥1 (i ∈ I) be a family of maps such that σi(ω) ∈
{1, . . . , ari(ω)} for all ω ∈ Ωi and i ∈ I. Then, for each i ∈ I, a natural
transformation τi from Fi to Id can be defined as follows: For any set X,
put

τi,X : FΩi
(X) → X : (ω, (x1, . . . , xari(ω))) 7→ xσi(ω).

Theorem 4.6 states that, for each i ∈ I, πi is a weak homomorphism from⊕τ
j∈I Aj to Ai.

(iii) Assume that |I| ≥ 2, Fi = Id and Ai = (A,α) for all i ∈ I, where A is
a set with |A| ≥ 2 and α : A→ A a map with |α[A]| ≥ 2. In accordance with
4.2, we get the IdI -algebra

⊗
j∈I Aj = (AI , γ) with γ : (AI)I → AI defined

by γ(a)(i) := α(a(i)(i)) for all a ∈ (AI)I , i ∈ I. Furthermore, the diagonal
map δ : A→ AI , given by δ(a)(i) := a for all a ∈ A, i ∈ I, is the unique map
satisfying πi◦δ = idA for each i ∈ I. By 3.2(iii), idA is a weak homomorphism
from (A,α) to itself. However, since δ[A] = {a ∈ AI | ∀i, j ∈ I : a(i) = a(j)}
is not closed in

⊗
j∈I Aj , δ is not a weak homomorphism from (A,α) to⊗

j∈I Aj .

(iv) Suppose that |I| ≥ 2, Fi = Id, τi,X = idX and Ai = (A,α) for
all i ∈ I, where A is a set with |A| ≥ 2 and α : A → A a constant map
with α(a) = α∗ for all a ∈ A. With regard to 4.5, one can compute the
(I × Id)-algebra

⊕τ
j∈I Aj = (AI , γ) with γ : I ×AI → AI defined by

γ(i, a)(j) =

{
α∗ if i = j,

a(j) otherwise

for all a ∈ AI , i, j ∈ I. As in (iii), δ[A] is not closed in
⊕τ

j∈I Aj . Thus, δ is

not a weak homomorphism from A to
⊕τ

j∈I Aj .

Concluding remarks

This work provides basic tools for further research concerning weak ho-
momorphisms and some related category theoretic aspects. For instance,
from [1] we know that factorization structures as (EF ,MF ) are very useful
tools for the investigation of certain reflexive subcategories. With this in
mind, future considerations could address the classification of EF -reflexive
subcategories of SetF (see [1]). Another interesting question is whether and
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under which conditions it is possible to generalize the given results by replac-
ing Set by an arbitrary category C with a suitable factorization structure
for morphisms and considering those C-endofunctors which are compatible
with this factorization structure in some sense.

Several times in this paper, we needed to assume the Axiom of Choice.
This was to be expected, since the definition of a weak homomorphism is
formulated in terms of infinite direct products of algebras. However, it is
possible to replace the assumption of the Axiom of Choice by requiring an
additional property of the functors under consideration. An endofunctor F
of Set strongly preserves epimorphisms if the following condition is fulfilled:
Whenever ϕ : A → B is a surjective map, I an arbitrary set and R ⊆ BI ,
then the map Fψ is surjective, where ψ is defined by

ψ : (ϕI)−1[R] → R : a→ ϕI(a).

If we assume that the investigated functors strongly preserve epimorphisms,
we do not need the Axiom of Choice to prove the obtained results. But then
the Axiom of Choice is significant for the cardinality of this restricted class
of functors. Indeed, it is not difficult to show that the Axiom of Choice is
equivalent to each of the following two statements:

(a) Every Set-endofunctor strongly preserves epimorphisms.
(b) The identity functor Id : Set → Set strongly preserves epimorphisms.

So, for practical reasons, we decided to assume the Axiom of Choice in this
work. But as we have seen, this is not the only way to deal with the outlined
problem.
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