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WEAK RELATIVE PSEUDOCOMPLEMENTS IN
SEMILATTICES

Abstract. Weak relative pseudocomplementation on a meet semilattice S is a partial
operation * which associates with every pair (z,y) of elements, where z > y, an element
z (the weak pseudocomplement of x relative to y) which is the greatest among elements
u such that y = u A z. The element z coincides with the pseudocomplement of x in the
upper section [y) and, if S is modular, with the pseudocomplement of z relative to y. A
weakly relatively pseudomented semilattice is said to be extended, if it is equipped with
a total binary operation extending *x. We study congruence properties of the variety of
such semilattices and review some of its subvarieties already described in the literature.

1. Introduction

A meet semilattice is said to be weakly relatively pseudocomplemented
if, whenever y < =z, there is a greatest element w such that y = u A x.
The concept goes back to [28|, where the congruence lattice of a semilat-
tice was shown to possess this property; the term, however, was introduced
later in [35]. Weak relative pseudocomplements in congruence lattices (of
various structures) are discussed also, for example, in |2, 16, 19, 41|; they
are uncovered as well in lattices of closure operators |18, 31|, certain subal-
gebra lattices of semigroups and groups [37, 38, 42|, and in algebraic struc-
tures of constraint programming [5, 6]. Every meet-semidistributive alge-
braic (in particular, finite) lattice is weakly relatively pseudocomplemented
[12, 17, 37]. Weak relative pseudocomplementation has been studied also
in posets [15]. Sectionally pseudocomplemented semilattices introduced in
[8, 10] (i.e., semilattices with pseudocomplemented principial filters) are just
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weakly relatively pseudocomplemented semilattices. See also [11] and ref-
erences therein for information on sectionally pseudocomplemented semilat-
tices and lattices.

Some explanations concerning the term ‘sectionally pseudocomplement-
ed’, used in various senses in literature, could be helpful to the reader. It
was initially introduced for a lower bounded meet semilattice in which all
initial segments [0, b] are pseudocomplemented (see |23, 24, 27, 32]). Fur-
ther, semilattices with pseudocomplemented segments (mentioned in 25| as
‘abschhnittspseudokomplementér’) also were called in [26] sectionally pseu-
docomplemented. However, it is easily seen that an upper bounded meet
semilattice is sectionally pseudocomplemented in the sense of the previous
paragraph if and only if every segment, i.e., closed interval, in it is pseudo-
complemented [12, 35].

On the other hand, the term ‘weak relative pseudocomplementation’ (in-
terchangeably with ‘weak implication’) is used to name a certain operation
in Nelson algebras [30, 36] (known also as quasi-pseudo-Boolean algebras
[33]) and, more generally, in the so called weak Brouwerian semilattices with
filter preserving operators [4, p. 355].

Let S be a weakly relatively pseudocomplemented semilattice. For el-
ements z,y € S with y < z, we denote the element max{u: y = u A x}
by x *y. The operation x introduced in this way is partial, and a natural
question arises how to extend it to a total operation in a reasonable way
and when it is possible to do (the extended operation may be viewed as an
implication on the underlaying semilattice). Several answers to the ques-
tion can be found in literature. In particular, the so called semi-Brouwerian
semilattices [35] is a rather natural version of extended weakly relatively
pseudocomplemented semilattices. In [35, 39|, just the particular extended
operation of semi-Brouwerian semilattices is called a weak relative pseudo-
complementation.

Weakly relatively pseudocomplemented semilattices and their extensions
is the subject of the present paper. In the subsequent section, weak rela-
tive pseudocomplementation is put into the context of some other kinds of
relative complementation; in particular, it is shown there that in modular
semilattices all weak relative pseudocomplements are relative pseudocomple-
ments. The extension problem is addressed in Section 3, where the class (in
fact, a variety) EWR” of all extended weakly relatively pseudocomplemented
semilattices and its subvariety dEWR” consisting of distributive semilattices
are introduced. These varieties are shown in Section 4 to have nice congru-
ence properties. The subject of Section 5 is those EWR”-algebras where all
filters are congruence kernels. The class, in fact, the variety ABS of these
algebras admits various other characteristics, which together motivate the
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name ‘almost Brouwerian semilattice’ for them. In particular, almost Brouw-
erian semilattices are just those extended weakly relatively pseudocomple-
mented semilattices that are congruence orderable; this latter property turns
out to be equivalent to having equationally definable principal congruences.
A few particular classes of algebras, which already have been studied in lit-
erature and turn out to be subvarieties of EWR”, are reviewed in the final
section. It also contains a detailed comparison of all subvarieties of EWR"
considered in the paper.

2. Preliminaries
All semilattices we shall deal with in this paper will be meet semilattices.

DEFINITION 1. Suppose that x,y are elements of a semilattice and y < .
The weak pseudocomplement of x relative to y is the element z defined by

(1) z:=max{u: uAz =y} =max{u>y: uAz <y}

A semilattice is weakly relatively pseudocomplemented (or just wr-pseudo-
complemented, for short) if all weak relative pseudocomplements (wr-pseudo-
complements) in it exist. If zxy stands for the weak pseudocomplement of x
relative to y, then the (partial) operation * in a wr-pseudocomplemented
semilattice is called a weak relative pseudocomplementation, or just wr-
pseudocomplementation.

The element z in (1) more explicitly is characterised by the condition
if y <z, then y < u implies that (u < z if and only if u Az < y).
The next lemma provides an axiomatic description of wr-pseudocomplemen-

tation.

LEMMA 1. Let S be a semilattice, and let * be an additional partial operation
on S such that x xy is defined if and only if y < x. Then the following
assertions are equivalent:

(a) * is a wr-pseudocomplementation,
(b) * satisfies the conditions
(bl) if y <z then z A (x*xy) <y,
(b2) if y is the greatest lower bound of u and x, then u < x * y.

Proof. Assume that y < z. The second defining condition in (1) with
z = x *x y says that

(i) y<wxy,

ii) A (zxy) <y,

iii) ify<wand uAz <y, then u <z x*y.
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The inequality (i) actually follows from (iii) by u := y. Now, in virtue of the
assumption, (bl) corresponds to (ii), and (b2), to (iii). =

In a wr-pseudocomplemented semilattice S, all elements of the kind a xa
are maximal; more exactly, @ * @ = max|a). It follows that the semilattice is
up-directed: always z,y < (z Ay) * (x Ay), and then S actually must have
the greatest element 1.

The subsequent definition generalizes the concept of relative annihilator
along the lines of [15] (but the restriction b < a, which was assumed there, is
now removed). We first associate an equivalence relation af on S with every
element a € S by

(z,y) € af if and only if a Az = a Ay.

It is worth to note that a < b if and only if b* C af. A weak annihilator (z,y)
of x relative to 1 is the equivalence class of af containing y. Observe that
x *y = max(z,y) whenever y < x. A semilattice in which all weak relative
annihilators have the greatest element is a semi-Brouwerian semilattice in
the sense of [35]. As noted on p. 426 in |35], if z = max(x,y), then (z,y) =
[x Ay, z]; the element z is called there the weak pseudocomplementation of
x relative to y regardless of whether the inequality y < z holds (cf. also
[39]). We still shall use the term in the restricted sense of Definition 1.
As (z,y) = (z,x A y), a semilattice is semi-Brouwerian if and only if it is
wr-pseudocomplemented.

Recall that, in a semilattice with the least element, the pseudocomple-
ment of an element a is the greatest element disjoint from a. An arbitrary
semilattice S is said to be sectionally pseudocomplemented if every its upper
section [p) is pseudocomplemented. Therefore, if z and y are elements of S
with = > y, then the pseudocomplement of z in the upper section [y) is an
element z such that

z=max{u >y: u/Nyz =y},

where A, stands for the local meet operation in [y). As easily seen, an
element z of a semilattice is the weak pseudocomplement of = relative to
y if and only if it is the pseudocomplement of z in [y) (Proposition 8 in
[15] shows that this is not necessery in arbitrary posets). Moreover, if z
indeed is the pseudocomplement of z in [y) and z < 3/, then z A ¢/ is the
pseudocomplement of x in the segment [y,y’]. We thus come to conclusions
already mentioned in Introduction.

PROPOSITION 2. |35, Proposition 2.3] The classes of wr-pseudocomple-
mented semilattices, sectionally pseudocomplemented semilattices and upper
bounded semilattices with pseudocomplemented segments coincide.
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Let us now compare weak relative pseudocomplementation with relative
pseudocomplementation. Recall that z is the pseudocomplement of x relative
to y if

(2) z=max{u: uAz <y}

The results below are particular cases of those obtained in Section 4 of [15]
for arbitrary posets. We provide them with simpler proofs.

LEMMA 3. Let S be a semilattice, and let x,y be its elements such that
y < x. Then an element z is the pseudocomplement of x relative to y if and
only if it is the weak relative pseudocomplement and y satisfies the condition

(3) ifuNz <y, then y=u' Az for some u' > u.

Proof. Assume that x > y and that z satisfies (2). Then y < z, and (1) also
holds. Furthermore, if u A z < y for some u, put v/ = 2: then u < v/ and
WAz <y. Asy < z,x, eventually y = v/ A .

If, conversely, z satisfies (1), then z A z < y. If, moreover, u A z < y for
some u, then (3) provides an element u’ such that v/ Az = y and u < u/.
But v’ < z by the choice of z; so, u < z. Therefore, z satisfies also (2). =

An element p of a semilattice S is said to be modular if
x Ay < p <y implies that p = 2’ A y for some 2’ > =z,
and distributive if
x Ay < p implies that p = 2’ Ay for some 2’ > x and v/ > y.

For example, the element y in (3) is modular (recall the supposition y < x).
S itself is modular (distributive) if all its elements are modular (distributive).
The subsequent corollary extends to semilattices Theorem 3 of [41] proved
for lattices with pseudocomplemented segments.

COROLLARY 4. A semilattice is relatively pseudocomplemented if and only
if it is weakly relatively pseudocomplemented and modular.

Proof. In virtue of the preceding lemma, it only remains to note that a
semilattice in which the pseudocomplement of x relative to b exists whenever
x > b is still relatively pseudocomplemented: for arbitrary x and y, uAx <y
if and only if u Az < x Ay, and then the pseudocomplement of x relative to
x Ay is also its pseudocomplement relative to y. m

As every relatively pseudocomplemented semilattice is known to be dis-
tributive (see, e.g., Theorem 3.3 in [35]), we come to the following semilattice
analogue of [41, Theorem 2|.

THEOREM 5. A modular wr-pseudocomplemented semilattice is distributive.
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3. Extending wr-pseoudocomplementation

We shall deal in this section with algebras of kind (A, A, —, 1), where
(A, A, 1) is a semilattice with the largest element 1 and — is a (total) binary
operation on A. Let us call such algebras arrow semilatices. Occasionally,
we shall consider also operations ~» and « on an arrow semilattice defined

by
(4) T yi=a = (TAY), Tewyi= (T~ y) Ay~ )

Given an arrow semilattice A, we denote the derived algebra (A, A,~-,1),
called the shadow of A, by A™.

DEFINITION 2. We call a wr-pseudocomplemented semilattice extended if
it is equipped with a binary operation — satisfying the condition

(5) x — y = x *y whenever y < x,

and consider such semilattices as arrow semilattices. Equivalently, an ex-
tended wr-pseudocomplemented semilattice is an arrow semilatice such that
x — y is the wr-pseudocomplement of x relative to y whenever y < =x.
Let us denote the class of all extended wr-pseudocomplemented semilattices
(EWR-semilattices, for short) by EWR".

For example, it follows from Lemma 3 that every semilattice with relative
pseudocomplementation, or Brouwerian semilattice, is an EWR-semilattice.
Semi-Brouwerian semilattices (see the previous section) also may, and will,
be regarded as extended wr-pseudocomplemented semilattices, where a — b
stands for max(a, b). Then

(6) r—=y=xx*(TAy).

This relationship, which is essentially the equation (2.6) in [35], may be
used as an alternative definition of the operation — in terms of meet and wr-
pseudocomplementation; just in this way a total binary extension of sectional
pseudocomplementation in a meet semilattice was introduced in [10].

Being wr-pseudocomplemented, each EWR-semilattice incorporates a
semi-Brouwerian semilattice in a sense. The following proposition states
this in precise terms.

PROPOSITION 6. An arrow semilattice is an EWR-semilattice if and only
if its shadow is a semi-Brouwerian semilattice.

Proof. Assume that A is an arrow semilattice. If A is in EWR”, then (5)
implies that the operations ~~ and * are interrelated as follows:

(7) T~ y=x*(TAY).
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Hence, the semilattice A™ belongs to EWR” and is even semi-Brouwerian
(compare (7) with (6)). Conversely, if the semilattice A is semi-Brouwerian,
then (7) holds and implies (5), i.e., A is an EWR-semilattice. m

The subsequent characteristic of EWR” follows immediately from Lemma
1 and (5) (we consider any inequality ¢; < to as an equation t; = t1 A ta).

PROPOSITION 7. The class EWR" is a variety determined by the semilattice
axioms and identities

(=1): zA(z = (Ay)) <y,
(=2): z<y— (zAy).

For further reference, we list some elementary properties of the operations
— and ~- in extended wr-pseudocomplemented semilattices.

LEMMA 8. The following holds in every EWR-semilattice.

(—=3): z—ax=1,

(—4): 1> z=n=x,

(=5): zA(z—=(xAy)) =z Ay,
(—=6): x~ax=1,

(=7): 1wzx=u,

(—=8): x~1=1,

(—9): z<y~uz,

(=10): zA(z~y)=zANY,

(=) z<yiffr~y=1

Proof. It follows from (—2) that 1 <z — z and x < 1 — z, and from (—1),
that 1 — = < z. Therefore (—3), (—4) and, furthermore, (—¢) and (—7)
hold. (—3) and (—19) are equivalent to the conjunction of (—1) and the
inequality z Ay < x — (x Ay), a consequence of (—2). The identity (—s)
follows from (—3), and (—11) follows from (—3) and (—1). The identity
(—9) is another version of (—2). m

We now move to distributive EWR-semilattices. The next proposition
immediately follows from Theorem 5 above and (in view of Proposition 6)
Corollary 3.4 in [35], which states that a semi-Brouwerian semilattice is
Brouwerian if and only if it is distributive. We give it a short direct proof.

PROPOSITION 9. The following conditions on an EWR-semilattice A are
equivalent: (1) A is modular, (ii) A is distributive, (iii) A~ is a Brouwerian
semilattice.

Proof. (i) and (ii) are equivalent by Theorem 5. As every Brouwerian semi-

lattice is distributive, (iii) implies (ii). It remains to recall Lemma 3 and the
fact that the pseudocomplement of z relative to arbitrary y coincides with
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its pseudocomplement relative to z Ay; the equality (7) then shows that (in a
modular semilattice) the operation ~~ is relative pseudocomplementation. =

Let dEWR” stand for the class of all distributive EWR-semilattices. Given
such a semilattice A := (A, A,—,1), we denote by AT the common expan-
sion (A, A\,~,—,1) of A and the Brouwerian semilattice A™. Notice that
A is term equivalent to AT. The class BST of all these expansions is a
variety definable by the set of equations consisting of (i) EWR" axioms for
(A, A, —, 1), (ii) Brouwerian semilattice axioms for (A, A, ~-, 1), and (iii) the
first identity from (4) (due to which it immediately follows that dEWR" is
likewise an equational class).

Actually, it is enough to include in (ii) only any identity that causes a
semi-Brouwerian semilattice A~ to be Brouwerian. An example of such an
identity, provided by Proposition 2.1 in [35], is  ~» (yAz) = (z ~ y) A(x ~»
z) (see also subsection 6.1 below). Summing up, we come to the following
conclusion.

COROLLARY 10. The class dEWR" is a subvariety of EWR" determined by
the identity

(=12): 2= (xAyAz)=(x = (xAy) A= (A =2)).

4. Some congruence properties of EWR"

In this section we turn to congruence properties of the variety EWR”.
The reader is referred to the monographs [7], [9] or [11] for information
on general congruence properties of algebras and varieties mentioned in the
subseqgent theorem. We only remind that an algebra is arithmetical (at 1) if
and only if it is congruence distributive and permutable (at 1); permutable
at 1 algebras are known also as subtractive. As usual, the notation ©(a,b)
stands for the principal congruence generated by the pair (a,b), i.e., the
intersection of all congruences 8 such that a 8 b. The lattice of congruences
of an algebra A is denoted by C'(A).

THEOREM 11. Every EWR-semilattice A has the following properties:

(a) it is arithmetical at 1,
(b) it is weakly reqular at 1 (1-regular).

Hence,

(c) A is congruence distributive,

(d) the congruence kernels 1/0 of A form a lattice N(A) (with intersection
as its meet),

(e) the mapping 0 — 1/0 is a lattice isomorphism C(A) — N(A).
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Furthermore,
(f) if A is distributive, then it is arithmetical.

Proof. (a) By |9, Theorem 8.3.2(iii)|]. The identities (—¢), (—s) and (—4)
show that t(x,y) := y ~» z is the corresponding witness term: t(z,x) = 1,
t(l,z) =1, t(z,1) = .

(b) By [9, Theorem 6.4.3(iii)|. The identities (—¢) and (—11) show that
t(z,y) := x e~ y is the witness term: t(x,z) = 1, and if ¢(x,y) = 1, then
x=y.

The further properties are well-known consequences of (a) and (b). For
(c), see (b), (a) and Theorem 8.2.8 of [9]. For (d), see (a) and Propositions 1.4
and 1.5 in [40]. The surjective mapping indicated in (e) is a homomorphism
(|40, Proposition 1.2]). The congruence kernels of the algebra A are its
normal ideals in the general terminology assumed in that paper. By (a) and
(b), EWR" is an ideal-determined variety (|40, p. 206]; see also |9, Theorem
10.1.13]), i.e., every ideal of A is the kernel of exactly one congruence. So,
the mapping 6 — 1/0 is also injective and, eventually, an isomorphism.

As to (f), by Proposition 9, A is a Brouwerian semilattice. It is known
well that every Brouwerian semilattice is arithmetical (see Theorem 4.3.1 in
[11]). Since C(A) C C(A™), the algebra A itself also is arithmetical. m

It follows from the proof of (b) that x «~ y is the so called Gddel equiv-
alence term for EWR" (see |9, Definition 9.4.1] or p. 336 in [4]). The sub-
sequent lemma, suggested by Theorem 3.6 in [35|, gives a characteristic
property of the term.

LEMMA 12. Suppose that 0 is a congruence of an EWR-semilattice A. Then
x 0y if and only if (x «~ y) € 1/6.

Proof. The kernel 1/6 of 6 is a filter of A. If x 0y, then (z ~ y) 0 (y ~
y) = 1 by (—¢), and (x ~» y) € 1/6. Likewise, (y ~ z) € 1/0. Therefore,
(x e~ y) € 1/0. If, conversely, (x «~ y) € 1/6, then (x ~~ y) 6 1, wherefrom
z Ay = (zA(z~y)) 0z (see (—10)). Likewise, (x Ay) Oy, and then x0y. m

An arrow semilattice A is said to be strongly I-reqular (see |29, p. 483]),
if, for all a,b € A, there are ¢,d € A such that ©(a,b) = O(d,1) and
O(a,1) VO(b,1) = O(c,1). Therefore, A is strongly 1-regular if and only
if every compact (i.e., finitely generated) congruence of A is of the form

O(a,1). Clearly, every strongly l-regular algebra is l-regular. The next
result generalises a part of Theorem 4.1 in [29].

THEOREM 13. Every EWR-semilattice is strongly 1-reqular: for all a,b,

(a) ©(a,b) =0O(a e b, 1),
(b) ©(a,1)vO(b,1)=0(aNnb,1).
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Proof. By Lemma 12, a 6 b if and only if (a «~ b) 6 1 for every congruence
6; this immediately implies (a). For (b), abridge the notations O(a A b, 1),
O(a,1), ©(b,1) to 0, 01, 2, respectively. Then a = (a A1) 0 (a A (aAb)) =
(aAD)O1. Thus, ©(a,1) C O(a Ab,1), and similarly O(b,1) C O(a A b,1).
On the other hand, (a A b) (61 V 62) (1 A1) =1, wherefrom O(a A b,1) C
O(a,1)VO(D,1). =

The set Cp(A) of principal congruences of any algebra A is a lower
bounded join subsemilattice of C'(A) (the identity relation ©(1,1) is its
least element). The theorem shows that, for EWR-semilattices, the map-
ping a — O(a, 1) is a surjective semilattice antihomomorphism A — Cp(A).
Following the general definition in [22, p. 600], [4, p. 356], we say that an
arrow semilattice A is congruence orderable if this mapping is injective, and
Fregean if A is congruence orderable and 1-regular.

PROPOSITION 14. An EWR-semilattice A is congruence orderable if and
only if the mapping a — ©(a, 1) is an anti-isomorphism between the semi-

lattices A and Cp(A):
(8) a < b if and only if ©(b,1) C O(a,1).

Theorem 11(b) implies that a congruence orderable EWR-semilattice is
always Fregean. Due to Theorem 13, the subsequent proposition is, in fact,
a particular case of Theorem 4.3(1,2) of [29]: for the generic operations &
and A mentioned in it, we may substitute A and «~ respectively. (In [29],
1-regularity is not required in the definition of Fregean algebra.)

PROPOSITION 15. Suppose that A is a congruence orderable EWR-semi-
lattice. Then A™ is a Brouwerian semilattice if and only if C(A) = C(A™).

The reader is referred to [3, 4] for information on equationally definable
principal congruences.

THEOREM 16. Consider the following conditions on an arrow semilattice A:

(a) A™ is a Brouwerian semilattice, and every congruence of A™ is a con-
gruence of A, i.e., C(A)=C(A™),
(b) A has equationally definable principal congruences: if 8 = ©(a,b), then
x 0y if and only if (a e~ b) Ax = (a &~ b) Ny,
(¢) for every a, ©(a,1) = af,
(d) A is congruence orderable.
If A is in EWR", then (a) = (b) = (¢) = (d). If A is also distributive, then
(d) implies (a).
Remark: we shall see in the next section that actually a congruence
orderable EWR-semilattice is always distributive (Theorem 21 and Corol-
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lary 20), so that all conditions (a)—(d) are, in fact, equivalent in every EWR-
semilattice.

Proof. Assume that A € EWR".

(a) — (b). If the semilattice A~ is indeed Brouwerian, then it has equa-
tionally definable principal congruences (|3, p. 199 and Example 15 of Sec-
tion 1). If A has the same congruences, then equations (4) allow us to
conclude that (b) holds.

(b) — (c¢). By virtue of (—7) and (—sg), condition (b) implies that
(z,y) € O(a, 1) if and only if x a y.

(¢) — (d). By Proposition 14, as (c) implies (8).

(d) — (a). If A is distributive, then A is a Brouwerian semilattice
(Proposition 9), and we may apply Proposition 15. m

5. Congruences and filters of EWR”"-semilattices

Every congruence kernel of an EWR”-algebra A is a filter of its underlying
semilattice, i.e., N(A) C F(A), where F(A) stands for the lattice of filters
of A. We are now going to find out when the converse holds.

Given a filter F of A, we denote by F* the equivalence relation {(x,%): aA
x = a/y for some a € F'}. It is the smallest semilattice congruence of which
F' is the kernel; we call such relations filter-induced. The transformation
F — F* is injective, for always 1/(F¥) = F. A filter congruence of A is a
congruence of A that is induced in this way by some filter.

Notice that, in a particular case when F is the principal filter [a), F*
coincides with the relation a? introduced in Section 2: b > a and z b%y imply
that z af y.

LEMMA 17. Every congruence of an EWR-semilattice is a filter congruence;
more ezactly, 6 = (1/6)%.

Proof. Let F stand for the kernel of §. If z 6 y, then a := (x «w y) € I
(Lemma 12). By (—¢) and (—19), then a Az =z Ay =aAy, and z F*y.
Conversely, if  F'y, then a Az = a Ay for some a with a6 1. Tt follows that
(anz)bz, (aNy)by and z 0 y. Eventually, § = F¥. u

Therefore, for every F' € N(A),
x F*y if and only if (z e~ y) € F.

LEMMA 18. Suppose that F is a filter of an EWR-semilattice A. The
following assertions are equivalent:

(a) F is a congruence kernel,
(b) F* is a congruence,
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(c) for every x € F and all y,z € A,
(9) (y = 2) F* ((z Ay) = (z A 2)).

Proof. (a) <+ (b). It follows from the previous lemma and equality F' = 1/F*
that if 6 € C'(A), then

(10) F =1/0 if and only if § = F*.

(b) — (c). If F*is a congruence and = € F, then 1 F* z, wherefrom
y F¥(z Ay) and z F* (2 A z). Now (9) follows.

(c) — (b). The equivalence F* is always compatible with A. Further,
if  F*y and w F¥ v, then a Az = a Ay and b Au = b A v for appropriate
a,be F. Asc:=aANbe F, we now use (9):

(x — u) Ft ((chz) = (chu) = ((cAy) = (cAv)) Ft (y — ).
Hence, (z — u) F* (y — v), and F* is compatible also with —. =

THEOREM 19. The following conditions on an EWR-semilattice A are
equivalent:

a) every filter of A is a congruence kernel, i.e., F/(A) = N(A),
b) every principal filter is a congruence kernel,

(c) every filter-induced equivalence on A is a congruence,

d) the mapping F +— F* is a lattice isomorphism F(A) — C(A),
(e) A satisfies the identity

(—13): zA(y—=2)=xzA((zAy) = (xA2)).

Proof. Equivalence of (a) and (c) follows from the preceding lemma, (b) is
a part of (a), and (e) implies (a): due to (—13), the condition (c) in the
lemma is fulfilled for every filter F'. Further, if this condition is fulfilled for
all principal filters, then (—13) holds; so (b) implies (e). At last, (a) and (d)
are equivalent by virtue of Theorem 11(e) and (10). m

DEFINITION 3. An EWR"-algebra satisfying (—13) will be called an al-
most Brouwerian semilattice. We let ABS stand for the variety of all such
semilattices.

If A is an almost Brouwerian semilattice, then, in virtue of Theorems
19(d) and 11(c), its lattice of filters is distributive. It is well-known (see,
e.g., Lemma 5.1(iii) of Chapter II in [20]) that this conclusion extends to the
semilattice A itself.

COROLLARY 20. FEvery almost Brouwerian semilattice is distributive.

Of course, every Brouwerian semilattice is almost Brouwerian. We now
can relate the properties of filters listed in Theorem 19 with the congruence
properties from Theorem 16.
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THEOREM 21. An EWR-semilattice is almost Brouwerian if and only if it
is congruence orderable.

Proof. Assume that A is an almost Brouwerian semilattice. According to
Proposition 9, then A™ is a Brouwerian semilattice, so that the mapping
F + F*%is an isomorphism from F(A™) onto C(A™) (see, e.g., Corollary
4.3.4 in [11]). But the algebras A and A™ have the same filters, and, by
Theorem 19(d), also the same congruences. By Theorem 16, then A is
congruence orderable.

Now assume that A is a congruence orderable EWR-semilattice. Then
[a) = 1/6(a,1): by (8), b € [a) if and only if ©(b,1) C O(a, 1), which
implies that (b,1) € O(a, 1), and the converse implication holds in virtue of
the definition of principal congruence. Therefore, [a) is always a congruence
kernel, and A is almost Brouwerian by Theorem 19(b,e). m

An operation on a Brouwerian semilattice B is said to be compatible if
it preserves all congruences of B (|22, p. 609]; cf. [29, p. 497]). Corollary 4.1
of [22] asserts that a strongly 1-regular congruence orderable variety is term
equivalent to a variety of Brouwerian algebras with (additional) compatible
operations. Theorem 19(a,c) and Proposition 9 together with the discussion
subsequent to the latter yield the following specification of this result.

COROLLARY 22. The variety ABS is term equivalent to the variety BS™ of
Brouwerian semilattices (A, \,~,—, 1) with a compatible operation —.

6. Some other subvarieties of EWR"
6.1. Semi-Brouwerian semilattices

The extension rule (6) implies that every wr-pseudocomplemented semi-
lattice can uniquely be extended to a semi-Brouwerian semilattice. In fact,
an EWR-semilattice is semi-Brouwerian if and only if it satisfies the identity

(=14): z—oy=z— (xAy),

a counterpart of (6). Therefore, the class SBS of all semi-Brouwerian semilat-
tices is a subvariety of EWR”. That SBS is a variety, was discovered already
in [35]: it follows from Proposition 2.1 in [35] and the discussion subsequent
to it that the equations (—14) and

(—15): y<z—y,
(—16): zA(z—y)=xzAy

are the characteristic axioms for — in an arbitrary semi-Brouwewrian semi-
lattice (see also |39, Theorem 3]). One more equational description of SBS
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can be obtained from Theorem 3 of [10]. Note that, due to (—15), the
identity (—16) can be weakened to

(—=17): zA(z—y) <y

A comparison of (—15) and (—17) with (—2) and (—1) immediately gives
us another proof for Proposition 6.

A semi-Brouwerian semilattice A is Brouwerian if and only it is distribu-
tive (Corollary 3.4 in [35]). According to Propositions 2.1 and 3.5 of [35],
this condition is in its turn obeyed if any of the following equations is fulfilled
in A:

r=YAz)=(x—-yYN(r—2), z=>(Yy—2)=(ANy) — 2

The paper [39] contains a long list of identities that hold in semi-Brouwerian
lattices, as well as various identities of Brouwerian lattices that generally
do not hold in semi-Brouwerian lattices. Among the latter there are some
well-known pure implicational formulas, for example,

(—18): z<(x = y) —y.

Regretfully, the term ‘semi-Brouwerian semilattice’ has been used also in
various other senses. Another class of algebras interesting in the context of
the pesent paper and having the same name is reviewed in subsection 6.4.

6.2. Semilattices with sectional join-pseudocomplementation
Sectionally pseudocomplemented lattices are discussed also in [8]. How-
ever, instead of (6), another relation

(11) r—=y:=(xVy) xy

(in notation of the present paper) was used in [8] to turn the partial operation
% into a total one. In the further papers [12, 13|, as well as in the mono-
graph [11] sectionally pseudocomplemented lattices are treated as extended
by means of (11). The class of such lattices is a subvariety of EWR-lattices,
which is defined by one additional axiom

(—19): z—=y=(xVy) —>y.

In [14], the definition (11) was extended to sectionally pseudocomple-
mented posets as follows:
(12) r—=y:=max{zxy: x,y <z}

however, the maxima at the right need not always exist. A sectionally
pseudocomplemented poset extended by means of (12) was called section-
ally j-pseudocomplemented (‘j’ refers to the join operation in (11); a semi-
Brouwerian semilattice could likewise be called sectionally m-pseudocomple-
mented with ‘m’ for meet in (6)).
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PROPOSITION 23. The class SjP" of all sectionally j-pseudocomplemented
semilattices is a subvariety of EWR" specified by equations (—1¢), (—1s) and

(—2): y—=z<(xAy) =z

Proof. It follows from [14, Corollary 4(b)| that the operation — in a SjP-
semilattice can be characterised by the equations (—2), (—4), (—16), (—18),
(—90) and (x Ay) — y = 1. The latter one is a consequence of (—99) and
(—3). On the other hand, (—1) is an easy concequence of (—1¢). =

Observe that the three SjP"-axioms are fulfilled in every Brouwerian
semilattice.

6.3. Sectionally pseudocomplemented semilattices as total alge-
bras

Theorem 3 of [21] states that a meet semilattice with the greatest element
is sectionally pseudocomplemented if and only if it admits a (total) binary
operation — subject to axioms (—3), (—16) and

(—21): zA((zAy) = 2)=2A(y = (xA2)).

Its proof implies that the operation — obeys also (5). Against this back-
ground, sectionally pseudocomplemented semilattices are treated in [21] as
arrow semilattices satisfying the mentioned axioms (but see the last para-
graph of this subsection). The class of all these algebras is thus a subvariety
of EWR". To avoid any confusion, we continue to use the term ‘sectionally
pseudocomplemented semilattice’ in its initial sense of Section 2, and refer
to the extended wr-semilattices from the subvariety as to SPSygk-algebras
(‘HK’ for the authors’ names).

The identity (—21) coincides with the identity R3s from Section 3 of 35|,
which holds in every semi-Brouwerian algebra. Therefore, SBS is a subva-
riety of SPSpk. (It was also stated in the proof of Theorem 3 in [21] that
all axioms of SPSyk are fulfilled in a sectionally pseudocomplemented semi-
lattice extended by (—¢).) As the following example of an EWR-semilattice
borrowed from [34] shows, the subvariety is proper.

ExXAMPLE 1. Let Ay be the meet semilattice {0,1} with 0 < 1 and the
operation — defined by x — y = 1 iff x = y. It belongs to SPSyk, but does
not satisfy (—14) (take z =0,y =1).

The same example refutes Theorem 4 of [21], which states that the oper-
ation — in a distributive SPSpk-algebra is relative pseudocomplementation
(the identity (—14) is implicitly used in its proof). Consequently, Theorem
11 of [21], which rests on that theorem (and asserts that an SPSyk-algebra in
which the natural correspondence 6 +— 1/6 between congruences and filters
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is one-to-one, is a Brouwerian semilattice), is likewise wrong (cf. Theorem 19
above). Furthermore, an unjustified use of (—14) appears also in the proof
of Theorem 15 in [21].

Based on [21] are Sections 5.1 and 5.2 in [11]. The above comments
concern respectively Theorems 5.1.4, 5.2.7 and 5.2.10 therein.

There is also some nonconformity in terminology: the algebra A is an
example of an SPSyk-algebra which happens to be a lattice, but nevertheless
is not a sectionally pseudocomplemented lattice in the sense of the preceding
subsection, for it does not satisfy (—19) (again, take x = 0 and y = 1).
Conversely, there are such lattices which, considered as semilattices, are not
sectionally pseudocomplemented semilattices in the sense of this section.

6.4. Semi-Brouwerian semilattices: another version

In [34], a semi-Heyting algebra is defined to be a bounded lattice with an
additional operation — fulfilling (—3), (—16) and (—13). It is also proposed
there to call a semi-Brouwerian semilattice any meet semilattice with 1 and
operation — which is subject to these three axioms. To avoid the evident
terminological conflict, we choose here the symbol SBSg for the variety of
these algebras.

As noted in Section 13 of [34], most results obtained in that paper for
semi-Heyting algebras hold true, when appropriately modified (if needed)
also for SBSg-algebras. In particular, every SBSg-algebra has pseudocom-
plemented segments and is, hence, an EWR-semilattice. (Actually, it was
proved already in |10, Lemma 3| that an arrow semilattice satisfying (—3),
(—16) (—13) is sectionally pseudocomplemented.) Furthermore, (—13) can
be replaced by two identities

zAly—=z2z)=zA((xAy) —2), zA(y—=2)=zA(y—(xA2)).

It immediately follows that SBSg is a subvariety of SPSpxk.

Really, the variety SBSg coincides with ABS: the axiom (—3) of SBSg
holds already in EWR”", while (—16) follows from (—5) in virtue of (—13)
(with y = z); on the other hand, (—1) and (—3), the EWR"-axioms, follow
by substituting z Ay for y in (—16) and, respectively, z for y and z Ay for z in
(—13). It should be noted in this context that several results proved above
have been obtained in [34] in another way for SBSg-algebras. Moreover,
Theorem 7.5 of [34] provides a description of subdirectly irreducible semi-
Heyting algebras. We transfer it to almost Brouwerian semilattices in the
following form.

PROPOSITION 24. A non-trivial almost Brouwerian semilattice is subdi-
rectly irreducible if and only if there is the greatest element in it below 1.
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6.5. Interrelations between the subvarieties

We already have noticed several inclusions between the varieties of arrow
semilattices discussed in the last four sections. Let us sum up the relevant
information.

Variety Axioms

EWR" (=1) + (=2)
dEWR" EWR" + (—12)
ABS EWR" + (—13)
SBS EWR"+ (—14)

(—14) + (=15) + (—16)
SjP" EWR" + (=16) + (—=18) + (—20)
SBSuk (—=3) + (=16) + (—21)

) + ) + (—16)

SBSs (—s3 (—13 —16

PROPOSITION 25. The poset of the considered varieties of arrow semi-
lattices consists of the following chains (BS is the wvariety of Brouwerian
semilattices):
BS C ABS (= SBSs) C dEWR"C EWR",
BS C SBS C SBSuyx C EWR",
BS C ABS C SBSyx € EWR",
BS C SjPM C EWRY
(see Section 5 (page 662), Corollary 20, subsections 6.1, 6.3, 6.4, 6.2).
A number of subvarieties of semi-Heyting and SBSg-algebras have been

considered in [34]. See also [1].

We are now going to examine relations between these varieties more
carefully. To proceed, we need more examples of EWR-semilattices.

EXAMPLE 2. Let A := {0,a,1} be a three-element chain with 0 < a < 1.
Clearly, it is a distributive semilattice. An operation — on A is an extended

wr-pseudocomplementation if and only if it fits in with the partial table on
the left:

|0 a 1 —]0 a1 ~lo a 1
01 01 1 1 01 0 a
al0 1 a0 1 0 a0 1 1
110 a 1 110 a 1 110 a 1

Therefore, any completion of it leads us to an algebra in dEWR”". Let as
denote by A%, the algebra in which — has the table in the middle, and by
Ag, that on the right.
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EXAMPLE 3. Let A be the non-distributive five-element semilattice (pen-
tagon) with two maximal chains 0 < a < ¢ < 1and 0 < b < 1. An operation
— on A is an extended wr-pseudocomplementation if and only if it fits in
with the partial table on the left:

*|0 a b ¢ 1 =10 a b ¢ 1 =10 a b ¢ 1
01 01 1 1 1 1 0/1 1 1 1 1
alb 1 a |b 1 b 1 1 a|b 1 b 0 1
blc 1 blc a1l ¢ 1 blc a1l ¢ 1
cl|lb a 1 clb a b 1 1 c|lb a b 1 1
110 a b ¢ 1 110 a b ¢ 1 110 a b ¢ 1

Calculations by means of (12) lead us to the table in the middle. We have
thus obtained the single SjP”-algebra based on the pentagon, which we de-
note by A}l. It is also an SPSpk-algebra. Example 2 of [21] shows another
SBSpk-algebra based on the same pentagon, which differs from A} only in
that b — a = ¢. The algebra Ag with the table on the right does not satisfy
(—16) (put x = a,y = ¢) and, hence, does not belong to these two classes.

THEOREM 26. All inclusions indicated in Proposition 25 are proper.

Proof. (a) BS # ABS. The arrow semilattice Ao from Example 1 is almost
Brouwerian but not Brouwerian, for the implication * < y =z — y =1
fails in it for x =0, y = 1.

(b) ABS # dEWR”. The EWR-semilattice A} is distributive. However,
it does not belong to ABS, for the equality a — 1 = 0 contradicts to (—1¢),
one of the SPSg-axioms.

(c) dEWR" # EWR”". The pentagon-based EWR-semilattices from Ex-
ample 3 are not distributive.

(d) BS # SBS. As noted on page 664, the Brouwerian inequality (—1g)
need not hold in a semi-Brouwerian semilattice.

(e) SBS # SBSpk. See Example 1.

(f) SBSuk # EWR". The algebra A} is not an SBSyk-algebra: it falsifies
(—o1) withz =y =a, z=1.

(g) ABS # SBSpk. The SBSyk-algebra Al does not belong to ABS, for
all ABS-algebras are distributive.

(h) BS # SjP". As the SjP”-algebra Al is not distributive, it does not
belong to BS.

(i) SjP" # EWR”. The SjP"-axiom (—g) fails in the EWR-semilattice
Al:pstr=acandy=z2=1.m

PROPOSITION 27. The chains in Proposition 25 are maximal: no other
inclusion holds between the varieties.
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Proof. (j) SBS ¢ dEWR” by (d) and Proposition 9. By Proposition 25, then
also SPSyx ¢ dEWR"and SBS ¢ ABS.

(k) dEWR" ¢ SBSpk: see the argument in (f) and observe that Al is
distributive. By Proposition 25, then also dEWR" ¢ SBS.

(1) ABS ¢ SBS: if an almost Brouwerian semilattice is semi-Brouwerian,
then, being distributive, it should be Brouwerian. By (a), there are non-
Brouwerian ABS-algebras.

(m) ABS ¢ SjP": the arrow semilattice A from Example 1 is almost
Brouwerian, while the values z = 0, y = 1 do not satisfy (12). By Proposition
25, then also dEWR" ¢ SjP”.

(n) SjP" ¢ dEWR”: the SjP"-algebra Al is not distributive. By Propo-
sition 25, then also SjP"¢ ABS.

(0) SBS ¢ SjP": see the argument in (d) and recall that (—1g) is one of
the axioms of SjP". By Proposition 25, then also SPSpx ¢ SjP”.

(p) SjP" & SPSyk: the SjP"-algebra A} falsifies (—o1) withz = b,y =1
and z = a. By Proposition 25, then also SjP"* ¢ SBS. =

PROPOSITION 28. We have

dEWR" N SBS = ABS N SBS = BS = SBS n SjP".
In contrary,

SPSykN SjP" # BS and dEWR" N SBSpyk # ABS.

Thus, BS is the only variety in Proposition 25 that is an intersection of
others.

Proof. We already know that a semi-Brouwerian semilattice that is distribu-
tive or satisfies (—1g) is Brouwerian; recall that the latter inequality is an
SjP/-axiom. Further, as explained in Example 3, A} is both an SBSpk-
algebra and SjP”-algebra; since it is not distributive, it does not belong to
BS. The distributive EWR"-algebra A2 belongs to SPSuk, but not to ABS:
values z = a,y = 0,z = 1 do not satisfy (—13). m

PROPOSITION 29. We have
ABS U SBS # SBSuk, and dEWR" U SPSyk U SjP" # EWR".
Thus, none of the varieties in Proposition 25 is an union of others.

Proof. It was stated at the end of the previous proof that A§ belongs to
SPSyk and do not belong to ABS. The algebra falsifies (—15) with z = 0 and
y = a; therefore it does not belong also to SBS. As explained in Example 3,
the EWR-semilattice A% is not distributive and belongs neither to SPSyk
nor SjP".
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